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SOME UNUSUAL EPICOMPLETE ARCHIMEDEAN

LATTICE-ORDERED GROUPS

ANTHONY W. HAGER

(Communicated by Ken Ono)

Abstract. An Archimedean l-group is epicomplete if it is divisible and σ-
complete, both laterally and conditionally. Under various circumstances it
has been shown that epicompleteness implies the existence of a compatible
reduced f -ring multiplication; the question has arisen whether or not this is
always true. We show that a set-theoretic condition weaker than the continuum
hypothesis implies “not”, and conjecture the converse. The examples also fail
decent representation and existence of some other compatible operations.

1. Introduction

Arch is the category of Archimedean l-groups, with l-group homomorphisms,
frA is the category of f -rings which are reduced (semi-prime) and Archimedean,

with l-ring homomorphisms, and frA
F−→ Arch is the forgetful functor. “G ∈

F (frA)” means G ∈ Arch and for some multiplication ∗ compatible with the
l-group structure of G, (G, ∗) ∈ frA.

In a general category, an object A is called epicomplete (EC) if ϕ : A → • monic
and epic implies ϕ is an isomorphism.

In Arch, monics are one-to-one, and [BH90a] shows: G is EC if and only if G
is divisible, laterally and conditionally σ-complete; EC is monoreflective in Arch,
and thus is the least monoreflective subcategory. (See [HS07] regarding “monore-
flective”.)

Question 1.1 ([Hol03] and [BHJK09], p. 166). G EC ⇒ G ∈ F (frA)?

This has arisen because the implication does hold under some extra assumptions
(described in 1.6 below). We shall show that the following set-theoretic hypothesis
implies “No” (which was conjectured in [BHJK09]).

Hypothesis 1.2. For a set S of cardinal |S| = ℵ1, there is a family W of subsets
of S with the properties

(1) ∀A ∈ W , |A| = ℵ1,
(2) ∀A �= B in W, |A ∩B| ≤ ℵ0, and
(3) |W| = 2ℵ1 .
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Baumgartner has shown (see [Jec03], pp. 579, 582): In ZFC,

2ℵ0 = ℵ1 ⇒ (2ℵ0 < 2ℵ1 and 2ℵ0 < ℵω1
) ⇒ 1.2 ⇒ 2ℵ0 < 2ℵ1 .

Thus Hypothesis 1.2 is weaker than the continuum hypothesis (and consistent with
ZFC). In the following, |S| = ℵ1 and R

S (all functions f : S → R) is given pointwise
+ and ≤; RS ∈ Arch.

Theorem 1.3 (4.1 below). If Hypothesis 1.2 holds, then there is an EC G ≤ R
S

(constructed from W) with G �∈ F (frA).

Conjecture 1.4. If there is an EC G �∈ F (frA), then Hypothesis 1.2 holds.

The rest of this section explains where Question 1.1 comes from, and is techni-
cally not required for the proof of Theorem 1.3. Question 1.1 is closed related to
issues of representation of Archimedean l-structures in lattices

D(Y ) = {f ∈ C(Y, [−∞,+∞])|f−1
R dense in Y }.

Here Y is a Tychonoff space, [−∞,+∞] = R ∪ {±∞} with the obvious order and
topology, and D(Y ) is given the pointwise order. Addition is partially defined by
f1 + f2 = f3 means f1(x) + f2(x) = f3(x) when all three are real, and likewise
multiplication. This + (respectively, ·) is fully defined if and only if each dense
cozero set is C∗-embedded in Y [HJ61]. This condition defines quasi-F (QF) spaces;
Then D(Y ) ∈ frA with the constant function 1Y , the ring identity.

Y is called extremally (resp. basically) disconnected (ED, resp. BD) if each
open (resp. cozero) set has open closure. (See [GJ76]). We have ED ⇒ BD ⇒ QF,
and D(Y ) is an l-group which is laterally and conditionally complete (σ-complete)
if and only if Y is ED (resp., BD). These extend the Nakano-Stone Theorems for
C(X). (See [BHJK09]).

In particular, D(Y ) is an Arch-object which is EC if and only if Y is BD. (See
[BH90a]).

By a representation of G ∈ Arch (resp. frA), we mean a one-to-one map
ε : G → D(Y ) for which ε(G) is closed under the partial operations in D(Y )

requisite that ε(G) ∈ Arch (resp. frA), and G
ε−→ ε(G) is an l-group (resp. l-ring)

isomorphism.
A Johnson representation of G ∈ Arch is a representation G ≤ D(Y ) (suppress-

ing the ε) satisfying

(JY ) y �∈ F closed in Y ⇒ ∃g ∈ G with 0 < g(y) < +∞, and
(J∞) ∀g ∈ G, the Čech-Stone extension has βg(βY − Y ) ⊆ {0,±∞}.

(It follows that Y is locally compact). We may say “J-representation”, and indicate

such a situation as G
J
≤ D(Y ). It is so-called because:

Theorem 1.5 ([Joh62], [Joh07]). For each (G, ∗) ∈ frA, there is G
J
≤ D(Y ) with

G closed in D(Y ) under the partial ·.
Consider Y locally compact. Let D0(Y ) ≡ {f ∈ D(Y )|βf(βY − Y ) = {0}}

(the functions that vanish at ∞). If Y is BD, then D0(Y ) ∈ Arch, is condition-
ally σ-complete ([BH90a], 3.1), and is laterally σ-complete if and only if either Y
is compact (whence D0(Y ) = D(Y )) or Y is not compact and in the one-point
compactification Y ∪ {α}, α is a P -point ([BH90a], §4,5).

For the nonce, a “good” representation of EC G is an isomorphism G ≈ D0(Y ),
for Y locally compact and BD (thus, necessarily, α is a P -point).
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The following sums up partial results inspiring, and giving four versions of, Ques-
tion 1.1. Ball’s truncations [Bal13] will be discussed in §5.

Theorem 1.6. Suppose G is EC.

(1) These are equivalent.
(a) G ∈ F (frA).
(b) G has a Johnson representation.
(c) G has a good representation.
(d) G has a compatible truncation.

(2) If G has any weak unit, these four conditions obtain.

[BH90b] shows (2): For G with weak unit e, there is X compact BD, with
G ≈ D(X) and e �→ 1X .

Regarding (1): Johnson’s 1.4 shows (a) ⇒ (b), and Ball’s 5.1 (below) shows (d)
⇒ (b) (neither needing “G EC”). From §5, (c) ⇒ (d) is clear. [BH90a] shows (b)
⇒ (c), at considerable labor. (c) ⇒ (a) is evident.

We mentioned that EC is monoreflective in Arch. In that regard, there is more,
as follows.

Let W be the (non-full) subcategory of Arch with objects (G, eG), eG is a

positive weak unit of G, and morphisms (G, eG)
ϕ−→ (H, eH) the Arch-morphisms

with ϕ(eG) = eH . In W, the remarkably canonical Yosida representation has
many consequences, which are striking, and food for thought, in comparison with
Arch. This representation of a (G, eG) can be described as the essentially unique
G ≤ D(Y G) which is a J-representation, Y G is compact, and eG �→ 1. See [HR77].

EC in W has “the same” characterization as in Arch, divisible, laterally and
conditionally σ-complete. It results that (G, eG) is W-EC if and only if (G, eG) ≈
(D(X), 1X), for X compact BD. (The X is the Y G above. We alluded to this in
Theorem 1.6 (2), above.) Similar to Arch, W-EC is the smallest monoreflective
subcategory of W. (This information is in [BH90b,BH90a].)

Let βArch and βW denote their “EC-monoreflection” functors. In [BH90a], we
find a concrete calculation/representation/description of G ≤ βWG (suppressing
units), in terms of G ≤ D(Y G). In [BHJK05], we found a quite similar description
of G ≤ βArchG, for G = CK(Y ), or C0(Y ) the functions of compact support, or
vanishing at ∞, on locally compact Y , and these βArchG have the features in The-
orem 1.6 (1). Note that CK(Y ) and C0(Y ) are, as presented, in J-representation.
One imagines that the descriptions of these βArchG alluded to above can be carried
through for any G in a J-representation, and that if (G, ∗) ∈ frA, then there is ∗′
on βArchG with (G, ∗) ≤ (βArchG, ∗′) in frA.

2. Some epicomplete l-groups

S is a set of cardinal |S| = ℵ1.
W is an uncountable family of uncountable subsets of S for which, if A,B ∈ W

and A �= B, then |A ∩ B| ≤ ℵ0. (There are no further assumptions on W in this
section.) R

S carries pointwise + and ≤; RS ∈ Arch. P = {f ∈ R
S |f(x) > 0 ∀x ∈

S}. This is the set of positive weak units in R
S .

W γ−→ P is any function.
In this section, we construct epicomplete G(W , γ) ≤ R

S . The construction is
modeled on the elaboration in [HJ10] of the example in [CM90]. In §4, we will
specify the (W , γ) to make G(W , γ) /∈ F (frA).
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We adopt the following notations.

For U, V ⊆ S, U
∗
⊆ V means there is countable T with U ⊆ V ∪ T , and U

∗
= V

means U
∗
⊆ V and V

∗
⊆ U . (For A �= B in W , A ∩B

∗
= ∅.)

For f, g ∈ R
S , f

∗
≤ g means there is countable T with f(x) ≤ g(x), for x ∈ S−T ,

and f
∗
= g means f

∗
≤ g and g

∗
≤ f .

For A ⊆ W with |A| ≤ ℵ0, let c(A) = ∪{A ∩ B|A �= B in A}. Observe
|c(A)| ≤ ℵ0.

For A ∈ A, let
.
A = A − c(A). Let

.
A = {

.
A|A ∈ A}. Observe

.
A ∩

.
B = ∅ for

A �= B in A.
Again with A ⊆ W and |A| ≤ ℵ0, let r : S → R have the properties: for

x /∈
⋃

A
.
A, r(x) = 0; for A ∈ A, r|

.
A is constant, denoted rA.

For U ⊆ S, let χU be the characteristic function of U .

Definition 2.1. For (A, r) as above, let

u(A, r) ≡
∑

A
rAχ .

A
γ(A).

(Here, the
∑

is pointwise in R
S . The supports of the summands are disjoint, so

the
∑

A makes sense.)

G(W , γ) ≡ {g ∈ R
S | there is (A, r) with g

∗
= u(A, r)}.

Theorem 2.2. G(W , γ) is a sub-l-group of RS, without weak units, and is epicom-
plete.

Proof of 2.2. In the following, A,B, ... always denote countable subsets of W .
The proof has a number of steps. The first may not be completely necessary,

but is articulated to avoid confusion.

Lemma 2.3. The following are equivalent.

(1) A ⊆ B.
(2)

⋃
A A ⊆

⋃
B B.

(3)
⋃

A
.
A ⊆

⋃
B
.
B.

(2’)
⋃

A A
∗
⊆

⋃
B B.

(3’)
⋃

A
.
A

∗
⊆

⋃
B
.
B.

Proof. (Note (3) says
⋃

A(A− c(A)) ⊆
⋃

B(B− c(B)), and A ⊆ B ⇒ c(A) ⊇ c(B).)
These implications are obvious: (1)⇒(2)⇒(2’); (3)⇒(3’). Also, for any A,⋃

A A =
⋃

A
.
A ∪ c(A); so (3’)⇒ (2’).

(2’)⇒(1). Suppose (1) fails, with A ∈ A−B. Thus, ∀B ∈ B, A∩B is countable,
and so is A ∩

⋃
B B =

⋃
B(A ∩ B) (since B is countable). Then, for any countable

T , A ∩ (
⋃

B B ∪ T ) is countable, so A �⊆
⋃

B B ∪ T (since |A| ≥ ℵ1). So (2’) fails.

(1)⇒(3). Suppose A ∈ A. Then, A − c(A)
∗
= A − c(B), so

⋃
A(A − c(A))

∗
=⋃

A(A− c(B)) ⊆
⋃

B(B − c(B)) (the last ⊆ because A ⊆ B).
�

In the following, G(W , γ) is denoted G. We shall prove below that G ≤ R
S (i.e.,

is a sub-l-group,) and G is EC.
Granted G ≤ R

S , G has no weak units:
If g ∈ G+ has g⊥ = {0}, then ∀x ∈ S, g ∧ χx > 0, which means g(x) > 0, so

coz g = S. But g
∗
= u(A, r), so S = coz g

∗
= cozu(A, r) ⊆

⋃
A

.
A. But |A| ≤ ℵ0
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and W is uncountable, so there is B ∈ W with B /∈ A, thus |B −
⋃

A
.
A| ≥ ℵ1.

Contradiction.

Lemma 2.4. Suppose A ⊆ B. Given u(A, r), there is r with u(B, r) ∗
= u(A, r) as

follows.
r(x) = 0 if x /∈

⋃
B
.
B or if x ∈

.
B for B ∈ B −A.

If A ∈ A, r|(A−c(B))| = rA (the constant value of r on A−c(A); i.e. rA = rA).

Proof.
⋃

A(A− c(B)) ∗
=

⋃
A(A− c(A)), and r = r on the left set. �

Corollary 2.5. Suppose given u(An, rn) for n = 1, 2 or n = 1, 2, . . . . Let B =⋃
n An. Apply Lemma 2.4 to obtain u(B, rn) ∗

= u(An, rn) for each n.

Corollary 2.6. G ⊆ R
S is closed under the inherited +,−,∨,∧. I.e., G ≤ R

S.

Proof. Let ⊗ ∈ {+,−,∨,∧}. Let g1, g2 ∈ G, as g.n
∗
= u(A.

n, r.n). Take B = A1 ∪A2

and apply Corollary 2.5 to get u(B, r.n)
∗
= u(An, rn). Let r = r1⊗ r2. Observe that

B = (A1∩A2)∪ (A1−A2)∪ (A2−A1); it follows that r|
.
B is constant ∀B ∈ B. �

For countable suprema, we proceed as follows.

Lemma 2.7. Suppose {gn}N ⊆ G+ and in R
S, ∨gn exists. (This ∨ is pointwise,

and saying it exists just means {gn} is bounded above in R
S , i.e., ∀x, {gn(x)}N is

bounded above in R.) Call this ∨gn as g.
Then, g ∈ G and therefore g = ∨Ggn.

Proof. Express each gn as gn
∗
= u(An, rn); note rn ≥ 0. Let B =

⋃
n An, and apply

2.5 ∀n, getting u(B, rn) ∗
= u(An, rn) (with rn = 0 on D −

⋃
B
.
B, and rn ≥ 0).

Since gn ≤ g and gn = u(B, rn) except on a countable Tn, u(B, rn) ≤ g except
on Tn. We have successively: ∀n u(B, rn) ≤ g except on the countable T =

⋃
n Tn;

∀n rnχ .
B
γ(B) ≤ u(B, rn) ≤ g except on T ∀B ∈ B; ∀n ∀B, on

.
B except on T ,

rnγ(B) ≤ g, or rn ≤ g
γ(B) .

Now define r : S → R ≡ 0 on S−
⋃

B
.
B, and for B ∈ B, on

.
B r ≡ ∨nrn. (This is

pointwise ∨ of the rn which are constant on
.
B, so it is the ∨ in R of those constant

values “(rn)B”.)

Then, g
∗
= u(B, r):

Clearly, each is 0 on S −
⋃

B
.
B except for T .

For B ∈ B and x ∈
.
B − T , we have u(B, rn(x)) = rnγ(B)(x) = gn(x), so

r(x)γ(B)(x) = (∨rn(x))γ(B)(x) = ∨(rnγ(B))(x) = ∨gn(x) = g(x). �

Note, Corollary 2.6 says {gn} ⊆ G+ is bounded above in G if and only if in R
S .

Corollary 2.8. G is EC, i.e., divisible, laterally σ-complete, and conditionally
σ-complete.

Proof. Divisibility is obvious. If {gn} is disjoint (resp., bounded above inG), then in
R

S , ∨g exists because R
S is laterally σ-complete (resp., conditionally σ-complete).

Apply Corollary 2.6. �

Theorem 2.2 is proved. �
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3. Essential completions and compatible multiplications

We explain essential completions, and note that the G(W , γ) ≤ R
S (in Theorem

2.2) is one (Corollary 3.3). The point is that, in general, “G ∈ F (frA)” can be
recognized in terms of any particular essential completion of G (Corollaries 3.5 and
3.6).

The basic framework is due to Bernau [Ber65] and Conrad [Con71,Con74]. Em-
bellishments are added for clarity, and to the present purpose.

Let X be a compact extremally disconnected (ED) space; so that D(X) ∈ Arch
and (D(X), ·) ∈ frA (see §1).

Suppose X
τ←− X is a homeomorphism. Define D(X)

τ−→ D(X) as τ (f) = f ◦ τ .
Suppose d ∈ P ≡ the set of positive weak units of D(X) (d ∈ P ≡ d⊥ = {0} if and

only if coz d ≡ {x|d(x) �= 0} is dense in X). Define D(X)
d−→ D(X) as d(f) = d · f

(pointwise multiplication in D(X)). Note that d−1 ∈ P . (d−1 is the Čech-Stone
extension of 1

d | coz d.) Define ⊗d on D(X) as f1 ⊗d f2 ≡ d−1f1f2.
In the rest of this section, “d” denotes a d ∈ P .

Theorem 3.1.

(1) The frA-isomorphisms of (D(X), ·) are exactly the τ .
(2) Each d is an l-group isomorphism of D(X).
(3) The l-group isomorphisms of D(X) are exactly the dτ .

(4) (D(X),⊗d) ∈ frA with identity d and (D(X), ·) d−→ (D(X),⊗d) is a frA-
isomorphism.

All of Theorem 3.1 was certainly known to Bernau and Conrad, but we note:
In (1), that τ is a frA-isomorphism is easy, and the converse is a special case of
[HR77]. (2) is easy. In (3), that dτ is an l-group isomorphism follows from (1) and
(2), and the converse is a special case of [BH09]. (4) is (now easy and) completely
recognized in [Con74], §2.

In a general category: An essential monic is a monic ϕ for which ψϕ monic

implies ψ monic. E is essentially complete if E
ϕ−→ • essential monic implies ϕ

an isomorphism. An essential completion (of G) is a G
ϕ−→ E with ϕ essential

monic and E essentially complete. (If the category lacks injective hulls, this notion
substitutes.)

In Arch, monic means one-to-one, and (suppressing label) G ≤ H is essential if
and only if G is large in H, meaning: if 0 < h ∈ H, there are 0 < g ∈ G and n ∈ N

with g ≤ nh.
The following is all in Arch.

Theorem 3.2.

(1) E is essentially complete if and only if E ≈ some D(X) for X compact ED
if and only if E is divisible, laterally complete, and conditionally complete.

(2) For any G, there is an essential completion G
ϕ

≤ D(X).

(3) For every two essential completions, G
ϕi

≤ D(X), there is a unique l-group
isomorphism μ with μϕ1 = ϕ2. (Note μ = dτ as in Theorem 3.1.)

In Theorem 3.2: (1) is due to Conrad [Con71]. (2) and (3) combine (1) with
facts about Bernau’s representation [Ber65].
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Corollary 3.3. In 2.2, G(W , γ) ≤ R
S is an essential completion. (The X in

Theorem 3.2 is βS; RS ≈ D(βS).)

Proof. R
S is visibly divisible, laterally and conditionally complete (or, referring to

Theorem 3.2, βS is ED). G(W , γ) is large in R
S : If f > 0, there is x with f(x) > 0,

so there is n with nf(x) > 1, so 0 < χx ≤ nf , and χx ∈ G(W , γ). �

Theorem 3.4. If (G, ∗) ∈ frA, then there is (G, ∗)
ψ

≤ (D(X), ·) in frA with

G
Fψ

≤ D(X) an essential completion.

Bernau shows Theorem 3.4 for his representation [Ber65], which Conrad identi-
fied as an essential completion [Con71]. (Another proof of Theorem 3.4 is indicated
after Remark 5.3.)

Corollary 3.5. Suppose G
η

≤ D(X) is any essential completion.

(1) If there is d such that η(G) is closed under ⊗d in D(X), then (η(G),⊗d) ∈
frA and G ∈ F (frA).

(2) If there is ∗ with (G, ∗) ∈ frA (i.e., G ∈ F (frA)), then there is d with
(G, ∗) ≈ (η(G),⊗d).

Proof. (1) is obvious.
(2). We use Theorems 3.1, 3.2, and 3.4. Consider

D(X)

G D(X)

D(X)

η

(Fψ =) ψ

d

μ

τ

where η is the given, (G, ∗)
ψ

≤ (D(X), ·) is from Theorem 3.4, and μ with μψ = η
comes from Theorem 3.2 (3), and μ = dτ by Theorem 3.1.

The claim is that η(G) is closed under ⊗d, as d
−1η(g1)η(g2) = η(g1 ∗ g2):

η(g1 ∗ g2) =μψ(g1 ∗ g2) = μ(ψ(g1) · ψ(g2))
=dτ(ψ(g1) · ψ(g2)) = d(τψ(g1) · τψ(g2))
=d · τψ(g1) · τψ(g2) = d · τψ(g1) · (d−1d) · τψ(g2)
=d−1 · dτψ(g1) · dτψ(g2)
=d−1 · dτψ(g1) · dτψ(g2) = d−1 · μψ(g1) · μψ(g2)
=d−1 · η(g1) · η(g2).

�
Corollary 3.5 is, more-or-less, in [Con74], §2.

Corollary 3.6. Suppose G
η

≤ D(X) is any essential completion.

(1) G ∈ F (frA) if and only if there is d such that η(G) is closed under ⊗d in
D(X).
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(2) G /∈ F (frA) if and only if ∀p ∈ P , ∃g1, g2 ∈ G with p · η(g1) · η(g2) /∈ η(G).

Proof. (1) restates Corollary 3.5. (2) is the same as (1) using p = d�. �

Note. If G is divisible, the condition in Corollary 3.6 (2) is equivalent to: ∀p, ∃g
with p · η(g)2 /∈ η(G) (because (x+ y)2 = x2 + 2xy + y2).

4. Epicomplete G /∈ F (frA).

Such G will be of the form G(W , γ) ≤ R
S as in §2. The items S,W , P, . . . are

as in §2.

Theorem 4.1. If |W| = 2ℵ1 , then there is W δ−→ P for which G(W , δ) /∈ F (frA).

Combining Theorem 4.1 with Theorem 2.2, and with other information in §1,
gives the full statement of Theorem 1.3.

The definition of the δ requires a lemma.

Lemma 4.2. Suppose A ⊆ S with |A| = ℵ1, and suppose f ∈ P . Then there is
h ∈ P for which

(i) h(x) ≥ f(x) for each x ∈ S, and
(ii) for any countable T ⊆ S and any r ∈ R, h|(A− T ) �= rf |(A− T ).

Proof. Given the A and f , we define separately h|(S −A) and h|A:
h|(S − A) ≡ (f + 1)|(S −A).
If there is no countable T with f |(A−T ) constant, then ∀ such T , |f(A−T )| ≥ 2,

and again define h|A = (f+1)|A. (If (f+1)|(A−T ) = rf |(A−T ), then ∀x ∈ A−T ,
f(x) = 1

r−1 , contradicting |f(A− T )| ≥ 2.)

Suppose there is countable T with f |(A− T ) constant, take one-to-one A
β−→ R,

and define h|A ≡ (f + β)|A. (If there were countable T ′ and r with h|(A− T ′) =
rf |(A− T ′), then also h = rf on A− (T ′ ∪ T ) where f is constant, say r0. Then,
on A− (T ′ ∪ T ), β = (r − 1)r0 constant, contradicting β one-to-one.) �

Proof of Theorem 4.1. We shall define δ using Lemma 4.2, which gives G(W , δ) ≤
R

S as in Theorem 2.2, and then verify 3.6 to get G(W , δ) /∈ F (frA). Since |W| =
2ℵ1 , there is a bijection W α←− P ; for each A ∈ W , there is v ∈ P with A = α(v).
Apply Lemma 4.2 to f = 1/v, producing h ≡ δ(A) for which

(ii) ∀T, r, h|(A− T ) �= r
v |(A− T ).

Theorem 2.2 applies to G ≡ G(W , δ) ≤ R
S , which is an essential completion

(Corollary 3.3). We use Corollary 3.6 (suppressing the η there). We claim: ∀v ∈ P ,
∃g ∈ G with vg2 /∈ G. Take v ∈ P , let A = α(v), and let g = χAγ(A) = χAh, h
satisfying (ii) above. (This g is u({A}, χA).) Then, g2 = χAh

2 and vg2 = vχAh
2.

Suppose (towards contradiction) that vχAh
2 ∈ G. Then, vχAh

2 ∗
= u(B, r) for

some (B, r), and using Lemma 2.4, we can suppose A ∈ B (by replacing B by

B ∪ {A}). For
.
A = A − c(B), we then have vχ .

A
h2 = rχ .

A
γ(A) = rχ .

A
h (from the

form of u(B, r)). Cancelling an h gives vχ .
A
h = rχ .

A
, whence h = r

v on A − c(B),
contradicting (ii) above. �

5. Compatible truncation

Suppose G ∈ Arch, and e is a positive weak unit of G. Then G+ is closed
under the “truncation” g �→ e ∧ g ≡ te(g). Ball [Bal13] has viewed this as a unary
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operation, abstracted (axiomatized) its features, and defined the category AT of
Archimedean “truncs”: The (G, t), t : G+ → G+ satisfying his axioms (which

we need not list), with morphisms (G, t)
ϕ−→ (G′, t′) the l-group morphisms with

ϕ(t(g)) = t′(ϕ(g)) ∀g ∈ G+.

Let Arch
F←− AT be the forgetful functor.

Note that any D(Y ) (not necessarily an l-group) has f ∧ 1Y ∈ D(Y ) ∀f ≥ 0,
and f ∈ D0(Y ) implies f ∧ 1Y ∈ D0(Y ).

Here is Ball’s companion to Johnson’s Theorem 1.4.

Theorem 5.1 ([Bal13]). For each (G, t) ∈ AT, there is a J-representation G
α
≤

D0(Y ) with α(t(g)) = 1Y ∧ α(g) for each g ∈ G+.

At this point, we see that for EC G, G ∈ F (AT) if and only if G ∈ F (frA),
in consequence of Johnson’s 1.4, Ball’s 5.1, and the long argument in [BHJK09]
that if EC G has any J-representation, then G ≈ D(K, p), the latter evidently in
F (frA) ∩ F (AT). We described this in §1.

Thus, the G(W , δ) in Theorem 4.1 has G(W , δ) /∈ F (AT).
We shall directly produce other G(W , τ ) ≤ R

S with G(W , τ ) /∈ F (AT), by
arguing in parallel to §3 and Theorem 4.1. We do this in the hope of ultimately
understanding why, on a G ∈ Arch, truncations and frA-multiplications behave
so similarly: we do not yet.

Corollary 5.2. Suppose (G, t) ∈ AT.

(1) There is H ∈ Arch with a weak unit e, and an embedding (G, t)
β

≤ (H, tβ)

(i.e., qua AT) with G
Fβ

≤ H essential.

(2) There is X compact ED and (G, t)
ψ

≤ (D(X), t1) (1 = 1X) with G
Fψ

≤ D(X)
an essential completion.

Proof.

(1) Take G
α
≤ D0(Y ) per Theorem 5.1, let H = jm(α(G)+Z ·1Y ). (Here, m(•)

is the collection of all finite meets from (•), and likewise j(•) for joins.)
Then, H ∈ Arch, and e = 1Y is a weak unit. (See [HJ10], §2.) Take
e = 1Y , and β the codomain restriction of the function α. Fβ is essential
because α is a Johnson representation.

(2) With (G, t)
β

≤ (H, e) as in (1), take an essential completion H
γ

≤ D(X), for
which β(e) = 1X . Then ψ = γβ.

�

Remark 5.3. (2) also can be proved from the G
α
≤ D0(Y ) in Theorem 5.1, and some

topology, like this. Let βY
a←− aβY ≡ X be the ED cover (absolute, Gleason cover,

projective cover) of the Čech-Stone compactification. We have D(Y ) ≈ D(βY )
a−→

D(X) as a(f) = f◦a, which producesG
ψ

≤ D(X) as g �→ α(g) �→ βα(g) �→ a(βα(g)).
The embedding is essential because a is irreducible.

In exactly the same way, Bernau’s Theorem 3.4 can be proved from Johnson’s
Theorem 1.4.
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In the following, X is compact ED, and P is the set of positive weak units of
D(X), and “d” always denotes a d ∈ P . Given d, let td(f) ≡ d ∧ f (f ∈ D(X)+).

Recall D(X)
d−→ D(X) is d(f) = df , and d(1X) = d1X = d.

Theorem 5.4. Suppose G
η

≤ D(X) is any essential completion.

(a) If there is d such that η(G)+ is closed under td, then (η(G), td) ∈ AT and
G ∈ F (AT).

(b) If there is t with (G, t) ∈ AT (i.e., G ∈ F (AT)), then there is d with
(G, t) ≈ (η(G), td).

Proof. (a) is obvious, and (b) follows from (a) as in Theorem 3.4, but more simply:
Consider

D(X)

G D(X)

D(X)

η

(Fψ =) ψ

d

μ

τ

where η is the given, (G, t)
ψ

≤ (D(X), t1) is from 5.3(b) (1 = 1X), μ with μψ = η
comes from Theorem 3.2 (3), and μ = dτ by Theorem 3.1. Note that μ(1) =
dτ(1) = d(1) = d.

The claim is that η(G)+ is closed under td, as d ∧ η(g) = η(t(g)):

η(t(g)) = μψ(t(g)) = μ(1 ∧ ψ(g)) = μ(1) ∧ μψ(g) = d ∧ η(g).

�

Corollary 5.5. Suppose G
η

≤ D(X) is any essential completion. G /∈ F (AT) if
and only if ∀d ∈ P , ∃g ∈ G+ with d ∧ η(g) /∈ η(G).

Here is the advertised companion to Theorem 4.1. (The τ appearing has nothing
to do with the τ in §3 and the proof of Theorem 5.4.)

Theorem 5.6. If |W| = 2ℵ1 , then there is W τ−→ P for which G(W , τ ) /∈ F (AT).

Proof. As in Theorem 4.1, take any bijection W α←− P ; for each A ∈ W , there is
d ∈ P with A = α(d). Apply Lemma 4.2 exactly as stated to f = d, producing
h ≡ τ (A) for which

(i) h(x) ≥ d(x) ∀x ∈ S, and
(ii) ∀ countable T ⊆ S, ∀r ∈ R, h|(A− T ) �= rd|(A− T ).

Theorem 2.2 applies to G ≡ G(W , τ ) ≤ R
S , which is an essential completion

as in Corollary 5.5 (suppressing the η there). We claim: ∀d ∈ P , ∃g ∈ G with
d ∧ g /∈ G.

Take d ∈ P , let A = α(d), and let g = χAτ (A) = χAh, with h as above. (This g
is u({A}, χA).) Since h ≥ d, d ∧ g = d ∧ χAh = dχA.

Suppose (toward contradiction) that dχA ∈ G. Then, dχA
∗
= u(B, r) for some

(B, r), and we can suppose A ∈ B. For
.
A = A− c(B), we then have dχ .

A
= rAχ .

A
h,

which means h = 1
rA

d on A− c(B), contradicting (ii) above.
�
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