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POSITIVE KNOTS AND LAGRANGIAN FILLABILITY
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(Communicated by Daniel Ruberman)

Abstract. This paper explores the relationship between the existence of an
exact embedded Lagrangian filling for a Legendrian knot in the standard
contact R3 and the hierarchy of positive, strongly quasi-positive, and quasi-
positive knots. On one hand, results of Eliashberg and especially Boileau
and Orevkov show that every Legendrian knot with an exact, embedded La-
grangian filling is quasi-positive. On the other hand, we show that if a knot
type is positive, then it has a Legendrian representative with an exact embed-
ded Lagrangian filling. Further, we produce examples that show that strong
quasi-positivity and fillability are independent conditions.

1. Introduction

Properly embedded Lagrangian submanifolds of B4 whose boundaries are Legen-
drian links in S3, called fillings of the Legendrian links, are of interest in a variety
of fields: in smooth knot theory, Lagrangian fillings minimize the slice genus of a
link [6]; in Legendrian knot theory, Lagrangian fillings induce augmentations of the
Legendrian Contact Homology DGA [10–12]; and Lagrangian fillings can even be
used to answer questions about complex algebraic curves [5]. These considerations
motivate the following question:

Which smooth knot types have Legendrian representatives with La-
grangian fillings?

Such a smooth knot type is termed fillable. In analyzing this question, we work
in the equivalent setting of Legendrian links in the standard contact R3 and La-
grangian fillings in the symplectization R×R3. We further require the Lagrangian
fillings to be exact, orientable, embedded, and collared, i.e. equal to R×Λ outside
a compact set.

Initial progress on the question above indicates a close relationship to the hier-
archy of positivity in smooth knot theory. To describe the hierarchy, let BP be the
set of braid positive knot types, P be the set of positive knot types, SQP be the
set of strongly quasi-positive knot types, and QP be the set of quasi-positive knot
types. The following relationships are well known (see [16, 22, 26], for example):

(1.1) BP � P � SQP � QP.

The first main result of this paper delineates a sufficient condition for a smooth
knot type to be fillable:

Theorem 1.1. All positive knots are fillable.
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To make progress towards a necessary condition, we begin by noting that quasi-
positivity is necessary for fillability. To see this, first note that a result of Eliashberg
[13] can be extended to show that a Lagrangian filling of a Legendrian knot may be
perturbed to a symplectic filling of a transverse knot (see [5] for more details). From
there, use the following result of Boileau and Orevkov [3]: if a smooth knot type
has a transverse representative with a symplectic filling, then it is quasi-positive.

As we shall see in Section 4, however, not all quasi-positive knots are fillable.
Further, the intermediate condition of strong quasi-positivity is independent of
fillability:

Theorem 1.2. There exists a fillable knot that is quasi-positive, but not strongly
quasi-positive, and there exists a non-fillable knot that is strongly quasi-positive.

Since this theorem shows that strong quasi-positivity is not relevant to fillability,
we must seek an alternative condition to characterize fillable knots. Based on the
results above and a survey of quasi-positive knots up to ten crossings,1 we make
the following conjecture:

Conjecture 1.3. A smooth knot type K is fillable if and only if it is quasi-positive
and the HOMFLY bound on the maximum Thurston-Bennequin number of K is
sharp.

One implication of the conjecture is true: if a smooth knot is fillable, then, as
discussed above, it is quasi-positive. Further, the Legendrian contact homology
DGA of the fillable Legendrian representative has an augmentation [10, 11], hence
a graded ruling [15, 24], and hence the HOMFLY bound is sharp [23].

The remainder of the paper is organized as follows: after reviewing background
on the various notions of positivity touched on above, on rulings of Legendrian
knots, and on the construction of Lagrangian cobordisms via handle attachment in
Section 2, we prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4.

2. Background

In this section, we review positivity and (strong) quasi-positivity of smooth
knots, rulings of Legendrian knots, and various constructions of Lagrangian fill-
ings. We assume that the reader is familiar with basic notions of Legendrian knot
theory as discussed, for example, in Etnyre’s survey [14]. In particular, we assume
familiarity with front diagrams, the classical invariants, and the HOMFLY bound
on the Thurston-Bennequin number.

2.1. Notions of positivity. The notion of positivity is simple to define: an ori-
ented link is positive if it has a projection in which all crossings are positive. The
jump to quasi-positivity requires the concept of positive bands in a braid, which
generalize positive crossings. Denote the standard generators of the braid group by
σi. A positive band is a braid word of the form wσiw

−1, where w is any word in
the braid group. The more restricted notion of a positive embedded band, denoted
σi,j , is a positive band of the form

σi,j ≡ (σi · · ·σj−2)σj−1(σi · · ·σj−2)
−1, 1 ≤ i < j ≤ n.

1We used [2] for a list of quasi-positive knots, Morrison’s code in the KnotTheory package [1] and
Morton and Short’s C++ program [17, 18] to compute the HOMFLY polynomials, Gridlink [8] to
find Legendrian representatives of quasi-positive knots, and our own constructions of Lagrangian
fillings.
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Figure 1. The two leftmost configurations of crossing and com-
panion strands are allowed in a normal ruling (as is the reflection of
the center configuration through a horizontal line), but the right-
most configuration is not allowed.

We define a (strongly) quasi-positive braid to be a product of positive (embedded)
bands, and we say that an oriented link is (strongly) quasi-positive if it is the
closure of such a braid.

The relationship between these notions of positivity — in particular, the inclu-
sions displayed in equation (1.1) — has been treated extensively in the literature;
see [16, 22, 26] for surveys.

2.2. Rulings of Legendrian links. A ruling is a combinatorial object associated
to the front diagram of a Legendrian link. Hereafter, assume that all Legendrian
links have been perturbed so that the cusps and crossings in their front diagrams
have distinct x-coordinates. We define a ruling of such a front to be a one-to-one
correspondence between left and right cusps, together with pairs of paths (called
companions) in the front joining corresponding cusps. The companion paths must
satisfy the following conditions:

(1) paired paths intersect only at the cusps they join; and
(2) unpaired paths intersect only at crossings.

In particular, the x-coordinate of each path is strictly monotonic and the paths
cover the front. Further, since the companion paths meet only at the cusps, each
pair of companions bounds a ruling disk in the plane.

To refine the notion of a ruling, we refer to the paths incident to a crossing of
the front diagram as crossing paths. At a crossing, either the two crossing paths
pass through each other or one path lies entirely above the other. In the latter case,
we say that the ruling is switched at the crossing. We call a ruling normal if,
at each switched crossing, the crossing paths have one of the configurations shown
in Figure 1. We can rephrase this definition in terms of ruling disks: a ruling is
normal if, near a switch, the interiors of the disks involved in the switch are either
nested or disjoint. If all switches occur at positive crossings, then we say that the
ruling is oriented.2

Example 2.1. The set of all oriented normal rulings of a Legendrian trefoil appear
in Figure 2.

The proof of Theorem 1.1 relies on rulings that switch at every crossing. In
such a ruling, ruling disks are either (globally) nested or disjoint, and hence such
a ruling must be normal. This type of ruling is equivalent to an “admissible 0-
resolution” of a front, as studied by Ng in [19]. A 0-resolution of a front is the
diagram obtained by “smoothing” crossings as in Figure 3. The aforementioned

2In the literature, such a ruling is also called 2-graded.
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Figure 2. The three normal rulings of a Legendrian trefoil.

Figure 3. Smoothing a crossing using a 0-resolution.

paper shows that alternating links have Legendrian representatives with normal —
but not necessarily oriented — rulings that switch at each crossing. In Section 3,
below, we will revisit a result of Tanaka which implies that positive links also admit
oriented normal rulings of this form.

2.3. Lagrangian handle attachment. In this subsection, we describe construc-
tions for Lagrangian fillings of Legendrian links in the standard contact R3. A
Lagrangian submanifold L of the symplectization is a Lagrangian cobordism
between the Legendrian submanifolds Λ± ⊂ R3 if there exists a pair of real num-
bers T− < T+ such that

L ∩
(
(−∞, T−]× R3

)
= (−∞, T−]× Λ−, and

L ∩
(
[T+,∞)× R3

)
= [T+,∞)× Λ+.

As defined in the introduction, a Lagrangian filling of a Legendrian link is a
cobordism from the empty set to the given link. Note that stacking one Lagrangian
cobordism on top of another results in a new Lagrangian cobordism.

The following tool allows us to construct Lagrangian fillings with a prescribed
Legendrian link as their boundary. It has been adapted from Theorem 4.2 of [4],
though this result appears in slightly different forms in the work of Ekholm-Honda-
Kálḿan [12] and of Dimitroglou Rizell [9].

Theorem 2.2 ([4, 6, 9, 12]). If two Legendrian links Λ− and Λ+ in the standard
contact R3 are related by any of the following three moves, then there exists an
exact, embedded, orientable, and collared Lagrangian cobordism from Λ− to Λ+.

Isotopy: Λ− and Λ+ are Legendrian isotopic.
0-handle: The front of Λ+ is the same as that of Λ− except for the addition

of a disjoint Legendrian unknot as on the left side of Figure 4.
1-handle: The fronts of Λ± are related as on the right side of Figure 4.

We will call a filling decomposable if it can be split into cobordisms arising as
in Theorem 2.2. Hereafter, Theorem 2.2 will be our primary means for producing
links with Lagrangian fillings.

3. Positive knots are fillable

In this section, we prove Theorem 1.1. As mentioned above, the key tool in the
proof is the existence of an oriented ruling in which all crossings are switched. The
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Figure 4. Diagram moves corresponding to attaching a 0-handle
and an oriented 1-handle.

following lemma, essentially due to Tanaka [27], shows that we may assume the
existence of such a ruling for a positive link.

Lemma 3.1. Every positive link admits a Legendrian representative whose front
diagram carries an oriented normal ruling in which all crossings are switched.

Proof. In [27], Tanaka extends an earlier result of Yokota [28] to show that every
positive link has a Legendrian representative Λ with the following properties:

(1) Every crossing has both strands oriented to the left (in particular, every
crossing is positive); and

(2) the 0-resolution of Λ consists of disjoint (but possibly nested) closed curves,
each of which contains exactly one left cusp and one right cusp.

By (1), the smoothing of each crossing in the 0-resolution respects the orientation
of Λ. Thus, the strands which connect left and right cusps in the 0-resolution
correspond to ruling paths in an oriented normal ruling that switches at each cross-
ing. �

We now prove that all positive links are fillable.

Proof of Theorem 1.1. By Lemma 3.1, it suffices to consider a fixed front Λ+ that
admits an oriented normal ruling in which all crossings are switched. The proof
proceeds by induction on the number of crossings. If Λ+ has no crossings, then it
must be a disjoint union of maximal Thurston-Bennequin unknots. Such a link is
fillable by the 0-handle construction in Theorem 2.2.

For the inductive step, suppose that every Legendrian link whose front diagram
has fewer crossings than Λ+ and that admits an oriented normal ruling in which all
crossings are switched is fillable. We begin by showing that the ruling of Λ+ must
have a switch with a neighborhood equivalent to one of the topmost diagrams in
Figure 5 (up to an overall reversal of orientation or reflection through the horizon-
tal). First, each switch occurs at a positive crossing, so the crossing paths must
have the same horizontal direction. Second, the companion paths to the crossing
paths are oriented in the opposite direction to the crossing paths, so the two com-
panion strands must also have the same horizontal direction. Finally, because the
ruling switches at each crossing, the ruling disks are either nested or disjoint. Any
switch along the boundary of an innermost ruling disk will have the desired form.
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1-handles

Isotopy

Figure 5. At the top are diagrams of Λ+ near the crossing con-
structed in the proof of Theorem 1.1. Diagrams of Λ− appear at
the bottom, and passing from bottom to top is a sequence of moves
defining a Lagrangian cobordism from Λ− up to Λ+.

Next, we use the crossing found above to construct a Legendrian link Λ− with
the following properties:

(1) The fronts of Λ+ and Λ− are identical outside of a neighborhood of the
crossing;

(2) near the crossing, the front of Λ− is of one of the forms depicted at the
bottom of Figure 5;

(3) Λ− has an oriented normal ruling with all crossings switched; and
(4) there exists a Lagrangian cobordism from Λ− to Λ+.

Only the last condition needs some verification, which is carried out in Figure 5.
Clearly, the Legendrian front Λ− satisfies the inductive hypothesis and has one

less crossing than Λ+. It follows that Λ− is fillable, and hence, by condition (4),
that Λ+ is fillable as well. The theorem follows. �

Remark 3.2. We say that an oriented ruling of a front has an unlinked resolution
if the result of performing 0-resolutions (see Figure 3) at all switches of the ruling
results in an unlink, all of whose components are maximal tb unknots. Using
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0-handles

Isotopy

Isotopy

1-handle

Figure 6. The slice knot m(946) is fillable.

this language, we see that the proof above actually gives a stronger result than
Theorem 1.1: a smooth knot type is fillable if it has a Legendrian representative
whose front has an oriented ruling with an unlinked resolution.

4. (Strong) quasi-positivity and fillability

We end this paper by providing the examples necessary to prove Theorem 1.2.
The first example proves the first part of the theorem, namely that there exists a
fillable quasi-positive knot that is not strongly quasi-positive.

Example 4.1. As shown in Figure 6, the mirror of the 946 knot is fillable, and
hence quasi-positive. On the other hand, since this knot is a non-trivial slice knot,
its slice genus differs from its Seifert genus and hence it is not strongly quasi-positive
[21, Prop. 2]. This example has appeared in [7] and [25], though in those papers,
the Lagrangian filling is thought of as an example of a non-symmetric Lagrangian
concordance between the m(946) knot and the unknot.

The example for the second part of the theorem — that there exists a non-fillable
strongly quasi-positive knot — is somewhat more complicated. It was originally
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brought to light by Stoimenow [26, Example 3] in the context of disproving a conjec-
ture of Fiedler on an upper bound for the minimal degree of the Jones polynomial
of a (quasi-positive) knot in terms of a band representation.

Example 4.2. Let K be the closure of the strongly quasi-positive 4-braid

σ2
1(σ1σ2σ

−1
1 )σ2σ1σ3(σ1σ2σ

−1
1 )σ2(σ2σ3σ

−1
2 )(σ1σ2σ

−1
1 )(σ2σ3σ

−1
2 ).

Suppose, for the sake of contradiction, that K has a fillable Legendrian repre-
sentative Λ. Denote the maximum Euler characteristic of a smooth slicing sur-
face for K by χ4(K). We may easily compute from Rudolph’s formula [20, Sec-
tion 3] that χ4(K) = −7. Since Λ is fillable, Theorem 1.3 of [6] implies that
tb(Λ) = −χ4(K) = 7 and that this is the maximal Thurston-Bennequin invariant
for K, tb(K).

On the other hand, we compute3 that the degree in the framing variable of the
HOMFLY polynomial of K is −10. Thus, the HOMFLY bound on the Thurston-
Bennequin number would be tb(K) ≤ 9. Clearly, this bound is not sharp. As
argued after Conjecture 1.3, however, if K were fillable, then the HOMFLY bound
would be sharp. We must conclude, then, that K is not fillable.
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Birkhäuser/Springer, New York, 2012, pp. 109–145, DOI 10.1007/978-0-8176-8277-4 6.
MR2884034

3Again, the computation was performed using Morrison’s code in the KnotTheory package [1]
and Morton and Short’s C++ program [17,18].

http://www.ams.org/mathscinet-getitem?mr=2132015
http://www.ams.org/mathscinet-getitem?mr=2132015
http://www.ams.org/mathscinet-getitem?mr=1836094
http://www.ams.org/mathscinet-getitem?mr=1836094
http://www.ams.org/mathscinet-getitem?mr=3247041
http://www.ams.org/mathscinet-getitem?mr=2580429
http://www.ams.org/mathscinet-getitem?mr=2580429
http://www.ams.org/mathscinet-getitem?mr=2884034


POSITIVE KNOTS AND LAGRANGIAN FILLABILITY 1821
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