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THE DISTRIBUTION OF POINTS ON SUPERELLIPTIC

CURVES OVER FINITE FIELDS

GILYOUNG CHEONG, MELANIE MATCHETT WOOD, AND AZEEM ZAMAN

(Communicated by Matthew A. Papanikolas)

Abstract. We give the distribution of points on smooth superelliptic curves
over a fixed finite field, as their degree goes to infinity. We also give the
distribution of points on smooth m-fold cyclic covers of the line, for any m,
as the degree of their superelliptic model goes to infinity. This builds on the
previous work of Kurlberg, Rudnick, Bucur, David, Feigon, and Laĺın for p-fold
cyclic covers, but the limits taken differ slightly and the resulting distributions
are interestingly different.

1. Introduction

For a family of smooth curves over a fixed finite field Fq, it is natural to ask how
many Fq-points those curves have on average, or more precisely, what distribution
of points one obtains from a random curve in the family. This question has been
studied as the genus, degree, or related invariants go to infinity in many cases
including: hyperelliptic curves [KR09], cyclic trigonal curves [BDFL10b], cyclic p-
fold curves [BDFL11], plane curves [BDFL10a], complete intersections in projective
space [BK11], trigonal curves [Woo12], and curves in Hirzebruch surfaces [EW12].

In this paper, we give the distribution of points on smooth superelliptic (affine)
curves, Cf , given by the equation

ym = f(x)

for varying f(x) ∈ Fq[x], with q and m fixed, as the degree of f goes to infinity. We
also give the distribution for the normalizations of (possibly singular) superelliptic
curves, which for q ≡ 1 (mod m) is exactly the case of m-fold cyclic covers of the
line (c.f. with the work on prime degree cyclic covers cited above). One important
advance in our work is that the normalizations may have different numbers of points
from their singular models, and it is, in general, difficult to write down the smooth
curves explicitly. The above-cited works have all counted points on curves with
explicitly given equations. (See also [Xio10] which gives the distribution on certain
families of explicitly given superelliptic curves that include singular curves.) In
Section 2 of this paper, we relate the number of points on a smooth curve to its
explicitly given superelliptic model.

In contrast to studying a similar question when a family of fixed genus is chosen
and q → ∞, the philosophy of Katz-Sarnak [KS99] suggests that the limit distri-
butions should be predicted by a certain group of random matrices. In the large
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genus limit for fixed q, there is no general conjectural picture of what one should
expect. Thus it is important to have many examples of different families exhibiting
different phenomena. In the cases we study, we obtain a particularly interesting
contrast to [BDFL10b,BDFL11], as we count the same cyclic covers of the line, but
with a different invariant going to infinity, and obtain different distributions.

Throughout, m will be fixed and (q,m) = 1. We write Fq[x]d to denote the degree
d polynomials in Fq[x]. Note that Cf is smooth if and only if f(x) is square-free,
for which curves we have the following result.

Theorem 1.1. Let (q,m) = 1. Then

lim
d→∞

#{f ∈ Fq[x]d | the curve Cf is smooth with k Fq-points}
#{f ∈ Fq[x]d | the curve Cf smooth} = Prob(

q∑
i=1

Xi = k),

where the Xj are independent and identically distributed random variables with

Xj =

⎧⎪⎪⎨
⎪⎪⎩
0 with probability

(
1− 1

(m,q−1)

)
1

1+q−1 ,

1 with probability q−1

1+q−1 ,

(m, q − 1) with probability 1
(m,q−1)

1
1+q−1 ,

where when (m, q−1)=1 the last two probabilities are added to give Prob(Xj =1).
We have the same results if we restrict to f such that Cf is irreducible or geomet-
rically irreducible.

In the case m = 2, Theorem 1.1 reduces to [KR09, Theorem 1] giving the distri-
bution of Fq-points on hyperelliptic curves.

When f(x) is not square-free, we can consider the normalization C̃f of Cf , which
is a smooth curve. Note that for g ∈ Fq[x], the curves Cf and Cfgm have the same

normalization. So it is natural to consider the smooth normalizations C̃f for f that
are mth power-free.

Theorem 1.2. Let (q,m) = 1. Then

lim
d→∞

#{f ∈ Fq[x]d | f is mth power-free and C̃f has k Fq-points}
#{f ∈ Fq[x]d | f is mth power-free} = Prob(

q∑
i=1

Xi = k),

where the Xj are independent and identically distributed random variables with

Xj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 with probability
∑

0≤s≤m−1

q−s

(
1− 1

(m, s, q − 1)

)
1− q−1

1− q−m
,

N with probability
∑

0≤s≤m−1
(m,s,q−1)=N

q−s(1− q−1)

N(1− q−m)
.

We have the same results if we restrict to f such that C̃f is irreducible or geomet-
rically irreducible.

When q ≡ 1 (mod m), by Kummer theory, the cyclic m-fold covers of the line

are exactly the irreducible C̃f of Theorem 1.2. Both Theorems 1.1 and 1.2 will
follow from Theorem 3.1, which will give the distribution of points on superelliptic
curves and their normalizations with f(x) that are nth power-free, further refined
by x values. We prove Theorem 3.1 by first relating the number of points on the
normalizations to the explicit affine model in Section 2, and then using counting
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methods similar to those of [KR09] in Section 3 (with the difference that our setup
allows us to avoid counting polynomials interpolated to take zero values).

Note that the average number of points in both theorems above is q, which agrees
with the average in [BDFL10b,BDFL11,KR09] for prime degree cyclic covers of the
(affine) line. However, our distributions differ from those in [BDFL10b,BDFL11],
which is not a contradiction as we take different invariants going to infinity. In
our case, we are letting the degree of f , or Cf , the affine model of the curve, go
to infinity. Cyclic p-fold curves have a signature d1, . . . , dp−1, and in [BDFL10b,
BDFL11] one has mini(di) → ∞. It would be very interesting to understand why
and how this difference has an impact on the resulting distribution of points, not
only in this case, but more generally. For this reason, we particularly highlight the
first contrast, in the case of cyclic trigonal curves, in which we have Theorem 1.2
when q ≡ 1 (mod 3) with

Xj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 with probability
2

3(1 + q−1 + q−2)
,

1 with probability
q−1 + q−2

1 + q−1 + q−2
, and

3 with probability
1

3(1 + q−1 + q−2)
,

and when instead of deg(f) → ∞, we have mini(di) → ∞, [BDFL10b] gives an
analogous theorem with

Xj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 with probability
2

3(1 + 2q−1)
,

1 with probability
2q−1

1 + 2q−1
, and

3 with probability
1

3(1 + 2q−1)
.

The difference seems very suggestive but the reason for it is not immediately clear.

2. Points on the normalization

In this section, we determine the number of points on the normalization C̃f in

terms of f . Note that we have a map C̃f → Cf → A1 = SpecFq[x], and so a degree
1 point of Cf maps to a degree 1 point of A1 = SpecFq[x], and thus we can talk
about the x-value of such a point.

We say f ∈ Fq[x] has power r over a field F if r is the greatest integer such that
f(x) = g(x)r for some g ∈ F [x]. The following lemma deals with when our curve
Cf is irreducible or geometrically irreducible.

Lemma 2.1. If the power of f(x) over F̄q is relatively prime to m, then ym−f(x)
is irreducible in F̄q[x, y] (i.e. Cf is geometrically irreducible).

Proof. If the power of f over F̄q is relatively prime to m, then f has order m in
F̄q(x)

∗/(F̄q(x)
∗)m. Then, by Kummer theory, we have that ym−f(x) is irreducible

in F̄q[x, y]. �

Lemma 2.2. Let f ∈ Fq[x] have power over F̄q relatively prime to m and for some
x0 ∈ Fq, we write f(x) = (x− x0)

sg(x) with s ≥ 0, and g ∈ Fq[x], and g(x0) �= 0.
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Then, the number of degree 1 points of C̃f with x = x0 is equal to{
0 if g(x0) is not an (m, s) power in Fq,

(m, s, q − 1) if g(x0) is an (m, s) power in Fq.

Proof. The number of degree 1 points of C̃f with x = x0 for some x0 ∈ Fq is equal
to the number of degree 1 primes over (x−x0) in K = Fq(x)[y]/(y

m− f(x)) by the
usual correspondence between curves and their function fields. (We have that K is
a field by Lemma 2.1.) Without loss of generality, we can consider the case x0 = 0.
We have f(x) = xsg(x), where g(x) ∈ Fq[x] and g(0) �= 0.

We let z = ym/(m,s)x−s/(m,s) ∈ K and z(m,s) = g(x), so z is integral over Fq[x].

Thus at any prime ℘ over (x), modulo ℘ we have z(m,s) ≡ g(0). Thus if g(0) is not
an (m, s) power in Fq, then the inertia degree at ℘ is > 1, and there are no degree
1 primes of K over (x).

Note that K contains L = Fq(x)[z]/(z
(m,s) − g(x)) (since the power of f over F̄q

is relatively prime to m, the power of g over F̄q is relatively prime to (m, s) and thus
this polynomial is irreducible by Lemma 2.1). We have that L is unramified over
(x). Since Fq[x, z]/(z

(m,s) − g(x)) is maximal at (x), we can compute the splitting

of (x) in L by computing the splitting of z(m,s) − g(x) modulo (x). If g(0) is an
(m, s) power in Fq, then z(m,s) − g(x) has exactly (m, s, q − 1) distinct degree 1
factors modulo (x), and there are exactly (m, s, q − 1) degree 1 primes in L over
(x).

We write (m, s) = mi + sj for some i, j ∈ Z, and then (yjxi)m = xmi+sjg(x)j

has valuation (m, s) in Fq(x) (with respect to x). So at any place of K above (x)

there is an element of valuation (m,s)
m , and thus any prime over (x) has ramification

degree e ≥ m
(m,s) . This means every prime of L over (x) must be completely ramified

from L to K, and thus there are exactly (m, s, q−1) degree 1 primes in K over (x).
The lemma follows. �

3. Main theorem

Throughout this section, we fix an integer n ≥ 2. We say a polynomial f ∈ Fq[x]
is nth power free if f is not a multiple of the nth power of any positive degree
polynomial in Fq[x]. Let

F := {f ∈ Fq[x] | f is nth power-free}

and Fd be the elements of F of degree d. We write x1, . . . , xq for the elements of
Fq.

Theorem 3.1. Let k1, . . . , kq be integers and (q,m) = 1. Then

lim
d→∞

#{f ∈ Fd | for each i, Cf has ki points with x = xi}
#Fd

= Prob(Xi = ki for all i),

where the Xj are independent and identically distributed random variables with

Xj =

⎧⎪⎪⎨
⎪⎪⎩
0 with probability

(
1− 1

(m,q−1)

)
1−q−1

1−q−n ,

1 with probability q−1−q−n

1−q−n ,

(m, q − 1) with probability 1
(m,q−1)

1−q−1

1−q−n ,
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where when (m, q−1) = 1 the last two probabilities are added to give Prob(Xj = 1).
Also,

lim
d→∞

#{f ∈ Fd | for each i, C̃f has ki points with x = xi for all i}
#Fd

= Prob(Xi = ki for all i),

where the Xj are independent and identically distributed random variables with

Xj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 with probability
∑

0≤s≤n−1

q−s

(
1− 1

(m, s, q − 1)

)
1− q−1

1− q−n
,

N with probability
∑

0≤s≤n−1
(m,s,q−1)=N

q−s(1− q−1)

N(1− q−n)
.

We have the same results if we restrict to f such that Cf (or C̃f) is irreducible or
geometrically irreducible.

When q ≡ 1 (mod m) and m = n, Theorem 3.1 reduces to [Xio10, Theorem 1.1].

3.1. Notation. For a prime h ∈ Fq[x], we write hs||f if hs|f and hs+1 � f . For
s = (s1, . . . , sq) ∈ Nq, let

Fs := {f ∈ F | (x− xi)
si ||f for all i},

and Fs
d be the elements of Fs of degree d. Note that if some i ≥ n, then Fs is

empty. We use V to denote the set of monic polynomials in Fq[x], and Vd ⊂ V to
denote those of degree d.

We define the zeta function

ζ(s) :=
∏

P∈Fq [x]
P is monic irreducible

(1− q−s deg(P )) =
1

1− q1−s

and the Möbius function for f ∈ Fq[x]

μ(f) :=

{
0 if f is not square-free,

(−1)k if f is the product of k distinct irreducible factors.

3.2. Lemmas. The following is an analog of [KR09, Lemma 5] (which is the special
case n = 2). We count the number of nth power-free polynomials interpolating
given values.

Lemma 3.2. Let x1, · · · , xl ∈ Fq be distinct elements, and fix any a1, · · · , al ∈ F∗
q .

Then

#{f ∈ Fd | f(x1) = a1, · · · , f(xl) = al} =
qd−l(q − 1)

ζ(n)(1− q−n)l
+O(qd/n+1),

where the constant in the O is absolute.
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Proof. By inclusion-exclusion, we have

#{f ∈ Fd | f(x1) = a1, · · · , f(xl) = al}

=
∑
f2∈V

0≤deg(f2)≤d/n

μ(f2)#{f1 ∈ Fq[x]d−n deg(f2) | f2(xj)
nf1(xj) = aj for 1 ≤ j ≤ l}

=
∑
f2∈V

0≤deg(f2)≤d/n

μ(f2)#{f1 ∈ Fq[x]d−n deg(f2) | f1(xj) = aj/f2(xj)
n for 1 ≤ j ≤ l}.

If f2(xj) = 0, then by convention, there are no f1 such that f1(xj) = aj/f2(xj)
n.

If D ≥ l, there are (q−1)qD−� degree D elements of Fq[x] that interpolate l given
values because each interpolation point imposes a linearly independent condition
on the coefficients of a monic polynomial of degree D (by the Vandermonde deter-
minant). If l ≥ D+ 1, then D+ 1 of these conditions are still linearly independent
on the set of (not necessarily monic) polynomials of degree at most D, and thus
there is at most 1 polynomial of degree D interpolating l given values.

We split the above expression into two sums depending on the degree of f2, and
thus the above is

=
∑
f2∈V

0≤deg(f2)≤(d−l)/n
f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)qd−ndeg(f2)−l +O

⎛
⎜⎜⎜⎜⎜⎝

∑
f2∈V

(d−l)/n<deg(f2)≤d/n
f2(xj) �=0 for 1≤j≤l

1

⎞
⎟⎟⎟⎟⎟⎠ .

We bound the error term by counting all monic polynomials of degree at most
d/n to see that the above is

=
∑
f2∈V

0≤deg(f2)≤(d−l)/n
f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)qd−n deg(f2)−l +O(qd/n)

= qd−l
∑
f2∈V

f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)q−ndeg(f2) − qd−l

×
∑
f2∈V

(d−l)/n<deg(f2)
f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)q−ndeg(f2) +O(qd/n).

We bound the middle term by counting that there are at most qi monic poly-
nomials of degree i, and summing the geometric series to obtain that the above
is

=qd−l
∑
f2∈V

f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)q−ndeg(f2) +O(qd/n+1).
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We have∑
f2∈V

f2(xj) �=0 for 1≤j≤l

μ(f2)(q − 1)q−ndeg(f2) =(q − 1)
∏

P∈Fq [x]
P is monic irreducible
P (xj) �=0 for 1≤j≤l

(1− q−n deg(P ))

=(q − 1)ζ(n)−1(1− q−n)−l.

Thus

#{f ∈ Fd‖ f(x1) = a1, · · · , f(xl) = al} =
qd−l(q − 1)

ζ(n)(1− q−n)l
+O(qd/n+1).

�

Now we refine our interpolation count to Fs
d . For g ∈ Fq[x], we write g|x=xi

for
the evaluation of g at x = xi.

Lemma 3.3. Let a1, . . . , aq ∈ F∗
q and 0 ≤ s1, . . . , sq ≤ n− 1. Then

#{f ∈ Fs
d | f

(x− xi)si

∣∣∣∣
x=xi

= ai for all i} =
qd−

∑
si−q(q − 1)

ζ(n)(1− q−n)q
+O(q(d−

∑
si)/n+1),

where the constant in the O is absolute.

Proof. For any f ∈ Fs, we write f = g
∏

1≤i≤q(x− xi)
si . Then,

f

(x− xi)si

∣∣∣∣
x=xi

= ai if and only if g(xi) =
ai∏

j �=i(xi − xj)sj
.

Furthermore, if h ∈ Fq[x] is nth power free with no linear factors, then
h
∏

1≤i≤q(x− xi)
si ∈ Fs since the si ≤ n− 1.

So, by writing f = g
∏

1≤i≤q(x− xi)
si , we have

#{f ∈ Fs
d | f

(x− xi)si

∣∣∣∣
x=xi

= ai for all i}

= #{g ∈ Fd−
∑

si | g(xi) =
ai∏

j �=i(xi − xj)sj
for all i}

and then we apply Lemma 3.2. �

Lemma 3.4. We have that #Fd = (q−1)(qd−qd−n+1) = qd(q−1)/ζ(n) for d ≥ n.

Proof. By counting all monic polynomials of degree d, we have

1

1− qt
=

∑
d≥0

(qt)d =
∏

P∈Fq [x]
P is monic irreducible

1

1− tdeg(P )
.

By counting nth power-free monic polynomials, we then have∑
d

#Fd

q − 1
td =

∏
P∈Fq [x]

P is monic irreducible

(1 + tdeg(P ) + · · ·+ t(n−1) deg(P ))

=
∏

P∈Fq [x]
P is monic irreducible

1− tn deg(P )

1− tdeg(P )
=

1− qtn

1− qt
.

We conclude that #Fd = (q − 1)(qd − qd−n+1) = qd(q − 1)/ζ(n) for d ≥ n. �
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See also [VW12, Proposition 5.9(a)], which gives a much more general proof of
this kind of identity (with the line replaced by any variety), and without using the
Euler product.

3.3. Proof of Theorem 3.1. We are now ready to prove our main theorem, which
we do by reducing it to the interpolation counts of Lemma 3.3.

Proof of Theorem 3.1. We will first see that for f ∈ Fd with (x − xi)
s||f and

f
(x−xi)s

∣∣∣
x=xi

= a, the number of points on Cf with x = xi only depends on s

and a. If s = 0, then if a is one of the q−1
(m,q−1) mth powers in F∗

q , then there are

(m, q − 1) points on Cf with x = xi (the number of mth roots of an mth power in
F∗
q , i.e. choices for y given x = xi). If s = 0 and a is one of the (q− 1)(1− 1

(m,q−1) )

non-mth powers in F∗
q , then there are 0 points on Cf with x = xi. If s ≥ 1, then

all q − 1 values of a give 1 point with x = xi (as necessarily y = 0).
Let φ(s, k) be the set of a ∈ F∗

q such that for any f ∈ F with (x − xi)
s||f , we

have that f
(x−xi)s

∣∣∣
x=xi

= a implies that Cf has k points with x = xi. From the

above we see that

(1) #φ(s, k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(q − 1)(1− 1
(m,q−1) ) if s = k = 0,

q−1
(m,q−1) if s = 0 and k = (m, q − 1),

q − 1 if s ≥ 1 and k = 1, and

0 otherwise.

Applying Lemma 3.3, we have

#{f ∈ Fd| Cf has ki points with x = xi for all i}

=
∑

0≤s1,...,sq≤n−1

#{f ∈ Fs
d | Cf has ki points with x = xi for all i}

=
∑

0≤s1,...,sq≤n−1

∑
(a1,...,aq)∈

∏
i φ(si,ki)

#{f ∈ Fs
d |

f

(x− xi)si

∣∣∣∣
x=xi

= ai for all i}

=
∑

0≤s1,...,sq≤n−1

∑
(a1,...,aq)∈

∏
i φ(si,ki)

(
qd−

∑
si−q(q − 1)

ζ(n)(1− q−n)q
+O(q(d−

∑
si)/n+1)

)

=
∑

0≤s1,...,sq≤n−1

(
qd−

∑
si−q(q − 1)

ζ(n)(1− q−n)q
+ O(q(d−

∑
si)/n+1)

) ∑
(a1,...,aq)∈

∏
i φ(si,ki)

1

=
∑

0≤s1,...,sq≤n−1

(
qd−

∑
si−q(q − 1)

ζ(n)(1− q−n)q
+ O(q(d−

∑
si)/n+1)

)(
q∏

i=1

#φ(si, ki)

)
.
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Thus we have, by Lemma 3.4, for d ≥ n,

#{f ∈ Fd| Cf has ki points with x = xi for all i}
#Fd

=
∑

0≤s1,...,sq≤n−1

(
q−

∑
si−q

(1− q−n)q
+O(q−d+1+(d−

∑
si)/n+1)

)(
q∏

i=1

#φ(si, ki)

)

=

q∏
i=1

(
n−1∑
si=0

#φ(si, ki)

qsi+1(1− q−n)

)
+O(q−d+1+(d−

∑
si)/n+1+q+n).

So,
(2)

lim
d→∞

#{f ∈Fd| Cf has ki points with x = xi for all i}
#Fd

=

q∏
i=1

(
n−1∑
si=0

#φ(si, ki)

qsi+1(1−q−n)

)
.

From equation (1) we have that

n−1∑
si=0

#φ(si, ki)

qsi+1(1− q−n)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1− 1

(m,q−1)

)
1−q−1

1−q−n if ki = 0,

q−1−q−n

1−q−n if ki = 1 and ki �= (m, q − 1), and
1

(m,q−1)
1−q−1

1−q−n if ki = (m, q − 1) and ki �= 1, and
q−1−q−n

1−q−n + 1
(m,q−1)

1−q−1

1−q−n if ki = 1 = (m, q − 1),

which, plugged into equation (2), proves the first statement of Theorem 3.1.
If a degree d polynomial f in Fq[x] is an rth power in F̄q[x] for some r > 1, then

f = cgr for some c ∈ Fq and monic g ∈ Fq[x], and so there are at most qd/r+1 of
these polynomials f of degree d. So, in Fd, we have at most∑

i|m
i≥2

qd/i+1 = O(mqd/2)

polynomials whose power over F̄q is not relatively prime to m. Using Lemma 3.4,
we see that in the limit as d → ∞, these polynomials will not contribute to the
total proportion. By Lemma 2.1, this gives that the geometrically reducible Cf do
not contribute in the d → ∞ limit, giving the last statement of the theorem.

Let F∗
d = {f ∈ Fd | the power over F̄q is relatively prime to m}. Lemma 2.2

shows that for f ∈ F∗
d such that (x − xi)

s||f and f
(x−xi)s

∣∣∣
x=xi

= a, that the

number of points on C̃f with x = xi only depends on s and a. More explicitly, it

shows that q−1
(m,s,q−1) of the q − 1 possible values of ai give (m, s, q− 1) points with

x = xi and the other (q − 1)(1− 1
(m,s,q−1) ) values of ai give 0 points with x = xi.

Let φ̃(s, k) be the set of a ∈ F∗
q such that for any f ∈ F∗

d with (x−xi)
s||f , we have

that f
(x−xi)s

∣∣∣
x=xi

= a implies that C̃f has k points with x = xi. From the above

we see that

(3) #φ̃(s, k) =

{
(q − 1)(1− 1

(m,s,q−1) ) if k = 0 and
q−1

(m,s,q−1) if k = (m, s, q − 1).
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As above, we have

lim
d→∞

#{f ∈ Fd| C̃f has ki points with x = xi for all i}
#Fd

=

q∏
i=1

(
n−1∑
si=0

#φ̃(si, ki)

qsi+1(1− q−n)

)
.

From equation (3) we have that

n−1∑
si=0

#φ̃(si, ki)

qsi+1(1− q−n)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
0≤s≤n−1

q−s

(
1− 1

(m, s, q − 1)

)
1− q−1

1− q−n
if ki = 0, and

∑
0≤s≤n−1

(m,s,q−1)=N

q−s(1− q−1)

N(1− q−n)
if ki = N ,

which gives the second statement of the theorem. �
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