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(Communicated by Martin Scharlemann)

Abstract. Ozsváth-Stipsicz-Szabó recently defined a one-parameter family
ΥK(t) of concordance invariants associated to the knot Floer complex. We
compare their invariant to the {−1, 0, 1}-valued concordance invariant ε(K),
which is also associated to the knot Floer complex. In particular, we give an
example of a knot K with ΥK(t) ≡ 0 but ε(K) �= 0.

1. Introduction

Beginning with the Z-valued concordance homomorphism τ (K) [OS03], the knot
Floer homology package [OS04,Ras03] has yielded an abundance of concordance in-
variants. One of the benefits of these invariants, as opposed to classical concordance
invariants such as signature, is that they can be non-vanishing on topologically slice
knots. For example, we have the following theorem.

Theorem 1 ([Hom13, Theorem 1]). The subgroup of the smooth concordance group
given by topologically slice knots contains a direct summand isomorphic to Z

∞.

The proof of the above theorem relies on the {−1, 0, 1}-valued concordance in-
variant ε(K) associated to the knot Floer complex [Hom11a, Definition 3.1]. The
quotient of the concordance group by the subgroup {K | ε(K) = 0} is totally
ordered, and properties of the order structure can be used to construct linearly
independent concordance homomorphisms.

Ozsváth-Stipsicz-Szabó [OSS14, Theorem 1.20] recently gave a new proof of The-
orem 1, using a one-parameter family ΥK(t) of R-valued concordance homomor-
phisms also associated to the knot Floer complex. Both ε and Υ are strictly stronger
than τ in that

ε(K) = 0 implies τ (K) = 0 and ΥK(t) ≡ 0 implies τ (K) = 0,

but there exist knots K with τ (K) = 0, while ε(K) �= 0 and ΥK(t) �≡ 0. One such
example is the knot T3,4#− T2,7, where Tp,q denotes the (p, q)-torus knot and −K
denotes the reverse of the mirror image of K.

The knot Floer complex CFK∞(K) is a bifiltered chain complex associated to
the knot K. We call the two filtrations the vertical and horizontal filtrations. The
invariants ε and Υ are both defined using the bifiltration, while the definition of τ
uses only one of the two filtrations. Roughly, ε(K) is a measure of how the vertical
filtration interacts with the horizontal filtration: the so-called vertical homology
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has rank one, and ε measures whether this homology class is a boundary, cycle, or
neither in the horizontal homology. On the other hand, the idea behind ΥK(t) is
to apply a linear transformation to the bifiltration on the knot Floer complex and
then look at the grading of a certain distinguished generator in the homology of
the resulting complex.

More generally, both ε and Υ are invariants of not just knots, but of (suitable)
bifiltered chain complexes. In [OSS14, Proposition 9.4], Ozsváth-Stipsicz-Szabó
give an example of a complex C with ε(C) = 0 but ΥC(t) �≡ 0, although it is
currently unknown if the complex C is realized as CFK∞ of a knot. Conversely,
we prove the following.

Theorem 2. There exist knots K with ΥK(t) ≡ 0 but ε(K) �= 0.

The knots used in the above theorem are connected sums of certain (iterated)
torus knots.

An interesting question to consider is what obstructions to sliceness can be ex-
tracted from CFK∞(K) when ΥK(t) ≡ 0 and ε(K) = 0.

Recall that the concordance genus of K, gc(K), is the minimal Seifert genus of
any knot K ′ which is concordant to K. The function ΥK(t) is a piecewise-linear
function of t whose slope has finitely many discontinuities [OSS14, Proposition 1.4].
Let s denote the maximum of the finitely many slopes appearing in the graph of
ΥK(t). Ozsváth-Stipsicz-Szabó [OSS14, Theorem 1.13] prove that

s ≤ gc(K).

There is also a concordance genus bound γ(K), defined using ε [Hom12].

Corollary 3. There exist knots K for which the concordance genus bound given by
ΥK(t) is zero, but γ(K) �= 0.

2. The example

We will let Tp,q;s,t denote the (s, t)-cable of Tp,q, where s denotes the longitudinal
winding. We assume the reader is familiar with the knot Floer complex; see, for
example, [Hom11a, Section 2] and [OSS14, Section 2].

Lemma 2.1. Let K = T4,5# − T2,3;2,5. Then CFK∞(K) contains a direct sum-
mand generated over F[U,U−1] by x, y, and z with

M(x) = 0, A(x) = 2,

M(y) = −3, A(y) = 0,

M(z) = −4, A(z) = −2,

and differential

∂x = 0, ∂y = U2x+ z, ∂z = 0.

Here, M and A denote the Maslov grading and Alexander filtration, respectively.

Proof. The knot T2,3;2,5 is an L-space knot [Hed09, Theorem 1.10]; see also
[Hom11b]. The Alexander polynomial of T2,3;2,5 is

ΔT2,3;2,5
(t) = ΔT2,3

(t2) ·ΔT2,5

= t4 − t3 + 1− t−3 + t−4.



A NOTE ON THE CONCORDANCE INVARIANTS EPSILON AND UPSILON 899

Then by [OS05] (as restated in [OSS14, Theorem 2.10]), the complex
CFK∞(T2,3;2,5) is generated over F[U,U−1] by a, b, c, d, and e with

M(a) = 0, A(a) = 4,

M(b) = −1, A(b) = 3,

M(c) = −2, A(c) = 0,

M(b) = −7, A(b) = −3,

M(c) = −8, A(c) = −4,

and differential

∂a = ∂c = ∂e = 0, ∂b = Ua+ c, ∂d = U3c+ e.

In the language of [HHN13, Section 2.4], we have that CFK∞(T2,3;2,5) can be
denoted [1, 3], and the summand C specified in the statement of Lemma 2.1 can
be denoted [2]. This notation refers to the lengths of the horizontal and vertical
arrows in a graphical depiction of CFK∞, beginning from the generator of vertical
homology and continuing to the point of symmetry. See Figures 1(a) and 1(b). It
then follows from [HHN13, Lemma 3.1] that we have that CFK∞(T2,3;2,5) ⊗ C is
of the form [1, 3, 2].

The Alexander polynomial of T4,5 is

ΔT4,5
(t) = t6 − t5 + t2 − 1 + t−2 − t−5 + t6.

Since T4,5 admits a lens space surgery, it is an L-space knot. Thus, we may apply
[OSS14, Theorem 2.10] to obtain a description of CFK∞(T4,5), and we see that,
in the notation of [HHN13, Section 2.4], this complex is of the form [1, 3, 2]. See
Figure 1(c).

It follows from [HHN13, Section 2.4] that since CFK∞(T2,3;2,5) ⊗ C has the
same form as CFK∞(T4,5), the complex C is a direct summand of CFK∞(T4,5)⊗
CFK∞(T2,3;2,5)

∗, or, equivalently, CFK∞(T4,5#− T2,3;2,5). �

Lemma 2.2. Let K = T4,5#− T2,3;2,5. Then

ΥK(t) =

{
−2t if 0 ≤ t ≤ 1,
2t− 4 if 1 < t ≤ 2.

Proof. The summand of CFK∞(K) described in Lemma 2.1 generates the ho-
mology of the total complex CFK∞(K). In particular, this summand deter-
mines ΥK(t). Although this summand is not itself CFK∞ of an L-space knot
[HW14, Corollary 9], the calculation in [OSS14, Proof of Theorem 6.2] still applies,
yielding the desired result. �

Lemma 2.3. For the (2, 5)-torus knot, we have

ΥT2,5
(t) =

{
−2t if 0 ≤ t ≤ 1,
2t− 4 if 1 < t ≤ 2.

Proof. The result follows immediately from [OSS14, Theorem 1.15]. �

With these lemmas in place, we are now ready to prove Theorem 2.

Proof of Theorem 2. By [OSS14, Propositions 1.8 and 1.9],

ΥK1#K2
(t) = ΥK1

(t) + ΥK2
(t) and Υ−K(t) = −ΥK(t).
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(a) (b)

(c)

Figure 1. (a), CFK∞(T2,3;2,5). (b), the relevant summand of
CFK∞(T4,5# − T2,3;2,5) from the statement of Lemma 2.1. (c),
CFK∞(T4,5). More precisely, CFK∞ is generated over F[U,U−1]
by the generators depicted.

Combined with Lemmas 2.2 and 2.3, it follows that

ΥT2,5#−T4,5#T2,3;2,5
(t) ≡ 0.

We consider the invariant a1(K) defined in [Hom11a, Section 6]. For complexes
such as the ones in Figure 1, the invariant a1(K) is equal to the length of the
horizontal arrow coming in to the generator of vertical homology. From the partial
description of CFK∞(T4,5#− T2,3;2,5) in Lemma 2.1, it follows that

a1(T4,5#− T2,3;2,5) = 2.

By [Hom11a, Lemma 6.5], we have that

a1(T2,5) = 1.
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Lastly, by [Hom11a, Lemma 6.3], we have that if a1(J) > a1(K), then ε(K#−J) =
1. Thus

ε(T2,5#− T4,5#T2,3;2,5) = 1,

as desired.
Recall from [Hom14, Proposition 3.6] that for n > 0, we have

ε(nK) = ε(K) and ε(−K) = −ε(K).

It follows that any non-zero multiple nK of the knot K = T2,5#−T4,5#T2,3;2,5 will
also have the property that ΥnK(t) ≡ 0 and ε(nK) �= 0. �

Proof of Corollary 3. The invariant γ(K) vanishes if and only if ε(K) = 0. Hence
K = T2,5#−T4,5#T2,3;2,5 (or any non-zero multiple thereof) has the desired prop-
erty. �

Remark 2.4. Let K = T2,5#− T4,5#T2,3;2,5. By computing CFK∞(K) using the
Künneth formula [OS04, Theorem 7.1], one can determine that γ(K) = 4. More
generally, we expect that γ(nK) = 4n, giving knots for which the concordance genus
bound obtained from ΥK(t) is zero, but the bound obtained from γ is arbitrarily
large.
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knot Floer homology, preprint (2014), arXiv:1407.1795.

http://www.ams.org/mathscinet-getitem?mr=2511910
http://www.ams.org/mathscinet-getitem?mr=2511910
http://www.ams.org/mathscinet-getitem?mr=3190122
http://www.ams.org/mathscinet-getitem?mr=3260841
http://www.ams.org/mathscinet-getitem?mr=2764041
http://www.ams.org/mathscinet-getitem?mr=2764041
http://www.ams.org/mathscinet-getitem?mr=3217622
http://www.ams.org/mathscinet-getitem?mr=2026543
http://www.ams.org/mathscinet-getitem?mr=2026543
http://www.ams.org/mathscinet-getitem?mr=2065507
http://www.ams.org/mathscinet-getitem?mr=2065507
http://www.ams.org/mathscinet-getitem?mr=2168576
http://www.ams.org/mathscinet-getitem?mr=2168576


902 JENNIFER HOM

[Ras03] Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann
Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR2704683

Department of Mathematics, Columbia University, 2990 Broadway, New York, New

York 10027

E-mail address: hom@math.columbia.edu

http://www.ams.org/mathscinet-getitem?mr=2704683

	1. Introduction
	2. The example
	Acknowledgements
	References

