SOME UNUSUAL EPICOMPLETE ARCHIMEDEAN LATTICE-ORDERED GROUPS

ANTHONY W. HAGER
(Communicated by Ken Ono)

Abstract

An Archimedean l-group is epicomplete if it is divisible and σ complete, both laterally and conditionally. Under various circumstances it has been shown that epicompleteness implies the existence of a compatible reduced f-ring multiplication; the question has arisen whether or not this is always true. We show that a set-theoretic condition weaker than the continuum hypothesis implies "not", and conjecture the converse. The examples also fail decent representation and existence of some other compatible operations.

1. Introduction

Arch is the category of Archimedean l-groups, with l-group homomorphisms, $\mathrm{fr} \mathbf{A}$ is the category of f-rings which are reduced (semi-prime) and Archimedean, with l-ring homomorphisms, and $\operatorname{frA} \xrightarrow{F}$ Arch is the forgetful functor. " $G \in$ $F(\operatorname{fr} \mathbf{A})$ " means $G \in$ Arch and for some multiplication $*$ compatible with the l-group structure of $G,(G, *) \in \operatorname{fr} \mathbf{A}$.

In a general category, an object A is called epicomplete (EC) if $\varphi: A \rightarrow \bullet$ monic and epic implies φ is an isomorphism.

In Arch, monics are one-to-one, and BH90a shows: G is EC if and only if G is divisible, laterally and conditionally σ-complete; EC is monoreflective in Arch, and thus is the least monoreflective subcategory. (See HS07 regarding "monoreflective".)

Question 1.1 (Hol03] and BHJK09, p. 166). $G \mathrm{EC} \Rightarrow G \in F(\mathbf{f r A})$?
This has arisen because the implication does hold under some extra assumptions (described in 1.6 below). We shall show that the following set-theoretic hypothesis implies "No" (which was conjectured in BHJK09]).

Hypothesis 1.2. For a set S of cardinal $|S|=\aleph_{1}$, there is a family \mathcal{W} of subsets of S with the properties
(1) $\forall A \in \mathcal{W},|A|=\aleph_{1}$,
(2) $\forall A \neq B$ in $\mathcal{W},|A \cap B| \leq \aleph_{0}$, and
(3) $|\mathcal{W}|=2^{\aleph_{1}}$.

[^0]Baumgartner has shown (see Jec03, pp. 579, 582): In ZFC,

$$
2^{\aleph_{0}}=\aleph_{1} \Rightarrow\left(2^{\aleph_{0}}<2^{\aleph_{1}} \text { and } 2^{\aleph_{0}}<\aleph_{\omega_{1}}\right) \Rightarrow 1.2 \Rightarrow 2^{\aleph_{0}}<2^{\aleph_{1}}
$$

Thus Hypothesis 1.2 is weaker than the continuum hypothesis (and consistent with ZFC). In the following, $|S|=\aleph_{1}$ and \mathbb{R}^{S} (all functions $f: S \rightarrow \mathbb{R}$) is given pointwise + and $\leq ; \mathbb{R}^{S} \in$ Arch.
Theorem 1.3 (4.1 below). If Hypothesis 1.2 holds, then there is an $E C G \leq \mathbb{R}^{S}$ (constructed from \mathcal{W}) with $G \notin F(\operatorname{fr} \mathbf{A})$.
Conjecture 1.4. If there is an $E C G \notin F(\boldsymbol{f r A})$, then Hypothesis 1.2 holds.
The rest of this section explains where Question 1.1 comes from, and is technically not required for the proof of Theorem 1.3 Question 1.1 is closed related to issues of representation of Archimedean l-structures in lattices

$$
D(Y)=\left\{f \in C(Y,[-\infty,+\infty]) \mid f^{-1} \mathbb{R} \text { dense in } Y\right\}
$$

Here Y is a Tychonoff space, $[-\infty,+\infty]=\mathbb{R} \cup\{ \pm \infty\}$ with the obvious order and topology, and $D(Y)$ is given the pointwise order. Addition is partially defined by $f_{1}+f_{2}=f_{3}$ means $f_{1}(x)+f_{2}(x)=f_{3}(x)$ when all three are real, and likewise multiplication. This + (respectively, $\cdot)$ is fully defined if and only if each dense cozero set is C^{*}-embedded in Y HJ61. This condition defines quasi-F (QF) spaces; Then $D(Y) \in \operatorname{fr} \mathbf{A}$ with the constant function 1_{Y}, the ring identity.
Y is called extremally (resp. basically) disconnected (ED, resp. BD) if each open (resp. cozero) set has open closure. (See GJ76). We have ED $\Rightarrow \mathrm{BD} \Rightarrow \mathrm{QF}$, and $D(Y)$ is an l-group which is laterally and conditionally complete (σ-complete) if and only if Y is ED (resp., BD). These extend the Nakano-Stone Theorems for $C(X)$. (See BHJK09).

In particular, $D(Y)$ is an Arch-object which is EC if and only if Y is BD. (See BH90a).

By a representation of $G \in \operatorname{Arch}$ (resp. frA), we mean a one-to-one map $\epsilon: G \rightarrow D(Y)$ for which $\epsilon(G)$ is closed under the partial operations in $D(Y)$ requisite that $\epsilon(G) \in \operatorname{Arch}$ (resp. $\operatorname{fr} \mathbf{A}$), and $G \stackrel{\epsilon}{\rightarrow} \epsilon(G)$ is an l-group (resp. l-ring) isomorphism.

A Johnson representation of $G \in \mathbf{A r c h}$ is a representation $G \leq D(Y)$ (suppressing the ϵ) satisfying
$\left(J_{Y}\right) y \notin F$ closed in $Y \Rightarrow \exists g \in G$ with $0<g(y)<+\infty$, and
$\left(J_{\infty}\right) \forall g \in G$, the Čech-Stone extension has $\beta g(\beta Y-Y) \subseteq\{0, \pm \infty\}$.
(It follows that Y is locally compact). We may say " J-representation", and indicate such a situation as $G \stackrel{J}{\leq} D(Y)$. It is so-called because:

Theorem 1.5 (Joh62], Joh07]). For each $(G, *) \in \operatorname{fr} \mathbf{A}$, there is $G \leq D(Y)$ with G closed in $D(Y)$ under the partial.

Consider Y locally compact. Let $D_{0}(Y) \equiv\{f \in D(Y) \mid \beta f(\beta Y-Y)=\{0\}\}$ (the functions that vanish at ∞). If Y is BD , then $D_{0}(Y) \in$ Arch, is conditionally σ-complete (BH90a, 3.1), and is laterally σ-complete if and only if either Y is compact (whence $D_{0}(Y)=D(Y)$) or Y is not compact and in the one-point compactification $Y \cup\{\alpha\}, \alpha$ is a P-point (BH90a, $\S 4,5$).

For the nonce, a "good" representation of EC G is an isomorphism $G \approx D_{0}(Y)$, for Y locally compact and BD (thus, necessarily, α is a P-point).

The following sums up partial results inspiring, and giving four versions of, Question 1.1 Ball's truncations Bal13 will be discussed in $\S 5$.
Theorem 1.6. Suppose G is EC.
(1) These are equivalent.
(a) $G \in F(\operatorname{fr} \mathbf{A})$.
(b) G has a Johnson representation.
(c) G has a good representation.
(d) G has a compatible truncation.
(2) If G has any weak unit, these four conditions obtain.

BH90b shows (2): For G with weak unit e, there is X compact BD, with $G \approx D(X)$ and $e \mapsto 1_{X}$.

Regarding (1): Johnson's 1.4 shows (a) $\Rightarrow(\mathrm{b})$, and Ball's 5.1 (below) shows (d) $\Rightarrow(\mathrm{b})$ (neither needing " G EC"). From $\S 5,(\mathrm{c}) \Rightarrow(\mathrm{d})$ is clear. BH90a shows (b) \Rightarrow (c), at considerable labor. (c) \Rightarrow (a) is evident.

We mentioned that EC is monoreflective in Arch. In that regard, there is more, as follows.

Let \mathbf{W} be the (non-full) subcategory of Arch with objects $\left(G, e_{G}\right), e_{G}$ is a positive weak unit of G, and morphisms $\left(G, e_{G}\right) \xrightarrow{\varphi}\left(H, e_{H}\right)$ the Arch-morphisms with $\varphi\left(e_{G}\right)=e_{H}$. In \mathbf{W}, the remarkably canonical Yosida representation has many consequences, which are striking, and food for thought, in comparison with Arch. This representation of a $\left(G, e_{G}\right)$ can be described as the essentially unique $G \leq D(Y G)$ which is a J-representation, $Y G$ is compact, and $e_{G} \mapsto 1$. See HR77.

EC in W has "the same" characterization as in Arch, divisible, laterally and conditionally σ-complete. It results that $\left(G, e_{G}\right)$ is \mathbf{W}-EC if and only if $\left(G, e_{G}\right) \approx$ $\left(D(X), 1_{X}\right)$, for X compact BD . (The X is the $Y G$ above. We alluded to this in Theorem 1.6 (2), above.) Similar to Arch, W-EC is the smallest monoreflective subcategory of \mathbf{W}. (This information is in BH90b BH90a.)

Let $\beta^{\mathbf{A r c h}}$ and $\beta^{\mathbf{W}}$ denote their "EC-monoreflection" functors. In BH90a, we find a concrete calculation/representation/description of $G \leq \beta^{\mathbf{W}} G$ (suppressing units), in terms of $G \leq D(Y G)$. In [BHJK05], we found a quite similar description of $G \leq \beta^{\mathbf{A r c h}} G$, for $G=C_{K}(Y)$, or $C_{0}(Y)$ the functions of compact support, or vanishing at ∞, on locally compact Y, and these $\beta^{\operatorname{Arch}} G$ have the features in Theorem 1.6 (1). Note that $C_{K}(Y)$ and $C_{0}(Y)$ are, as presented, in J-representation. One imagines that the descriptions of these $\beta^{\mathbf{A r c h}} G$ alluded to above can be carried through for any G in a J-representation, and that if $(G, *) \in \mathrm{fr} \mathbf{A}$, then there is $*^{\prime}$ on $\beta^{\mathbf{A r c h}} G$ with $(G, *) \leq\left(\beta^{\mathbf{A r c h}} G, *^{\prime}\right)$ in $\operatorname{fr} \mathbf{A}$.

2. Some epicomplete l-Groups

S is a set of cardinal $|S|=\aleph_{1}$.
\mathcal{W} is an uncountable family of uncountable subsets of S for which, if $A, B \in \mathcal{W}$ and $A \neq B$, then $|A \cap B| \leq \aleph_{0}$. (There are no further assumptions on \mathcal{W} in this section.) \mathbb{R}^{S} carries pointwise + and $\leq ; \mathbb{R}^{S} \in$ Arch. $P=\left\{f \in \mathbb{R}^{S} \mid f(x)>0 \forall x \in\right.$ $S\}$. This is the set of positive weak units in \mathbb{R}^{S}.
$\mathcal{W} \xrightarrow{\gamma} P$ is any function.
In this section, we construct epicomplete $G(\mathcal{W}, \gamma) \leq \mathbb{R}^{S}$. The construction is modeled on the elaboration in HJ10 of the example in CM90. In §4, we will specify the (\mathcal{W}, γ) to make $G(\mathcal{W}, \gamma) \notin F(\operatorname{fr} \mathbf{A})$.

We adopt the following notations.
For $U, V \subseteq S, U \stackrel{*}{\subseteq} V$ means there is countable T with $U \subseteq V \cup T$, and $U \stackrel{*}{=} V$ means $U \stackrel{*}{\subseteq} V$ and $V \stackrel{*}{\subseteq} U$. (For $A \neq B$ in $\mathcal{W}, A \cap B \stackrel{*}{=} \emptyset$.)

For $f, g \in \mathbb{R}^{S}, f \stackrel{*}{\leq} g$ means there is countable T with $f(x) \leq g(x)$, for $x \in S-T$, and $f \stackrel{*}{=} g$ means $f \stackrel{*}{\leq} g$ and $g \stackrel{*}{\leq} f$.

For $\mathcal{A} \subseteq \mathcal{W}$ with $|\mathcal{A}| \leq \aleph_{0}$, let $c(\mathcal{A})=\cup\{A \cap B \mid A \neq B$ in $\mathcal{A}\}$. Observe $|c(\mathcal{A})| \leq \aleph_{0}$.

For $A \in \mathcal{A}$, let $\dot{A}=A-c(\mathcal{A})$. Let $\dot{\mathcal{A}}=\{\dot{A} \mid A \in \mathcal{A}\}$. Observe $\dot{A} \cap \dot{B}=\emptyset$ for $A \neq B$ in \mathcal{A}.

Again with $\mathcal{A} \subseteq \mathcal{W}$ and $|\mathcal{A}| \leq \aleph_{0}$, let $r: S \rightarrow \mathbb{R}$ have the properties: for $x \notin \bigcup_{\mathcal{A}} \dot{A}, r(x)=0$; for $A \in \mathcal{A}, r \mid \dot{A}$ is constant, denoted r_{A}.

For $U \subseteq S$, let χ_{U} be the characteristic function of U.
Definition 2.1. For (\mathcal{A}, r) as above, let

$$
u(\mathcal{A}, r) \equiv \sum_{\mathcal{A}} r_{A} \chi_{\dot{A}} \gamma(A)
$$

(Here, the \sum is pointwise in \mathbb{R}^{S}. The supports of the summands are disjoint, so the $\sum_{\mathcal{A}}$ makes sense.)

$$
G(\mathcal{W}, \gamma) \equiv\left\{g \in \mathbb{R}^{S} \mid \text { there is }(\mathcal{A}, r) \text { with } g \stackrel{*}{=} u(\mathcal{A}, r)\right\}
$$

Theorem 2.2. $G(\mathcal{W}, \gamma)$ is a sub-l-group of \mathbb{R}^{S}, without weak units, and is epicomplete.

Proof of 2.2. In the following, $\mathcal{A}, \mathcal{B}, \ldots$ always denote countable subsets of \mathcal{W}.
The proof has a number of steps. The first may not be completely necessary, but is articulated to avoid confusion.

Lemma 2.3. The following are equivalent.
(1) $\mathcal{A} \subseteq \mathcal{B}$.
(2) $\bigcup_{\mathcal{A}} A \subseteq \bigcup_{\mathcal{B}} B$.
(3) $\bigcup_{\mathcal{A}} \dot{A} \subseteq \bigcup_{\mathcal{B}} \dot{B}$.
(2') $\bigcup_{\mathcal{A}} A \stackrel{*}{\subseteq} \bigcup_{\mathcal{B}} B$.
(3') $\bigcup_{\mathcal{A}} \dot{A} \stackrel{*}{\subseteq} \bigcup_{\mathcal{B}} \dot{B}$.

Proof. (Note (3) says $\bigcup_{\mathcal{A}}(A-c(\mathcal{A})) \subseteq \bigcup_{\mathcal{B}}(B-c(\mathcal{B}))$, and $\mathcal{A} \subseteq \mathcal{B} \Rightarrow c(\mathcal{A}) \supseteq c(\mathcal{B})$.) These implications are obvious: $(1) \Rightarrow(2) \Rightarrow\left(2^{\prime}\right) ;(3) \Rightarrow\left(3^{\prime}\right)$. Also, for any \mathcal{A}, $\cup_{\mathcal{A}} A=\bigcup_{\mathcal{A}} \dot{A} \cup c(A)$; so $\left(3^{\prime}\right) \Rightarrow\left(2^{\prime}\right)$.
$\left(2^{\prime}\right) \Rightarrow(1)$. Suppose (1) fails, with $A \in \mathcal{A}-\mathcal{B}$. Thus, $\forall B \in \mathcal{B}, A \cap B$ is countable, and so is $A \cap \bigcup_{\mathcal{B}} B=\bigcup_{\mathcal{B}}(A \cap B)$ (since \mathcal{B} is countable). Then, for any countable T, $A \cap\left(\bigcup_{\mathcal{B}} B \cup T\right)$ is countable, so $A \nsubseteq \bigcup_{\mathcal{B}} B \cup T$ (since $\left.|A| \geq \aleph_{1}\right)$. So (2') fails.
$(1) \Rightarrow(3)$. Suppose $A \in \mathcal{A}$. Then, $A-c(\mathcal{A}) \stackrel{*}{=} A-c(\mathcal{B})$, so $\bigcup_{\mathcal{A}}(A-c(\mathcal{A})) \stackrel{*}{=}$ $\bigcup_{\mathcal{A}}(A-c(\mathcal{B})) \subseteq \bigcup_{\mathcal{B}}(B-c(\mathcal{B}))$ (the last \subseteq because $\left.\mathcal{A} \subseteq \mathcal{B}\right)$.

In the following, $G(\mathcal{W}, \gamma)$ is denoted G. We shall prove below that $G \leq \mathbb{R}^{S}$ (i.e., is a sub-l-group,) and G is EC.

Granted $G \leq \mathbb{R}^{S}, G$ has no weak units:
If $g \in G^{+}$has $g^{\perp}=\{0\}$, then $\forall x \in S, g \wedge \chi_{x}>0$, which means $g(x)>0$, so $\operatorname{coz} g=S$. But $g \stackrel{*}{=} u(\mathcal{A}, r)$, so $S=\operatorname{coz} g \stackrel{*}{=} \operatorname{coz} u(\mathcal{A}, r) \subseteq \bigcup_{\mathcal{A}} \dot{A}$. But $|\mathcal{A}| \leq \aleph_{0}$
and \mathcal{W} is uncountable, so there is $B \in \mathcal{W}$ with $B \notin \mathcal{A}$, thus $\left|B-\bigcup_{\mathcal{A}} \dot{A}\right| \geq \aleph_{1}$. Contradiction.
Lemma 2.4. Suppose $\mathcal{A} \subseteq \mathcal{B}$. Given $u(\mathcal{A}, r)$, there is \bar{r} with $u(\mathcal{B}, \bar{r}) \stackrel{*}{=} u(\mathcal{A}, r)$ as follows.
$\bar{r}(x)=0$ if $x \notin \bigcup_{\mathcal{B}} \dot{B}$ or if $x \in \dot{B}$ for $B \in \mathcal{B}-\mathcal{A}$.
If $A \in \mathcal{A}, \bar{r}|(A-c(\mathcal{B}))|=r_{A}$ (the constant value of r on $A-c(\mathcal{A})$; i.e. $\bar{r}_{A}=r_{A}$).
Proof. $\bigcup_{\mathcal{A}}(A-c(\mathcal{B})) \stackrel{*}{=} \bigcup_{\mathcal{A}}(A-c(\mathcal{A}))$, and $\bar{r}=r$ on the left set.
Corollary 2.5. Suppose given $u\left(\mathcal{A}_{n}, r_{n}\right)$ for $n=1,2$ or $n=1,2, \ldots$. Let $\mathcal{B}=$ $\bigcup_{n} \mathcal{A}_{n}$. Apply Lemma 2.4 to obtain $u\left(\mathcal{B}, \bar{r}_{n}\right) \stackrel{*}{=} u\left(\mathcal{A}_{n}, r_{n}\right)$ for each n.

Corollary 2.6. $G \subseteq \mathbb{R}^{S}$ is closed under the inherited $+,-, \vee, \wedge$. I.e., $G \leq \mathbb{R}^{S}$.
Proof. Let $\otimes \in\{+,-, \vee, \wedge\}$. Let $g_{1}, g_{2} \in G$, as $g_{\dot{n}} \stackrel{*}{=} u\left(\mathcal{A}_{\dot{n}}, r_{\dot{n}}\right)$. Take $\mathcal{B}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ and apply Corollary 2.5 to get $u\left(\mathcal{B}, \bar{r}_{\dot{n}}\right) \stackrel{*}{=} u\left(\mathcal{A}_{n}, r_{n}\right)$. Let $r=\bar{r}_{1} \otimes \bar{r}_{2}$. Observe that $\mathcal{B}=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1}-\mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{2}-\mathcal{A}_{1}\right)$; it follows that $\bar{r} \mid \dot{B}$ is constant $\forall B \in \mathcal{B}$.

For countable suprema, we proceed as follows.
Lemma 2.7. Suppose $\left\{g_{n}\right\}_{\mathbb{N}} \subseteq G^{+}$and in $\mathbb{R}^{S}, \vee g_{n}$ exists. (This \vee is pointwise, and saying it exists just means $\left\{g_{n}\right\}$ is bounded above in \mathbb{R}^{S}, i.e., $\forall x,\left\{g_{n}(x)\right\}_{\mathbb{N}}$ is bounded above in \mathbb{R}.) Call this $\vee g_{n}$ as g.

Then, $g \in G$ and therefore $g=\vee^{G} g_{n}$.
Proof. Express each g_{n} as $g_{n} \stackrel{*}{=} u\left(\mathcal{A}_{n}, r_{n}\right)$; note $r_{n} \geq 0$. Let $\mathcal{B}=\bigcup_{n} \mathcal{A}_{n}$, and apply 2.5) $\forall n$, getting $u\left(\mathcal{B}, \bar{r}_{n}\right) \stackrel{*}{=} u\left(\mathcal{A}_{n}, r_{n}\right)$ (with $\bar{r}_{n}=0$ on $D-\bigcup_{\mathcal{B}} \dot{B}$, and $\bar{r}_{n} \geq 0$).

Since $g_{n} \leq g$ and $g_{n}=u\left(\mathcal{B}, \bar{r}_{n}\right)$ except on a countable $T_{n}, u\left(\mathcal{B}, \bar{r}_{n}\right) \leq g$ except on T_{n}. We have successively: $\forall n u\left(\mathcal{B}, \bar{r}_{n}\right) \leq g$ except on the countable $T=\bigcup_{n} T_{n}$; $\forall n \bar{r}_{n} \chi_{\dot{B}} \gamma(B) \leq u\left(\mathcal{B}, \bar{r}_{n}\right) \leq g$ except on $T \forall B \in \mathcal{B} ; \forall n \forall B$, on \dot{B} except on T, $\bar{r}_{n} \gamma(B) \leq g$, or $\bar{r}_{n} \leq \frac{g}{\gamma(B)}$.

Now define $r: S \rightarrow \mathbb{R} \equiv 0$ on $S-\bigcup_{\mathcal{B}} \dot{B}$, and for $B \in \mathcal{B}$, on $\dot{B} r \equiv \vee_{n} \bar{r}_{n}$. (This is pointwise \vee of the \bar{r}_{n} which are constant on \dot{B}, so it is the \vee in \mathbb{R} of those constant values " $\left(\bar{r}_{n}\right)_{B}$ ".)

Then, $g \stackrel{*}{=} u(\mathcal{B}, r)$:
Clearly, each is 0 on $S-\bigcup_{\mathcal{B}} \dot{B}$ except for T.
For $B \in \mathcal{B}$ and $x \in \dot{B}-T$, we have $u\left(\mathcal{B}, \bar{r}_{n}(x)\right)=\bar{r}_{n} \gamma(B)(x)=g_{n}(x)$, so $r(x) \gamma(\mathcal{B})(x)=\left(\vee \bar{r}_{n}(x)\right) \gamma(B)(x)=\vee\left(\bar{r}_{n} \gamma(B)\right)(x)=\vee g_{n}(x)=g(x)$.

Note, Corollary [2.6] says $\left\{g_{n}\right\} \subseteq G^{+}$is bounded above in G if and only if in \mathbb{R}^{S}.
Corollary 2.8. G is $E C$, i.e., divisible, laterally σ-complete, and conditionally σ-complete.

Proof. Divisibility is obvious. If $\left\{g_{n}\right\}$ is disjoint (resp., bounded above in G), then in $\mathbb{R}^{S}, \vee g$ exists because \mathbb{R}^{S} is laterally σ-complete (resp., conditionally σ-complete). Apply Corollary 2.6

Theorem 2.2 is proved.

3. EsSENTIAL COMPLETIONS AND COMPATIBLE MULTIPLICATIONS

We explain essential completions, and note that the $G(\mathcal{W}, \gamma) \leq \mathbb{R}^{S}$ (in Theorem $2.2)$ is one (Corollary 3.3). The point is that, in general, " $G \in F(\mathbf{f r} \mathbf{A})$ " can be recognized in terms of any particular essential completion of G (Corollaries 3.5 and 3.6).

The basic framework is due to Bernau [Ber65] and Conrad [Con71, Con74. Embellishments are added for clarity, and to the present purpose.

Let X be a compact extremally disconnected (ED) space; so that $D(X) \in$ Arch and $(D(X), \cdot) \in \operatorname{fr} \mathbf{A}($ see $\S 1)$.

Suppose $X \stackrel{\tau}{\leftarrow} X$ is a homeomorphism. Define $D(X) \xrightarrow{\bar{\tau}} D(X)$ as $\bar{\tau}(f)=f \circ \tau$. Suppose $d \in P \equiv$ the set of positive weak units of $D(X)\left(d \in P \equiv d^{\perp}=\{0\}\right.$ if and only if coz $d \equiv\{x \mid d(x) \neq 0\}$ is dense in $X)$. Define $D(X) \xrightarrow{\bar{d}} D(X)$ as $d(f)=d \cdot f$ (pointwise multiplication in $D(X))$. Note that $d^{-1} \in P .\left(d^{-1}\right.$ is the Čech-Stone extension of $\left.\frac{1}{d} \right\rvert\, \operatorname{coz} d$.) Define \otimes_{d} on $D(X)$ as $f_{1} \otimes_{d} f_{2} \equiv d^{-1} f_{1} f_{2}$.

In the rest of this section, " d " denotes a $d \in P$.

Theorem 3.1.

(1) The $\mathbf{f r} \mathbf{A}$-isomorphisms of $(D(X), \cdot)$ are exactly the $\bar{\tau}$.
(2) Each \bar{d} is an l-group isomorphism of $D(X)$.
(3) The l-group isomorphisms of $D(X)$ are exactly the $\bar{d} \bar{\tau}$.
(4) $\left(D(X), \otimes_{d}\right) \in \operatorname{frA}$ with identity d and $(D(X), \cdot) \xrightarrow{\bar{d}}\left(D(X), \otimes_{d}\right)$ is a frAisomorphism.

All of Theorem 3.1 was certainly known to Bernau and Conrad, but we note: In (1), that $\bar{\tau}$ is a $\mathbf{f r} \mathbf{A}$-isomorphism is easy, and the converse is a special case of HR77]. (2) is easy. In (3), that $\bar{d} \bar{\tau}$ is an l-group isomorphism follows from (1) and (2), and the converse is a special case of BH09. (4) is (now easy and) completely recognized in Con74, $\S 2$.

In a general category: An essential monic is a monic φ for which $\psi \varphi$ monic implies ψ monic. E is essentially complete if $E \xrightarrow{\varphi} \bullet$ essential monic implies φ an isomorphism. An essential completion (of G) is a $G \xrightarrow{\varphi} E$ with φ essential monic and E essentially complete. (If the category lacks injective hulls, this notion substitutes.)

In Arch, monic means one-to-one, and (suppressing label) $G \leq H$ is essential if and only if G is large in H, meaning: if $0<h \in H$, there are $0<g \in G$ and $n \in \mathbb{N}$ with $g \leq n h$.

The following is all in Arch.

Theorem 3.2.

(1) E is essentially complete if and only if $E \approx$ some $D(X)$ for X compact $E D$ if and only if E is divisible, laterally complete, and conditionally complete.
(2) For any G, there is an essential completion $G \stackrel{\varphi}{\leq} D(X)$.
(3) For every two essential completions, $G \stackrel{\varphi_{i}}{\leq} D(X)$, there is a unique l-group isomorphism μ with $\mu \varphi_{1}=\varphi_{2}$. (Note $\mu=\bar{d} \bar{\tau}$ as in Theorem 3.1.)

In Theorem 3.2, (1) is due to Conrad Con71. (2) and (3) combine (1) with facts about Bernau's representation Ber65].

Corollary 3.3. In 2.2, $G(\mathcal{W}, \gamma) \leq \mathbb{R}^{S}$ is an essential completion. (The X in Theorem 3.2 is $\beta S ; \mathbb{R}^{S} \approx D(\beta S)$.)
Proof. \mathbb{R}^{S} is visibly divisible, laterally and conditionally complete (or, referring to Theorem 3.2, βS is ED). $G(\mathcal{W}, \gamma)$ is large in \mathbb{R}^{S} : If $f>0$, there is x with $f(x)>0$, so there is n with $n f(x)>1$, so $0<\chi_{x} \leq n f$, and $\chi_{x} \in G(\mathcal{W}, \gamma)$.

Theorem 3.4. If $(G, *) \in \operatorname{frA}$, then there is $(G, *) \stackrel{\psi}{\leq}(D(X), \cdot)$ in frA with $G \stackrel{F \psi}{\leq} D(X)$ an essential completion.

Bernau shows Theorem 3.4 for his representation Ber65, which Conrad identified as an essential completion Con71. (Another proof of Theorem 3.4 is indicated after Remark 5.3)

Corollary 3.5. Suppose $G \stackrel{\eta}{\leq} D(X)$ is any essential completion.
(1) If there is d such that $\eta(G)$ is closed under \otimes_{d} in $D(X)$, then $\left(\eta(G), \otimes_{d}\right) \in$ $\operatorname{fr} \mathbf{A}$ and $G \in F(\operatorname{fr} \mathbf{A})$.
(2) If there is $*$ with $(G, *) \in \operatorname{fr} \mathbf{A}$ (i.e., $G \in F(\mathbf{f r} \mathbf{A})$), then there is d with $(G, *) \approx\left(\eta(G), \otimes_{d}\right)$.
Proof. (1) is obvious.
(2). We use Theorems 3.1, 3.2, and 3.4. Consider

where η is the given, $(G, *) \stackrel{\psi}{\leq}(D(X), \cdot)$ is from Theorem 3.4 and μ with $\mu \psi=\eta$ comes from Theorem 3.2 (3), and $\mu=\bar{d} \bar{\tau}$ by Theorem 3.1.

The claim is that $\eta(G)$ is closed under \otimes_{d}, as $d^{-1} \eta\left(g_{1}\right) \eta\left(g_{2}\right)=\eta\left(g_{1} * g_{2}\right)$:

$$
\begin{aligned}
\eta\left(g_{1} * g_{2}\right) & =\mu \psi\left(g_{1} * g_{2}\right)=\mu\left(\psi\left(g_{1}\right) \cdot \psi\left(g_{2}\right)\right) \\
& =\bar{d} \bar{\tau}\left(\psi\left(g_{1}\right) \cdot \psi\left(g_{2}\right)\right)=\bar{d}\left(\bar{\tau} \psi\left(g_{1}\right) \cdot \bar{\tau} \psi\left(g_{2}\right)\right) \\
& =d \cdot \bar{\tau} \psi\left(g_{1}\right) \cdot \bar{\tau} \psi\left(g_{2}\right)=d \cdot \bar{\tau} \psi\left(g_{1}\right) \cdot\left(d^{-1} d\right) \cdot \bar{\tau} \psi\left(g_{2}\right) \\
& =d^{-1} \cdot d \bar{\tau} \psi\left(g_{1}\right) \cdot d \bar{\tau} \psi\left(g_{2}\right) \\
& =d^{-1} \cdot \bar{d} \bar{\tau} \psi\left(g_{1}\right) \cdot \bar{d} \bar{\tau} \psi\left(g_{2}\right)=d^{-1} \cdot \mu \psi\left(g_{1}\right) \cdot \mu \psi\left(g_{2}\right) \\
& =d^{-1} \cdot \eta\left(g_{1}\right) \cdot \eta\left(g_{2}\right) .
\end{aligned}
$$

Corollary 3.5 is, more-or-less, in Con74, $\S 2$.
Corollary 3.6. Suppose $G \stackrel{\eta}{\leq} D(X)$ is any essential completion.
(1) $G \in F(\mathbf{f r} \mathbf{A})$ if and only if there is d such that $\eta(G)$ is closed under \otimes_{d} in $D(X)$.
(2) $G \notin F(\mathbf{f r} \mathbf{A})$ if and only if $\forall p \in P, \exists g_{1}, g_{2} \in G$ with $p \cdot \eta\left(g_{1}\right) \cdot \eta\left(g_{2}\right) \notin \eta(G)$. Proof. (1) restates Corollary 3.5, (2) is the same as (1) using $p=d^{\dagger}$.

Note. If G is divisible, the condition in Corollary 3.6 (2) is equivalent to: $\forall p, \exists g$ with $p \cdot \eta(g)^{2} \notin \eta(G)$ (because $\left.(x+y)^{2}=x^{2}+2 x y+y^{2}\right)$.

4. Epicomplete $G \notin F(\mathbf{f r} \mathbf{A})$.

Such G will be of the form $G(\mathcal{W}, \gamma) \leq \mathbb{R}^{S}$ as in $\S 2$. The items $S, \mathcal{W}, P, \ldots$ are as in $\S 2$.
Theorem 4.1. If $|\mathcal{W}|=2^{\aleph_{1}}$, then there is $\mathcal{W} \xrightarrow{\delta} P$ for which $G(\mathcal{W}, \delta) \notin F(\operatorname{fr} \mathbf{A})$.
Combining Theorem 4.1 with Theorem [2.2 and with other information in $\S 1$, gives the full statement of Theorem 1.3

The definition of the δ requires a lemma.
Lemma 4.2. Suppose $A \subseteq S$ with $|A|=\aleph_{1}$, and suppose $f \in P$. Then there is $h \in P$ for which
(i) $h(x) \geq f(x)$ for each $x \in S$, and
(ii) for any countable $T \subseteq S$ and any $r \in \mathbb{R}, h|(A-T) \neq r f|(A-T)$.

Proof. Given the A and f, we define separately $h \mid(S-A)$ and $h \mid A$:
$h|(S-A) \equiv(f+1)|(S-A)$.
If there is no countable T with $f \mid(A-T)$ constant, then \forall such $T,|f(A-T)| \geq 2$, and again define $h|A=(f+1)| A$. (If $(f+1)|(A-T)=r f|(A-T)$, then $\forall x \in A-T$, $f(x)=\frac{1}{r-1}$, contradicting $|f(A-T)| \geq 2$.)

Suppose there is countable T with $f \mid(A-T)$ constant, take one-to-one $A \xrightarrow{\beta} \mathbb{R}$, and define $h|A \equiv(f+\beta)| A$. (If there were countable T^{\prime} and r with $h \mid\left(A-T^{\prime}\right)=$ $r f \mid\left(A-T^{\prime}\right)$, then also $h=r f$ on $A-\left(T^{\prime} \cup T\right)$ where f is constant, say r_{0}. Then, on $A-\left(T^{\prime} \cup T\right), \beta=(r-1) r_{0}$ constant, contradicting β one-to-one.)

Proof of Theorem 4.1. We shall define δ using Lemma 4.2, which gives $G(\mathcal{W}, \delta) \leq$ \mathbb{R}^{S} as in Theorem [2.2, and then verify 3.6 to get $G(\mathcal{W}, \delta) \notin F(\operatorname{fr} \mathbf{A})$. Since $|\mathcal{W}|=$ $2^{\aleph_{1}}$, there is a bijection $\mathcal{W} \stackrel{\alpha}{\leftarrow} P$; for each $A \in \mathcal{W}$, there is $v \in P$ with $A=\alpha(v)$. Apply Lemma 4.2 to $f=1 / v$, producing $h \equiv \delta(A)$ for which
(ii) $\forall T, r, h\left|(A-T) \neq \frac{r}{v}\right|(A-T)$.

Theorem 2.2 applies to $G \equiv G(\mathcal{W}, \delta) \leq \mathbb{R}^{S}$, which is an essential completion (Corollary 3.3). We use Corollary 3.6 (suppressing the η there). We claim: $\forall v \in P$, $\exists g \in G$ with $v g^{2} \notin G$. Take $v \in P$, let $A=\alpha(v)$, and let $g=\chi_{A} \gamma(A)=\chi_{A} h, h$ satisfying (ii) above. (This g is $u\left(\{A\}, \chi_{A}\right)$.) Then, $g^{2}=\chi_{A} h^{2}$ and $v g^{2}=v \chi_{A} h^{2}$.

Suppose (towards contradiction) that $v \chi_{A} h^{2} \in G$. Then, $v \chi_{A} h^{2} \stackrel{*}{=} u(\mathcal{B}, r)$ for some (\mathcal{B}, r), and using Lemma [2.4, we can suppose $A \in \mathcal{B}$ (by replacing \mathcal{B} by $\mathcal{B} \cup\{A\})$. For $\dot{A}=A-c(\mathcal{B})$, we then have $v \chi_{\dot{A}} h^{2}=r \chi_{\dot{A}} \gamma(A)=r \chi_{\dot{A}} h$ (from the form of $u(\mathcal{B}, r))$. Cancelling an h gives $v \chi_{\dot{A}} h=r \chi_{\dot{A}}$, whence $h=\frac{r}{v}$ on $A-c(\mathcal{B})$, contradicting (ii) above.

5. Compatible truncation

Suppose $G \in$ Arch, and e is a positive weak unit of G. Then G^{+}is closed under the "truncation" $g \mapsto e \wedge g \equiv t_{e}(g)$. Ball Bal13 has viewed this as a unary
operation, abstracted (axiomatized) its features, and defined the category AT of Archimedean "truncs": The $(G, t), t: G^{+} \rightarrow G^{+}$satisfying his axioms (which we need not list), with morphisms $(G, t) \xrightarrow{\varphi}\left(G^{\prime}, t^{\prime}\right)$ the l-group morphisms with $\varphi(t(g))=t^{\prime}(\varphi(g)) \forall g \in G^{+}$.

Let Arch $\stackrel{F}{\leftarrow}$ AT be the forgetful functor.
Note that any $D(Y)$ (not necessarily an l-group) has $f \wedge 1_{Y} \in D(Y) \forall f \geq 0$, and $f \in D_{0}(Y)$ implies $f \wedge 1_{Y} \in D_{0}(Y)$.

Here is Ball's companion to Johnson's Theorem 1.4.
Theorem 5.1 ($(\overline{\text { Bal13 }})$. For each $(G, t) \in \mathbf{A T}$, there is a J-representation $G \stackrel{\alpha}{\leq}$ $D_{0}(Y)$ with $\alpha(t(g))=1_{Y} \wedge \alpha(g)$ for each $g \in G^{+}$.

At this point, we see that for $\mathrm{EC} G, G \in F(\mathbf{A T})$ if and only if $G \in F(\mathbf{f r} \mathbf{A})$, in consequence of Johnson's 1.4, Ball's 5.1, and the long argument in BHJK09] that if EC G has any J-representation, then $G \approx D(K, p)$, the latter evidently in $F(\mathbf{f r} \mathbf{A}) \cap F(\mathbf{A T})$. We described this in $\S 1$.

Thus, the $G(\mathcal{W}, \delta)$ in Theorem 4.1 has $G(\mathcal{W}, \delta) \notin F(\mathbf{A T})$.
We shall directly produce other $G(\mathcal{W}, \tau) \leq \mathbb{R}^{S}$ with $G(\mathcal{W}, \tau) \notin F(\mathbf{A T})$, by arguing in parallel to $\S 3$ and Theorem 4.1. We do this in the hope of ultimately understanding why, on a $G \in$ Arch, truncations and frA-multiplications behave so similarly: we do not yet.

Corollary 5.2. Suppose $(G, t) \in$ AT .
(1) There is $H \in$ Arch with a weak unit e, and an embedding $(G, t) \stackrel{\beta}{\leq}\left(H, t_{\beta}\right)$ (i.e., qua AT) with $G \stackrel{F \beta}{\leq} H$ essential.
(2) There is X compact ED and $(G, t) \stackrel{\psi}{\leq}\left(D(X), t_{1}\right)\left(1=1_{X}\right)$ with $G \stackrel{F \psi}{\leq} D(X)$ an essential completion.

Proof.
(1) Take $G \stackrel{\alpha}{\leq} D_{0}(Y)$ per Theorem 5.1, let $H=j m\left(\alpha(G)+\mathbb{Z} \cdot 1_{Y}\right)$. (Here, $m(\bullet)$ is the collection of all finite meets from (\bullet), and likewise $j(\bullet)$ for joins.) Then, $H \in$ Arch, and $e=1_{Y}$ is a weak unit. (See HJ10, §2.) Take $e=1_{Y}$, and β the codomain restriction of the function $\alpha . F \beta$ is essential because α is a Johnson representation.
(2) With $(G, t) \stackrel{\beta}{\leq}(H, e)$ as in (1), take an essential completion $H \stackrel{\gamma}{\leq} D(X)$, for which $\beta(e)=1_{X}$. Then $\psi=\gamma \beta$.

Remark 5.3. (2) also can be proved from the $G \stackrel{\alpha}{\leq} D_{0}(Y)$ in Theorem 5.1 and some topology, like this. Let $\beta Y \stackrel{a}{\leftarrow} a \beta Y \equiv X$ be the ED cover (absolute, Gleason cover, projective cover) of the Čech-Stone compactification. We have $D(Y) \approx D(\beta Y) \xrightarrow{\bar{a}}$ $D(X)$ as $\bar{a}(f)=f \circ a$, which produces $G \stackrel{\psi}{\leq} D(X)$ as $g \mapsto \alpha(g) \mapsto \beta \alpha(g) \mapsto \bar{a}(\beta \alpha(g))$. The embedding is essential because a is irreducible.

In exactly the same way, Bernau's Theorem 3.4 can be proved from Johnson's Theorem 1.4.

In the following, X is compact ED, and P is the set of positive weak units of $D(X)$, and " d " always denotes a $d \in P$. Given d, let $t_{d}(f) \equiv d \wedge f\left(f \in D(X)^{+}\right)$.
Recall $D(X) \xrightarrow{\bar{d}} D(X)$ is $\bar{d}(f)=d f$, and $\bar{d}\left(1_{X}\right)=d 1_{X}=d$.
Theorem 5.4. Suppose $G \stackrel{\eta}{\leq} D(X)$ is any essential completion.
(a) If there is d such that $\eta(G)^{+}$is closed under t_{d}, then $\left(\eta(G), t_{d}\right) \in \mathbf{A T}$ and $G \in F(\mathbf{A T})$.
(b) If there is t with $(G, t) \in \mathbf{A T}$ (i.e., $G \in F(\mathbf{A T})$), then there is d with $(G, t) \approx\left(\eta(G), t_{d}\right)$.
Proof. (a) is obvious, and (b) follows from (a) as in Theorem 3.4, but more simply: Consider

where η is the given, $(G, t) \stackrel{\psi}{\leq}\left(D(X), t_{1}\right)$ is from 5.3(b) $\left(1=1_{X}\right), \mu$ with $\mu \psi=\eta$ comes from Theorem [3.2 (3), and $\mu=\bar{d} \bar{\tau}$ by Theorem 3.1. Note that $\mu(1)=$ $\bar{d} \bar{\tau}(1)=\bar{d}(1)=d$.

The claim is that $\eta(G)^{+}$is closed under t_{d}, as $d \wedge \eta(g)=\eta(t(g))$:

$$
\eta(t(g))=\mu \psi(t(g))=\mu(1 \wedge \psi(g))=\mu(1) \wedge \mu \psi(g)=d \wedge \eta(g)
$$

Corollary 5.5. Suppose $G \stackrel{\eta}{\leq} D(X)$ is any essential completion. $G \notin F(\mathbf{A T})$ if and only if $\forall d \in P, \exists g \in G^{+}$with $d \wedge \eta(g) \notin \eta(G)$.

Here is the advertised companion to Theorem 4.1. (The τ appearing has nothing to do with the τ in $\S 3$ and the proof of Theorem (5.4)
Theorem 5.6. If $|\mathcal{W}|=2^{\aleph_{1}}$, then there is $\mathcal{W} \xrightarrow{\tau} P$ for which $G(\mathcal{W}, \tau) \notin F(\mathbf{A T})$.
Proof. As in Theorem 4.1 take any bijection $\mathcal{W} \stackrel{\alpha}{\leftarrow} P$; for each $A \in \mathcal{W}$, there is $d \in P$ with $A=\alpha(d)$. Apply Lemma 4.2 exactly as stated to $f=d$, producing $h \equiv \tau(A)$ for which
(i) $h(x) \geq d(x) \forall x \in S$, and
(ii) \forall countable $T \subseteq S, \forall r \in \mathbb{R}, h|(A-T) \neq r d|(A-T)$.

Theorem 2.2 applies to $G \equiv G(\mathcal{W}, \tau) \leq \mathbb{R}^{S}$, which is an essential completion as in Corollary 5.5 (suppressing the η there). We claim: $\forall d \in P, \exists g \in G$ with $d \wedge g \notin G$.

Take $d \in P$, let $A=\alpha(d)$, and let $g=\chi_{A} \tau(A)=\chi_{A} h$, with h as above. (This g is $u\left(\{A\}, \chi_{A}\right)$.) Since $h \geq d, d \wedge g=d \wedge \chi_{A} h=d \chi_{A}$.

Suppose (toward contradiction) that $d \chi_{A} \in G$. Then, $d \chi_{A} \stackrel{*}{=} u(\mathcal{B}, r)$ for some (\mathcal{B}, r), and we can suppose $A \in \mathcal{B}$. For $\dot{A}=A-c(\mathcal{B})$, we then have $d \chi_{\dot{A}}=r_{A} \chi_{\dot{A}} h$, which means $h=\frac{1}{r_{A}} d$ on $A-c(\mathcal{B})$, contradicting (ii) above.

Acknowledgements

The author thanks Philip Scowcroft for discussions elucidating the situation of this paper; and also thanks Rick Ball for alerting him to [Bal13].

References

[Bal13] Richard N. Ball, Truncated abelian lattice-ordered groups I: The pointed (Yosida) representation, Topology Appl. 162 (2014), 43-65, DOI 10.1016/j.topol.2013.11.007. MR3144659
[Ber65] S. J. Bernau, Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. (3) 15 (1965), 599-631. MR0182661(32 \#144)
[BH90a] Richard N. Ball and Anthony W. Hager, Epicomplete Archimedean l-groups and vector lattices, Trans. Amer. Math. Soc. 322 (1990), no. 2, 459-478, DOI 10.2307/2001709. MR943603 (91c:46009)
[BH90b] Richard N. Ball and Anthony W. Hager, Epicompletion of Archimedean l-groups and vector lattices with weak unit, J. Austral. Math. Soc. Ser. A 48 (1990), no. 1, 25-56. MR 1026835 (91g:06016)
[BH09] Karim Boulabiar and Anthony Hager, ℓ-group homomorphisms between reduced Archimedean f-rings, Algebra Universalis 62 (2009), no. 4, 329-337, DOI 10.1007/s00012-010-0031-1. MR2670167|(2012b:06055)
[BHJK05] R. N. Ball, A. W. Hager, D. G. Johnson, and A. Kizanis, On the epicomplete monoreflection of an Archimedean lattice-ordered group, Algebra Universalis 54 (2005), no. 4, 417-434, DOI 10.1007/s00012-005-1952-y. MR2218854 (2007m:06021)
[BHJK09] R. N. Ball, A. W. Hager, D. G. Johnson, and A. Kizanis, A theorem and a question about epicomplete Archimedean lattice-ordered groups, Algebra Universalis 62 (2009), no. 2-3, 165-184, DOI 10.1007/s00012-010-0049-4. MR2661373 (2011j:06034)
[CM90] Paul Conrad and Jorge Martinez, Settling a number of questions about hyperArchimedean lattice-ordered groups, Proc. Amer. Math. Soc. 109 (1990), no. 2, 291296, DOI 10.2307/2047986. MR 998733 (91i:06016)
[Con71] Paul Conrad, The essential closure of an Archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160. MR 0277457 (43 \#3190)
[Con74] Paul Conrad, The additive group of an f-ring, Canad. J. Math. 26 (1974), 1157-1168. MR0354487(50 \#6965)
[GJ76] Leonard Gillman and Meyer Jerison, Rings of continuous functions, Springer-Verlag, New York, 1976. Reprint of the 1960 edition; Graduate Texts in Mathematics, No. 43. MR0407579 (53 \#11352)
[HJ61] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean latticeordered algebras., Fund. Math. 50 (1961/1962), 73-94. MR0133698 (24 \#A3524)
[HJ10] A. W. Hager and D. G. Johnson, Some comments and examples on generation of (hyper-)archimedean ℓ-groups and f-rings (English, with English and French summaries), Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), no. Fascicule Special, 75-100. MR2675722 (2011i:06032)
[Hol03] W Charles Holland. The Black Swamp Problem Book. 2003.
[HR77] Anthony W. Hager and Lewis C. Robertson, Representing and ringifying a Riesz space, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 411-431. MR0482728|(58 \#2783)
[HS07] Horst Herrlich and George E. Strecker, Category theory, 3rd ed., Sigma Series in Pure Mathematics, vol. 1, Heldermann Verlag, Lemgo, 2007. An introduction. MR2377903 (2009c:18001)
[Jec03] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)
[Joh62] D. G. Johnson, On a representation theory for a class of Archimedean lattice-ordered rings, Proc. London Math. Soc. (3) 12 (1962), 207-225. MR0141685 (25 \#5082)
[Joh07] D. G. Johnson, A representation theorem revisited, Algebra Universalis 56 (2007), no. 3-4, 303-314, DOI 10.1007/s00012-007-2000-x. MR2318213 (2008d:06020)

Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459

E-mail address: ahager@wesleyan.edu

[^0]: Received by the editors November 19, 2013.
 2010 Mathematics Subject Classification. Primary 06E20; Secondary 03E50, 06B15, 06F25, 08A99, 18A20, 18A40, 46E25, 54C30, 54G05.

 Key words and phrases. Lattice-ordered group, f-ring, epicomplete, reflection, σ-complete, truncation, essential completion, continuum hypothesis, basically disconnected space.

