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ON THE MEAN VALUE PROPERTY

FOR THE p-LAPLACE EQUATION IN THE PLANE

PETER LINDQVIST AND JUAN MANFREDI

(Communicated by Jeremy T. Tyson)

To the memory of our friend Albert Baernstein II

Abstract. We study the p-Laplace equation in the plane and prove that the
mean value property holds directly for the solutions themselves for 1 < p <
9.525.... This removes the need to interpret the formula in the viscosity sense

via test functions. The method is based on the hodograph representation.

1. Introduction

Harmonic functions can be characterized by the “asymptotic” mean value prop-
erty

u(x) =
1

|B(x, ε)|

∫
B(x,ε)

u(y) dy + o(ε2) as ε → 0

valid at each point x in the domain of definition. The expansion is an equality
for harmonic functions with o(ε2) = 0. It is an exercise to prove that only the
asymptotic expansion is needed to conclude that a C2-function is harmonic, and it
is a very interesting exercise to prove it for continuous functions.

In [5] it was proved that a similar property holds for the solutions of the p-Laplace
equation

div(|∇u|p−2∇u) = 0,

which is the Euler-Lagrange equation for the variational integral

I(u) =

∫
Ω

|∇u|p dx,

where 1 < p < ∞. Indeed, a function u ∈ C(Ω) ∩ W 1,p
loc (Ω) is a solution in the

domain Ω in R
N of the p-Laplace equation if and only if the asymptotic expansion

u(x) =
p− 2

p+ n

⎛
⎝ max

B(x,ε)
u+ min

B(x,ε)
u

2

⎞
⎠

+
2 + n

p+ n

(
1

|B(x, ε)|

∫
B(x,ε)

u(y) dy

)
+ o(ε2)

(1)

holds at each point x ∈ Ω, as ε → 0. However, the expansion was proved to be valid
in the viscosity sense, which means that, strictly speaking, u has to be replaced by
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test functions on which the pointwise calculations are performed. In the extreme
case p = ∞, when the equation reads

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0,

a counterexample shows that the expected formula

u(x) =

max
B(x,ε)

u+ min
B(x,ε)

u

2
+ o(ε2)

cannot be interpreted literally as it stays; indeed, test functions are needed. (The
Aronsson function u(x, y) = x4/3 − y4/3 will do as an example.) For finite values of
p we do not know about any counterexample.

The first derivatives are known to be continuous, but the lack of second deriva-
tives is crucial. It follows essentially from the Taylor expansion that if u ∈ C2(Ω)
and ∇u(x) �= 0, then (1) holds directly for u itself, i.e., without any viscosity inter-
pretation. (In fact, it holds also when ∇u(x) = 0 if, in addition, D2u(x) = 0.) Since
solutions of the p-Laplace equation are even real analytic at points where ∇u �= 0
according to [4, p. 208], the whole problem is at the critical points. Unfortunately,
in space nothing seems to be known about the critical points.

In the plane, much more structure is available due to the fact that the (complex)
gradient ux − iuy is a quasiregular mapping. This fundamental result of Bojarski-
Iwaniec implies that the critical points are isolated, unless u is constant; cf. [2]. We
shall use the hodograph representation given in [3] to prove that in the plane the
mean value formula holds pointwise at least in the range

1 < p < p0 = 9.52520797 . . . .

Theorem 1. Suppose that Ω is a domain in the plane R
2 and let 1 < p < p0 =

9.52 . . . . A function u ∈ C(Ω) ∩W 1,p
loc (Ω) is a solution to the p-Laplace equation if

and only if the expansion

u(x) =
p− 2

p+ 2

⎛
⎝ max

B(x,ε)
u+ min

B(x,ε)
u

2

⎞
⎠ +

4

p+ 2

(
1

πε2

∫
B(x,ε)

u(y) dy

)
+ o(ε2)

holds at each point x ∈ Ω as ε → 0.

The number p0 restricting the range of validity seems to be an artifact; it is the
root of an auxiliary equation. To get beyond p0 would require far more complicated
calculations. We recall that u ∈ C(Ω) ∩ W 1,p

loc (Ω) is a solution of the p-Laplace
equation if and only if ∫

Ω

〈|∇u|p−2∇u,∇ϕ〉 dx = 0

for all ϕ ∈ C∞
0 (Ω). In fact, u ∈ C1,α

loc (Ω) and, in the plane, a complete regularity
characterization is given in [3].

Our method of proof relies on a separation of the first (and worst) term in the
hodograph representation. This term can, with some care, be handled without
destruction of the remainder.
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2. Preliminaries

We sketch the hodograph method, for which we refer the reader to consult [3].
It is based on the fact that if u = u(x, y) is a solution to the p-Laplace equation in
the plane domain Ω, then the complex gradient

f(z) =
∂u

∂z
=

1

2

(
∂u

∂x
− i

∂u

∂y

)
is a quasiregular mapping according to [2]. (By abuse of notation, f(z) is used for
f(z, z).) It follows that the zeros of f are isolated, unless f is a constant. Assume
that z0 = x0 + iy0 is a critical point, i.e., f(z0) = 0. By adding a constant, we
may assume that u(x0, y0) = 0. For some integer n ≥ 1 we have the Stoilow
representation

f(z) = χ(z)n

in a small neighbourhood |z − z0| < �, where χ is a quasiconformal mapping, i.e.,
it is also injective.

We shall reproduce a formula from [3]. Let us for simplicity take z = 0 so that
now f(0) = 0, χ(0) = 0. The inverse mapping defined by

ζ = χ(z) ⇐⇒ z = H(ζ)

in a suitable neighbourhood has the representation formula

H(ζ) =

∞∑
k=n+1

(
Akζ

k + εkAkζ
k
)
ζ−n|ζ|λk+n−k

=

A(ζ)︷ ︸︸ ︷{
An+1

ζ

|ζ| + εn+1An+1

(
ζ

ζ

)n
ζ

|ζ|

}
|ζ|λn+1

+

{
An+2

(
ζ

|ζ|

)n+2

+ εn+2An+2

(
ζ

ζ

)n+2
}(

|ζ|
ζ

)n

|ζ|λn+2

+ · · · = A(ζ) +R(ζ),

where the parameters are given by

λk = λ
(n)
k =

−np+
√
4k2(p− 1) + n2(p− 2)2

2
,

εk = ε
(n)
k =

λk + n− k

λk + n+ k

for k = n+1, n+2, · · · . It is important that |εk| < 1. Thus, if Ak �= 0, the kth term
can have no other zeros than ζ = 0. We record that 0 < ε3 < 1, when p > 2. If

(2)

∞∑
k=n+1

k|Ak|2 < ∞

this formula produces, according to Theorem 2 in [3], all solutions of the p-Laplace
equation in a sufficiently small neighbourhood of the critical point 0.
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2.1. About the cases n = 1, 2, 3, · · · for f(z) = χ(z)n. A consequence for the
second derivatives is that ∑

|D2u(z)| ≤ B1|z|
n
γn

−1

in a small neighbourhood of 0, where

γn
n

=
1

2

(√
4(1 +

1

n
)2(p− 1) + (p− 2)2 − p

)
.

It follows that u has Hölder continuous second derivatives, if

n

γn
> 1.

A calculation shows that this holds when

n = 1, 1 < p < 2,

n = 2, 1 < p < 9,

n ≥ 3, 1 < p < ∞.

However, for our purpose it is impossible to know n in advance. Therefore the
constant p0 in our theorem is determined from the most difficult case n = 1.

The case n = 1, f(z) = χ(z). Let us keep p > 2. Now we have A2 �= 0, ζ =
f(z), z = H(ζ) and

z = H(ζ) =

A(ζ)︷ ︸︸ ︷{
A2

ζ

|ζ| + ε2
ζ
2

|ζ|ζ

}
|ζ|λ2(3)

+

{(
A3

(
ζ

|ζ|

)3

+ ε3A3

(
ζ

ζ

)3
)

|ζ|
ζ

}
|ζ|λ3 + · · · = A(ζ) +R(ζ),

where the exponents

λk =
−p+

√
4k2(p− 1) + (p− 2)2

2

increase with k = 2, 3, · · · . By assumption A2 �= 0. If all the other Ak’s are 0, we
are done. The reason is the symmetry z = A(ζ) = −A(−ζ), which implies that,
upon inversion, a(z) = −a(−z). We have used the notation

z = A(ζ) ⇐⇒ ζ = a(z)

for this special function, which will be used below. Now it is easy to verify that
the corresponding p-harmonic function A (i) has mean value 0 and (ii) maxA =
−minA, taken over a disc B(0, ε), so that maxA+minA = 0. This function appears
in [1]. It follows that (1) holds in this case, even with o(ε2) = 0. Our method is
based on this fact.
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If all the remaining Ak are not 0, there is a smallest k ≥ 3 for which Ak �= 0.
The worst case is A3 �= 0, which we now consider. Let us write the remainder as

R(ζ) = |ζ|λ3

{(
A3

(
ζ

|ζ|

)3

+ ε3A3

(
ζ

ζ

)3
)

|ζ|
ζ

+
∞∑
k=4

(
Ak

(
ζ

|ζ|

)k

+ εkAk

(
ζ

ζ

)k
)

|ζ|
ζ

|ζ|λk−λ3

}
.

The first term in braces is dominating for small values of |ζ|, because the series
converges and the powers λk − λ3 are positive. More precisely,

(1− ε3)|A3| ≤
∣∣∣∣∣
(
A3

(
ζ

|ζ|

)3

+ ε3A3

(
ζ

ζ

)3
)

|ζ|
ζ

∣∣∣∣∣.
For the series Cauchy’s inequality yields the bound

|
∞∑
k=4

· · ·|2 ≤ 16

∞∑
k=4

|Ak|2
∞∑
k=4

|ζ|2(λk−λ3),

and the exponents in the majorant series are positive and � 2k
√
p− 1 as k → ∞.

Recall also (2). Thus the sum converges and its limit is zero as ζ → 0. It follows
that R(ζ) is real analytic and zerofree in a small punctured disc 0 < |ζ| < δ.

2.2. The perturbation of the main term, n = 1. So far, we have the setup{
z = A(ζ) +R(ζ) ⇐⇒ ζ = f(z),

w = A(ξ) ⇐⇒ ξ = a(w).

Let ζ = f(z). Then

z −R(ζ) = A(ζ) ⇐⇒ ζ = a(z −R(ζ)).

It follows that

ζ = f(z) = a(z) + [a(z −R(ζ))− a(z)]ζ=f(z).

We claim that

ζ = f(z) = a(z) + O(|z|
λ3

λ2λ2 ).

Indeed, both a(z) and f(z) have the Hölder exponent 1/λ2. Hence the perturbation
term above is

|a(z−R(ζ))− a(z)| ≤ C2|R(ζ)|
1
λ2 ≤ C2C3|ζ|

λ3
λ2 = C2C3|f(z)|

λ3
λ2 ≤ C2C3C

′
2|z|

λ3
λ2λ2 ,

and the claim follows.
From this we can further conclude that

u(x, y) = A(x, y) +O(r1+
λ3

λ2λ2 )

for r =
√
x2 + y2 small enough. Notice that if

(4)
λ3

λ2λ2
> 1,

then the error term is of the order

O(r2+α)
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for some α > 0. It is inequality (4) that yields our exponent p0 = 9.5 . . . and it
is under this condition that we can prove the mean value formula. Explicitly, the
inequality reads

−p+
√
36(p− 1) + (p− 2)2

2
>

(
−p+

√
16(p− 1) + (p− 2)2

)2
4

and this holds in the range 1 < p < p0 = 9.52 . . . . Upon some manipulations, the
number p0 appears as a root of an algebraic equation of the 6th degree.

3. Verification of the mean value formula

Continuing the case n = 1, we start from

u(x, y) = A(x, y) + e(x, y) where |e(x, y)| ≤ Cr2+α.

For the mean value we have

1

πε2

∫∫
B(0,ε)

u dx dy =
1

πε2

∫∫
B(0,ε)

(u− A) dx dy

=
1

πε2

∫∫
B(0,ε)

e dx dy = O(ε2+α),

since the mean value of A is zero by symmetry. Using the symmetry again, we can
estimate

maxu+minu = max(A+ e) + min(A+ e)

≤ maxA+max e+minA+max e = 2max e ≤ Cε2+α

and from below we obtain in the same way

maxu+min u ≥ −Cε2+α.

In conclusion, the mean value of u and maxu+minu
2 are both of order o(ε2) and

u(0, 0) = 0. Therefore the formula in Theorem 1 is valid.1

This was the case n = 1. In the case n = 2 we already have the result for
1 < p < 9. The same method improves the bound 9 even to a number > p0. Now
the relevant parameters are

λ
(2)
k =

−2p+
√
4k2(p− 1) + 4(p− 2)2

2
, k = 3, 4, · · · .

A pretty similar calculation2 leads to the inequality

λ
(2)
4

λ
(2)
3 λ

(2)
3

> 1

in the place of inequality (4). We omit the details. Finally, the cases n ≥ 3 are
already clear. This concludes the verification of the mean value formula.
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1We assumed that A3 �= 0, but since λk > λ3 when k > 3, inequality (4) certainly holds.
2Now f(z) = χ(z)2, but the square will cancel in the calculations.
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