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BOUNDED STATIONARY REFLECTION

JAMES CUMMINGS AND CHRIS LAMBIE-HANSON

(Communicated by Mirna Džamonja)

Abstract. We prove that, assuming large cardinals, it is consistent that there
are many singular cardinals μ such that every stationary subset of μ+ reflects
but there are stationary subsets of μ+ that do not reflect at ordinals of arbi-

trarily high cofinality. This answers a question raised by Todd Eisworth.

1. Introduction

In this paper, we prove a consistency result about stationary reflection at succes-
sors of singular cardinals. Recall that, if κ is a regular uncountable cardinal, S is a
stationary subset of κ, and β < κ is an ordinal of uncountable cofinality, then we say
that S reflects at β if S∩β is stationary in β. S reflects if it reflects at some ordinal
β < κ, and Refl(κ) holds if every stationary subset of κ reflects. Our notation is for
the most part standard. [5] will serve as our primary reference for definitions and
notations. If λ < κ are cardinals, with λ regular, then Sκ

λ = {α < κ | cf(α) = λ}.
The class of ordinals is denoted by On.

The extent of stationary reflection is a topic of considerable interest in set theory,
particularly regarding the investigation of the tension existing between incompact-
ness phenomena and canonical inner models on one hand and large cardinals and
reflection principles on the other. Quoting two basic results in this vein, it is an easy
consequence of Π1

1-indescribability that, if κ is weakly compact, then Refl(κ) holds,
while Jensen [6] showed that, if V = L and κ is a regular, uncountable cardinal,
then Refl(κ) holds if and only if κ is weakly compact. Also note that, if κ = λ+

and λ is a regular cardinal, then Refl(κ) cannot hold, since Sκ
λ is a non-reflecting

stationary subset of κ.
We will be concerned with stationary reflection at successors of singular cardi-

nals. The following fundamental result, due to Solovay [9] serves as a template for
many of the proofs in this area.

Proposition 1.1. Suppose 〈κi | i < ω〉 is an increasing sequence of supercompact
cardinals, and let κω = sup({κi | i < ω}). Then Refl(κ+

ω ) holds.

Proof. Let S ⊂ κ+
ω be stationary. By shrinking S if necessary, we may assume that

there is λ < κω such that S ⊆ S
κ+
ω

λ . Let i∗ < ω be such that λ < κi∗ , and let
j : V → M be an elementary embedding witnessing that κi∗ is κ+

ω supercompact.
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In M , j(S) is a stationary subset of S
j(κ+

ω )
λ . Let η = sup(j“κ+

ω ). η < j(κ+
ω ), and

we claim that, in M , j(S) ∩ η is stationary in η.
Suppose this is not the case, and let C ∈ M be a club in η such that C∩j(S) = ∅.

Since j“κ+
ω is a < κi∗-closed, unbounded subset of η, C ∩ j“κ+

ω is a < κi∗-closed,
unbounded subset of η that is disjoint from j(S). Let D = j−1“(C ∩ j“κ+

ω ). D
is a < κi∗ -closed, unbounded subset of κ+

ω that is disjoint from S. But this is a

contradiction, since S is a stationary subset of S
κ+
ω

λ and λ < κi∗ .
Thus, M |= “j(S) reflects at η”, so, by elementarity, there is β < κ+

ω such that
V |= “S reflects at β”. �

Magidor, in [7], brings this result down to smaller cardinals by showing that,
assuming the existence of ω-many supercompact cardinals, it is consistent that
Refl(ℵω+1) holds. In [8], Shelah produces, starting from a proper class of super-
compact cardinals, a model in which, among other things, Refl(μ+) holds for every
singular cardinal μ. In fact, he shows that, under more stringent large cardinal
assumptions, such a model can contain a cardinal κ which is κ+n-supercompact
for every n < ω. On the other hand, he proves in the same paper that if there is
a cardinal κ that is κ+ω+1-supercompact, then there is a singular cardinal μ such
that Refl(μ+) fails. In [1], Chayut presents a simpler argument that one can force
stationary reflection at the successor of every singular cardinal.

In this paper, we investigate questions about the cofinality of ordinals at which
stationary sets reflect. These questions are of interest in, for example, the study
of square bracket partition relations, where Eisworth has shown [4] that, if μ is
a singular cardinal and μ+ → [μ+]2μ+ , then, for every stationary set S ⊆ μ+ and

every regular λ < μ, there is β ∈ Sμ+

>λ such that S reflects at β. Eisworth [2] raised

the natural question as to whether this is always the case, assuming Refl(μ+) holds.
With this in mind, we make the following definition.

Definition. Let μ be a singular cardinal. Bounded stationary reflection holds at
μ+ if Refl(μ+) holds but there is a stationary S ⊆ μ+ and a λ < μ such that S

does not reflect at any ordinal in Sμ+

≥λ.

An easy argument shows that bounded stationary reflection cannot hold at ℵω+1.

Proposition 1.2. Suppose Refl(ℵω+1) holds. Then, for every n < ω, every sta-
tionary subset of ℵω+1 reflects to an ordinal β such that cf(β) ≥ ℵn.

Proof. For a stationary T ⊆ ℵω+1, let T ′ = {β < ℵω+1 | T reflects at β}. It is
immediate that, for every stationary T ⊆ ℵω+1, T

′ is stationary. For, if not, let C
be club in ℵω+1 such that C ∩ T ′ = ∅. Then C ∩ T is a stationary subset of ℵω+1

that does not reflect, contradicting our hypotheses.
Now let S ⊆ ℵω+1 be stationary and let n < ω. We will show that S reflects at an

ordinal of cofinality at least ℵn. Define sequences 〈Sk | k < ω〉 and 〈ik | k < ω〉 as
follows. Find i0 < ω such that S ∩ cof(ℵi0) is stationary, and let S0 = S ∩ cof(ℵi0).
Given Sk and ik, find ik+1 < ω such that S′

k ∩ cof(ℵik+1
) is stationary, and let

Sk+1 = S′
k∩cof(ℵik+1

). Each Sk is a stationary subset of ℵω+1∩cof(ℵik) and, since
such a set can only reflect at ordinals of cofinality greater than ℵik , it follows that
〈ik | k < ω〉 is a strictly increasing sequence.

Claim 1.3. For every k < ω and β < ℵω+1, if Sk reflects at β, then S reflects at β.



BOUNDED STATIONARY REFLECTION 863

Proof. We proceed by induction on k. k = 0 is trivial, since S0 ⊆ S. Now suppose
we have proven the claim for k and that Sk+1 reflects at β. Let C be club in β, and
let α ∈ C ′ ∩ Sk+1. Then Sk reflects at α, so, since C ∩ α is club in α, C ∩ Sk �= ∅.
Thus, Sk reflects at β and, by induction, S does as well. �

Now find i < ω such that ik ≥ n. Then Sk reflects at an ordinal β and, by our
choice of k, cf(β) ≥ ℵn. By the claim, S also reflects at β, and we are done. �

In this paper, we show that the situation is different at larger cardinals. Start-
ing from sufficiently many supercompact cardinals, we produce a model in which
bounded stationary reflection holds at many singular cardinals.

2. Preliminaries on approachability and forcing

We recall some definitions related to approachability and the ideal I[λ]. These
notions were introduced by Shelah.

Definition. Let μ be a singular cardinal, and let λ = μ+.

(1) Let �a = 〈aα | α < λ〉 be a sequence of bounded subsets of λ. A limit ordinal
β < λ is approachable with respect to �a if there is an unbounded A ⊆ β
of order type cf(β) such that, for every γ < β, there is α < β such that
A ∩ γ = aα.

(2) Let S ⊆ λ. S ∈ I[λ] if there is a sequence �a = 〈aα | α < λ〉 of bounded
subsets of λ and a club C ⊆ λ such that every β ∈ C ∩ S is approachable
with respect to �a.

(3) We say that the approachability property holds at μ (written APμ) if λ ∈
I[λ].

I[λ] turns out to be a normal ideal on λ, and so APμ is the same as the statement
that I[λ] is an improper ideal. Also, if κ < μ is a regular cardinal, then I[λ]

always contains a stationary subset of Sλ
κ . If λ<λ = λ then, letting �a and �b be

two enumerations of the bounded subsets of λ in order type λ, the set {β | {aα |
α < β} = {bα | α < β}} is easily seen to be a club in λ. Thus, the set of
ordinals approachable with respect to �a is equal, modulo clubs, to the set of ordinals

approachable with respect to �b. In this case, if we fix an enumeration �a of the
bounded subsets of λ in order type λ, then the set S of ordinals approachable with
respect to �a is a maximal set in I[λ] in the sense that if T ⊆ λ, then T ∈ I[λ] if
and only if T \ S is non-stationary. If such a maximal set exists, it is referred to
as the set of approachable points of λ. See [3] for proofs of these facts and other
information on I[λ].

For our forcing constructions, we will need the following definitions.

Definition. Let P be a partial order, and let X ⊆ P. A lower bound for X is a
condition q ∈ P such that, for all p ∈ X, q ≤ p. If there is a unique condition r ∈ P

such that r is a lower bound for X and, if q is a lower bound for X, then q ≤ r, then
this condition r is denoted by inf(X). If there is no such condition, then inf(X) is
undefined.

Definition. Let P be a partial order and let β be an ordinal.

(1) The two-player game Gβ(P) is defined as follows: Players I and II alter-
nately play entries in 〈pα | α < β〉, a decreasing sequence of conditions in
P with p0 = 1P. Player I plays at odd stages, and Player II plays at even
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stages (including all limit stages). If there is an even stage α < β at which
Player II cannot play, then Player I wins. Otherwise, Player II wins.

(2) G∗
β(P) is defined just as Gβ(P) except Player II no longer plays at limit

stages. Instead, if α < β is a limit ordinal, then pα = inf({pγ | γ < α}) if
such a condition exists. If, for some limit α < β, such a condition does not
exist, then Player I wins. Otherwise, Player II wins.

(3) P is said to be β-strategically closed if Player II has a winning strategy for
the game Gβ(P). P is said to be strongly β-strategically closed if Player II
has a winning strategy for the game G∗

β(P). The notions of < β-strategically
closed and strongly < β-strategically closed are defined in the obvious way.

The following facts will be crucial for us.

Fact 2.1. Let P be a partial order and let κ be a cardinal. If P is (κ+1)-strategically
closed, then forcing with P does not add any new κ-sequences of ordinals.

Fact 2.2 ([7]). Let κ be a regular cardinal, and let κ < λ < μ. Suppose that,
in V Coll(κ,<λ), P is a separative, strongly κ-strategically closed partial order and
|P| < μ. Let i be the natural complete embedding of Coll(κ,< λ) into Coll(κ,< μ)
(namely, the identity embedding). Then i can be extended to a complete embed-
ding j of Coll(κ,< λ) ∗ P into Coll(κ,< μ) so that the quotient forcing Coll(κ,<
μ)/j[Coll(κ,< λ) ∗ P] is κ-closed.

Fact 2.3. Let κ be a regular cardinal and let 〈Pi, Q̇j | j < α, i ≤ α〉 be a forcing
iteration in which inverse limits are taken at all limit stages of cofinality < κ and
such that, for all i < α, �Pi

“Q̇i is (strongly) κ-strategically closed”. Then Pα is
(strongly) κ-strategically closed.

We now define a forcing notion to shoot a club through the set of approachable
points of the successor of a singular cardinal. This forcing poset is a key component
of Chayut’s proof of the consistency of stationary reflection in [1], and we will use
it in a similar way here. Suppose μ is singular, λ = μ+, and λ<λ = λ. Let �a be
an enumeration of the bounded subsets of λ in order type λ, and let S be the set
of ordinals that are approachable with respect to �a. Define Q�a to the be the poset
consisting of closed, bounded subsets of S, where, if p, q ∈ Q�a, then p ≤ q if and
only if p is an end-extension of q.

Lemma 2.4. Q�a is strongly < λ-strategically closed.

Proof. Let β < λ. We describe a winning strategy for Player II in G∗
β(Q�a). Fix a

large, regular cardinal θ. In the course of the game, as the plays 〈qα | α < β〉 are
made, we will be defining a continuous, internally-approachable chain 〈Mα | α < β〉
of elementary submodels of H(θ) subject to the following conditions:

• Q�a ∈ M0, β ⊂ M0, and, for every limit α < β, there is a club Cα ⊆ α of
order type cf(α) such that Cα ∈ M0.

• For all α < β, |Mα| < λ and Mα ∩ λ ∈ λ.
• For all α < β, 〈qγ | γ ≤ α〉 ∈ Mα+1.

If α is an even successor ordinal and 〈qγ | γ < α〉 has been played, then Player II
plays a qα such that

• qα ∈ Mα.
• qα ≤ qα−1.
• max(qα) > Mα−1 ∩ λ.
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This is possible, since S is stationary in λ and Mα contains all relevant information
needed to find such a qα.

Now suppose that α < β is a limit ordinal and that 〈qγ | γ < α〉 has been
played. We show that

⋃
γ<α qγ ∪ {(Mα ∩ λ)} is a valid condition, thus completing

the proof. It suffices to show that Mα ∩ λ is approachable with respect to �a. To
this end, consider D = {Mγ ∩ λ | γ ∈ Cα}. D is a club in Mα ∩ λ of order type
cf(α) = cf(Mα ∩ λ). Also, every initial segment of D is in Mα, since every initial
segment can be calculated from Cα and a sufficient initial segment of 〈Mγ | γ < α〉,
which are in Mα. But Mα |= “�a is an enumeration of the bounded subsets of λ”,
so, for every η < Mα ∩ λ, there is ξ < Mα ∩ λ such that D ∩ η = aξ. Thus, D
witnesses that Mα ∩ λ is approachable with respect to �a. �

We now introduce a forcing notion to add a particular type of stationary set to
the successor of a singular cardinal. Let μ > ℵω be a singular cardinal, let λ = μ+,
and let κ < μ be a regular uncountable cardinal. Sλ,κ is a forcing poset whose
conditions are of the form p = (sp, γp), where sp is a bounded subset of Sλ

ω such
that, for all β ∈ Sλ

≥κ, s
p ∩ β is not stationary in β and γp < λ is such that sp ⊆ γp.

If p, q ∈ Sλ,κ, then p ≤ q if and only if γp ≥ γq and sp ∩ γq = sq. It is immediate
that forcing with Sλ,κ adds a stationary subset of Sλ

ω that does not reflect at any
β ∈ Sλ

≥κ and that Sλ,κ is κ-closed. We will be interested mostly in forcings of the
form Sλ,ℵω+1

, which we will denote simply as Sλ.

Lemma 2.5. Sλ,κ is < λ-strategically closed.

Proof. Let β < λ. We describe a winning strategy for Player II in Gβ(Sλ,κ). In
the course of the game, as the conditions 〈pα | α < β〉 are being played, we define
closed, bounded subsets 〈Cα | α < β is even〉 of λ, ensuring that

• For all even α < α′ < β, Cα′ end-extends Cα.
• For all even α < β and all γ ≤ α, Cα ∩ spγ = ∅.
• For all even α < β, γpα = max(Cα) + 1.

Suppose that α < β is an even successor ordinal and 〈pγ | γ < α〉 has been played.
Player II finds ηα > γpα−1 , lets Cα = Cα−2 ∪ {ηα}, and plays pα = (spα−1 , ηα + 1).
If α < β is a limit ordinal, let ηα = sup({max(Cγ) | γ < α}). Player II lets

Cα =
⋃

γ<α Cγ ∪ {ηα} and plays pα =
(⋃

γ<α spγ , ηα + 1
)
. pα ∈ Sλ,κ, since⋃

γ<α Cγ witnesses that sα ∩ ηα is not stationary in ηα. �
Remark. Note that the proof of Lemma 2.5 does not yield the stronger conclusion
that Sλ,κ is strongly < λ-strategically closed. The reason is that, at limit stages α,
it was necessary to take γpα to be ηα +1 instead of ηα, which would have been the
value were we obliged to take a greatest lower bound of the conditions played thus
far. It is important for the proof that ηα be excluded from the generic stationary
set. The fact that Sλ,κ is not strongly < λ-strategically closed is one of the major
obstacles that will need to be overcome in the proof of the main theorem. We do,
however, get a certain amount of strong strategic closure.

Lemma 2.6. Sλ,κ is strongly < κ-strategically closed.

Proof. Since Sλ,κ is κ-closed, it suffices to show that, if β < κ and 〈pα | α < β〉 is a
decreasing sequence of conditions from Sλ,κ, then 〈pα | α < β〉 has a greatest lower
bound. Define q = (sq, γq) by letting sq =

⋃
α<β s

pα and γq = sup({γpα | α < β}).
Then q is easily seen to be the greatest lower bound of 〈pα | α < β〉. �
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We recall one more important fact, due to Shelah, before we state our theorem.

Fact 2.7. Let μ and κ be cardinals. Suppose that APκ holds, S is a stationary

subset of Sκ+

<μ, and P is a μ-closed forcing poset. Then S remains stationary in V P.

3. The main theorem

Theorem 3.1. Suppose there is a proper class of supercompact cardinals and GCH
holds. Then there is a forcing extension in which, for every singular cardinal μ > ℵω

that is not a cardinal fixed point, every stationary subset of μ+ reflects, but there is

a stationary S ⊆ Sμ+

ω such that S does not reflect at any ordinal β ∈ Sμ+

≥ℵω+1
.

Proof. Let 〈κi | i ∈ On〉 be an increasing, continuous sequence of cardinals such
that:

• κ0 = ω.
• If κi is singular, then κi+1 = κ+

i .
• If κi is regular, then κi+1 is supercompact.

We may assume without loss of generality that, if i is a limit ordinal, then κi is
singular, for, if this is not the case, then we may work not in V but in Vκi∗ , where
i∗ is the least limit ordinal i for which κi is regular.

We now define a class forcing 〈Pi | i ∈ On〉 such that:

• If i is a limit ordinal, then Pi is the inverse (i.e. full support) limit of
〈Pj | j < i〉.

• If i is a successor ordinal, then Pi+1 = Pi ∗ Coll(κi, < κi+1).

• If i > ω is a limit ordinal and i < κi, then let �̇a be a Pi-name for an
enumeration of the bounded subsets of κi+1 in order type κi+1 and let

Pi+1 = Pi ∗ Q̇�̇a ∗ Ṡκi+1
. For technical reasons, we assume that, for every

j < i, there is a set Ai
j ⊆ κi+1 in the ground model such that it is forced

to be the case that all bounded subsets of κi+1 in V Pj are enumerated in �̇a
by indices in the set Ai

j in a way that is defined in V Pj .
• If i is a limit ordinal and i = κi, then Pi+1 = Pi ∗ {�}, where {�} is trivial
forcing.

For ordinals i < k, let Ṗi,k be such that Pk = Pi ∗ Ṗi,k. We think of conditions in Pi

as being functions p with domain i. If � < i is a limit ordinal, P
,
+1 is of the form

Q̇�̇a ∗ Ṡκ�+1
, and p ∈ Pi, then p(�) is thought of as a pair (p(�)0, p(�)1) in the natural

way. Note that, by Lemmas 2.4 and 2.5 and Fact 2.3, for all ordinals i < k, in V Pi we
have that Ṗi,k is < κi-strategically closed and hence does not add any new sequences

of ordinals of length less than κi. Thus, for i < k, (H(κi))
V Pk = (H(κi))

V Pi
, so

V P =
⋃

i∈On V
Pi is a model of ZFC.

We now show, by induction on ordinals i, that all of the κi’s remain cardinals
in V P. It is clear that there can be no other cardinals in V P and so, when we

have shown this, it will follow that κi = (ℵi)
V P

. κ0 = ω, so there is nothing to
worry about here. We first consider cardinals κi+1, where i is a successor ordinal
or 0. In this case, since |Pi| < κi+1, κi+1 remains supercompact in V Pi . Since
Pi+1 = Pi ∗Coll(κi, < κi+1), κi+1 = (κ+

i )
Pi+1 . Finally, since for all k > i+1, Pi+1,k

is < κi+1-strategically closed, κi+1 remains a cardinal in V Pk for all k and hence in
V P.
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If i is a limit ordinal, then, by the previous paragraph, κi is, in V P, the limit of
cardinals and hence a cardinal. Finally, consider κi+1, where i is a limit ordinal.
Since, for all k > i+1, Pi+1,k is < κi+1-strategically closed, it suffices to show that
κi+1 remains a cardinal in V Pi+1 . Suppose this is not the case. Then there is i0 < i

such that (cf(κi+1))
V Pi+1

= κi0 . Since Pi0+1,i+1 is κi0 + 1-strategically closed, it

must be the case that (cf(κi+1))
V

Pi0+1
= κi0 . But |Pi0+1| < κi, so κi+1 remains

a regular cardinal in V Pi0+1 . This is a contradiction, so in fact κi+1 remains a
cardinal in V Pi+1 .

It remains to show that, in V P, for every limit ordinal i > ω that is not a
cardinal fixed point, every stationary subset of κi+1 reflects but there is a stationary
Si ⊆ S

κi+1
ω that does not reflect at any ordinal in S

κi+1

≥ℵω+1
. We prove the latter

statement first, since it is almost immediate. Let i > ω be such an ordinal, and let
Si be the stationary set added by Sκi+1

. By the definition of Sκi+1
, in V Pi+1 , Si

is a stationary subset of S
κi+1
ω that does not reflect at any ordinal in S

κi+1

≥ℵω+1
. The

fact that Si does not reflect at any such ordinal is clearly preserved in any further
forcing extension. Also, since APκi

holds in V Pi+1 and, for all j > i + 1, Pi+1,j is
countably closed, Si remains stationary in every V Pj and hence in V P. Thus, Si is
as desired.

The following lemma, which will be useful in proving that all stationary subsets
of κi+1 reflect, comes from [1]. We thank Menachem Magidor and Yair Chayut for
communicating it to us.

Lemma 3.2. Let i ∈ On, and let Xi be the set of limit ordinals k < i such that

ω < k < κk. Then the set Di of p ∈ Pi such that there is a function g ∈
∏
k∈Xi

κk+1

such that g ∈ V and, for all k ∈ Xi, p � k �Pk
“max(p(k)0) < g(k)” and p �

k�p(k)0 �Pk∗Q�a
“γp(k)1 < g(k)” is dense in Pi.

Proof. We actually prove the following stronger statement: Let i0 < i be ordinals,
let Xi0,i be the set of limit ordinals k ∈ [i0, i) such that ω < k < κk, and work in

V Pi0 . Let Di0,i be the set of p ∈ Pi0,i such that there is a function g ∈
∏

k∈Xi0,i

κk+1

such that g ∈ V Pi0 and, for all k ∈ Xi0,i, p � [i0, k) �Pi0,k
“max(p(k)0) < g(k)” and

p � [i0, k)�p(k)0 �Pi0,k∗Q�a
“γp(k)1 < g(k)”. Then Di0,i is dense in Pi0,i.

We proceed by induction on i. Thus, fix ordinals i0 < i. First, suppose i =
k + 1. If k is a successor ordinal or k is limit and k = κk, then the conclusion is
trivial, since k �∈ Xi0,i in this case. Thus, assume k is a limit ordinal and k < κk.
Work in V Pi0 and let p ∈ Pi0,i. Find p′ ≤ p � [i0, k)

�p(k)0 and η < κi+1 such

that p′ �Pi0,k∗Q�a
“γp(k)1 < η”. Find p′′ ≤ p′ � [i0, k) and ξ < κi+1 such that

p′′ �Pi0,k
“max(p′(k)0) < ξ”. Finally, by the inductive hypothesis, find p∗ ≤ p′′

such that p∗ ∈ Di0,k as witnessed by h ∈
∏


∈Xi0,k

κ
+1. Form p̄ ∈ Pi0,i by letting

p̄ = p∗�p′(k)0
�p(k)1, and define g ∈

∏

∈Xi

κ
+1 by letting g(�) = h(�) for � < k and

g(k) = max({η, ξ}). Now p̄ ≤ p, and p̄ ∈ Di0,i, as witnessed by g.
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Now suppose i is a limit ordinal, work in V Pi0 , and let p ∈ Pi0,i. Recall that κi

is singular and that cf(κi) = cf(i). Let 〈�α | α < cf(i)〉 be increasing and cofinal in
i, with �0 ≥ i0 a successor ordinal and κ
0 > cf(i). Move to V P�0 , assuming that
p � [i0, �0) is in the generic subset of Pi0,
0 . Note that P
0,i is cf(i) + 1-strategically
closed. We will play the first cf(i)-many moves of the game Gcf(i)+1(P
0,i) to
produce 〈pα | α < cf(i)〉. Player II will play her winning strategy, and Player
I will play p � [�0, i) on her first move and, on her αth move, will play q such

that q � [�0, �α) ∈ D
0,
α as witnessed by hα ∈
∏

k∈X�0,�α

κk+1. 〈pα | α < cf(i)〉

has a lower bound p∗ and, moreover, we may assume that, for each k ∈ X
0,i,
p∗ � [�0, k) �P�0,k

“p∗(k)0 is the greatest lower bound of 〈pα(k)0 | α < cf(i)〉” and

p∗ � [�0, k)
�p∗(k)0 �P�0,k∗Q�a

“p∗(k)1 is the greatest lower bound of 〈pα(k)1 | α <

cf(i)〉”. Thus, defining h∗ ∈
∏

k∈X�0,i

κk+1 by h∗(k) = sup({hα(k) | α < cf(i)}), we

can assure that p∗ ∈ D
0,i as witnessed by h∗.

Now move back to V Pi0 , let ṗ∗ be a Pi0,
0-name for p∗, and let ḣ∗ be a Pi0,
0-name

for h∗. Since Pi0,
0 satisfies the κ
+

0
-c.c., we can find h ∈ V Pi0 such that �Pi0,�0

“ḣ∗ <

h”. Thus, there is q ≤ p � [i0, �0) such that q �Pi0,�0
“ṗ∗ ∈ D
0,i as witnessed by h”.

Find q′ ≤ q and h′ ∈
∏

k∈Xi0,�0

κk+1 such that q′ ∈ D
0 as witnessed by h′. Finally,

let p̄ ∈ Pi0,i be such that p̄ � [i0, �0) = q′ and q′ �Pi0,�0
“p̄ � [�0, i) = ṗ∗”, and let

g = h′�h. Then p̄ ≤ p and p̄ ∈ Di0,i, as witnessed by g. �

Fix a limit ordinal i > ω such that i is not a cardinal fixed point in V P. We
will show that every stationary subset of κi+1 reflects. Since every subset of κi+1

in V P appears in V Pi+2 , it suffices to prove stationary reflection in V Pi+2 . Let G be
Pi+2-generic over V . For i0 < i+ 2, let Gi0 be the Pi0-generic filter induced by G.
Let T ⊆ κi+1 be stationary in V [G]. Without loss of generality, there is a successor
ordinal k < i such that T ⊆ S

κi+1
κk . We will show that T reflects. The proof breaks

into two cases.

Case 1 (k < ω). Let k∗ < ω be such that k < k∗, and let i∗ = k∗+1. In V [Gk∗ ], κi∗

is supercompact. Let j : V [Gk∗ ] → M [Gk∗ ] witness that κi∗ is κi+2-supercompact.
j(Pk∗,i∗) = Coll(κk∗ , < j(κi∗)) and Pi∗,i+2 is strongly κk∗-strategically closed, so,
by Fact 2.2, j(Pk∗,i∗) ∼= Pk∗,i+2 ∗ R, where R is κk∗-closed. Thus, letting H be
R-generic over V [G], we can extend j to j : V [Gi∗ ] → M [G ∗H].

We would like to extend j further to have domain V [G]. Let Gi∗ be the Pi∗,i+2-
generic filter over V [Gi∗ ] induced by G. We recursively build a condition p∗ ∈
j(Pi∗,i+2) such that p∗ ≤ j(p) for all p ∈ Gi∗ . Conditions in Pi∗,i+2 can be seen
as functions with domain [i∗, i + 2), so conditions in j(Pi∗,i+2) can be thought
of as functions with domain [i∗, j(i + 2)). We recursively define p∗(α) for α ∈
[i∗, j(i + 2)). Suppose α is a successor ordinal and we have defined p∗ � [i∗, α)
such that p∗ � [i∗, α) ≤ j(p) � [i∗, α) for all p ∈ G. The forcing at coordinate α
in j(Pi∗,i+2) is a Levy collapse that is j(κi∗)-directed closed, and, in M [G ∗ H],

|Gi∗ | = κk∗ , so there is q̇ such that p∗ � [i∗, α) � “q̇ ≤ j(p)(α)” for every p ∈ Gi∗ .
Let p∗ � α+ 1 = p∗ � α�q̇.
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Now suppose α is a limit ordinal. We would like to thank Menachem Magidor
and Yair Chayut for conveying the following argument. By Lemma 3.2, �j(Pi∗ )

“ sup({j(p)(α)0 | p ∈ Gi∗}) = sup({j(g)(α) | g ∈
∏

≤i

κ
+1 ∩ V })”. Let this common

supremum be denoted by γ, and note that cfV (γ) ≤ κi+1. We would like to let

p∗(α)0 be forced by p∗ � α to be equal to
⋃

p∈Gi∗

j(p)(α)0 ∪ {γ}. Let A = 〈�a
 | � ∈

Xi∗,i+2〉 be a sequence of names such that, for every � ∈ Xi∗,i+2, �P�
“�a
 is the

enumeration of bounded subsets of κ
+1 to be used in the forcing to shoot a club
through the set of approachable points of κ
+1.” We must show that γ is forced to
be approachable with respect to j(A)(α).

Let Iα be j(Pi∗,i+2)i∗,α-generic over V [G ∗H] with p∗ � α ∈ Iα. Note that the
following facts hold.

(1) Since Pk∗ satisfies the κ+
k∗-c.c., if g ∈

∏

≤i

κ
+1 ∩ V [Gk∗ ], then there is h ∈
∏

≤i

κ
+1 ∩ V such that, for all i∗ ≤ � ≤ i, g(�) < h(�).

(2) V [G ∗H ∗ Iα] is an extension of V [Gk∗ ] by κk∗-distributive forcing.
(3) M [G∗H] is an extension ofM [Gk∗ ] by Coll(κk∗ , < j(κi∗). Thus, any ordinal

in the interval [κk∗ , κi+2] which is a regular cardinal in V is an ordinal of
cardinality and cofinality κk∗ in M [G ∗H]. Since Iα is generic for forcing
that is j(κi∗)-distributive in M [G ∗H], this remains true in M [G ∗H ∗ Iα].

We can therefore, in V [G ∗H ∗ Iα], find a sequence 〈gδ | δ < κk∗〉 of elements of∏

≤i

κ
+1 ∩ V such that:

• For all η < δ < κk∗ and i∗ < � ≤ i, gη(�) < gδ(�).

• For every g ∈
∏

≤i

κ
+1, there is δ < κk∗ such that, for every i∗ < � ≤ i,

g(�) < gδ(�).

Notice that, due to the fact (2) listed above, 〈gδ | δ < η〉 ∈ V [Gk∗ ] for every
η < κk∗ . Also, because of our technical assumption on the names �a
 stated at the
beginning of this proof, for every η < κk∗ and every � ∈ Xi∗,i+2, the index at which
{gδ(�) | δ < η} is enumerated in �a
 can be computed in V [Gk∗ ]. Thus, from fact (1)

listed above, there is hη ∈
∏


∈Xi∗,i+2

κ
+1 ∩ V such that, for every � ∈ Xi∗,i+2, the

set {gδ(�) | δ < η} is enumerated in �a
 with an index smaller than hη(�). It follows
that the set {j(gδ)(α) | δ < η} is enumerated in j(A)(α) with an index smaller than
j(hη)(α) < γ.

By the closure properties of M , 〈j(gδ)(α) | δ < κk∗〉 ∈ M [G ∗ H] and, by
the previous paragraph, this sequence is easily seen to witness the approachability
of γ with respect to j(A)(α), so our definition of p∗(α)0 is valid. Finally, we
define p∗(α)1 by noting that the second component of coordinate α in j(Pi∗,i+2) is
j(κω+1) > κi+2-directed closed, so we can define p∗(α)1 to be a name for a lower
bound for {j(p)(α)1 | p ∈ Gi∗}.
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We now have successfully completed the construction of p∗. Let I be j(Pi∗,i+2)-
generic over V [G ∗H] such that p∗ ∈ I, and extend j to j : V [G] → M [G ∗H ∗ I].

Now suppose, for sake of contradiction, that T does not reflect in V [G]. Then,

in M [G ∗ H ∗ I], j(T ) is a stationary subset of S
j(κi+1)
κk that does not reflect. In

particular, letting η = sup(j“κi+1), j(T ) does not reflect at η. Let D be a club
in η disjoint from j(T ). Since j“κi+1 is < κi∗-closed and unbounded in η, D ∩
j“κi+1 is < κi∗-closed and unbounded in η and is disjoint from j(T ). Thus, E =
j−1“(D∩j“κi+1) is a < κi∗-closed, unbounded subset of κi+1 that is disjoint from T .
E ∈ V [G∗H ∗I]. However, as I is generic for j(κi∗)-strategically closed forcing and
j(κi∗) > κi+1, it must be the case that E ∈ V [G ∗ H]. Thus, since κk < κi∗ and
T ⊆ S

κi+1
κk , E witnesses that T is not stationary in V [G ∗H]. However, since T is

stationary in V [G], APκi+1
holds in V [G], and H is generic for κk∗-closed forcing,

Fact 2.7 implies that T remains stationary in V [G ∗H]. This is a contradiction, so
T does reflect in V [G].

Case 2 (k > ω). Let k∗ be a successor ordinal such that k < k∗ < i and i < κk∗

(note that we can do this because i < κi), and let i∗ = k∗ + 1. Let X be the set
of limit ordinals � ∈ (i∗, i] such that � < κ
. In V [G], for � ∈ X, let S
 be the
stationary subset of S

κ�+1
ω added by Sκ�+1

. We would like to repeat the argument
for Case 1, but now Pi∗,i+2 is no longer strongly κk∗-strategically closed, and the
stationary sets S
 present a concrete obstacle to lifting the relevant elementary
embedding. Thus, we force to destroy the stationarity of the sets S
 for � ∈ X.
To this end, let T be the forcing poset whose conditions are functions t such that
dom(t) = X and, for all � ∈ X, t(�) is a closed, bounded subset of κ
+1 such that
t(�)∩S
 = ∅. If s, t ∈ T, then s ≤ t if and only if, for every � ∈ X, s(�) end-extends
t(�). Let K be T-generic over V [G]. The main reason for introducing T is that
it allows us to construct long decreasing sequences of conditions from Pi∗,i+2 that
have lower bounds. This is made more precise in the following claim.

Claim 3.3. In V [Gi∗ ], there is a dense subset of Pi∗,i+2 ∗ T that is strongly κk∗-
strategically closed.

Proof. Let U be the set of (p, ṫ) ∈ Pi∗,i+2 ∗ T such that there is g ∈
∏

∈X

κ
+1

such that, for all � ∈ X, p � ��p(�)0 �Pi∗,�∗Q�a
“γp(
)1 = g(�) + 1” and p �Pi∗,i+2

“max(ṫ(�)) = g(�)”.
We first show that U is dense in Pi∗,i+2 ∗ T. Given (p0, ṫ0) ∈ Pi∗,i+2 ∗ T, find

p1 ≤ p0 such that there is h0 ∈
∏

≤i

κ
+1 such that, for every � ∈ X, p1 �Pi∗,i+2

“max(ṫ0(�)) < h0(�)”. Then, find p2 ≤ p1 such that, as in Lemma 3.2, p2 ∈ Di∗,i+2,

as witnessed by h1 ∈
∏

≤i

κ
+1, where h1 > h0. Now let (p, ṫ) ≤ (p2, ṫ0) be such that,

for all � ∈ X, p � ��p(�)0 �Pi∗,�∗Q�a
“γp(
)1 = h1(�)+1” and p �Pi∗,i+2

“max(ṫ(�)) =

h(�)”. Then (p, ṫ) ∈ U and (p, ṫ) ≤ (p0, ṫ0), so U is dense in Pi∗,i+1 ∗ T.
We now show that U is strongly κk∗-strategically closed. We thus describe a

winning strategy for Player II in the game G∗
κk∗ (U). Suppose that β < κk∗ is an

even successor ordinal and 〈(pα, ṫα) | α < β〉 has been played. All of the forcing
iterands in Pi∗,i+2 are already known to be strongly κk∗-strategically closed except
for those of the form Sκ�+1

so, on all of the other coordinates, Player II plays at
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stage β according to her winning strategy. To finish, at all � ∈ X, she simply lets
pβ(�)1 = pβ−1(�)1 and lets ṫβ = ṫβ−1. This is easily seen to describe a condition in
U extending (pβ−1, ṫβ−1). If β < κk∗ is a limit ordinal and 〈(pα, ṫα) | α < β〉 has
been played, we need to exhibit a greatest lower bound, (pβ, ṫβ), for this sequence
of conditions. We define pβ(�) recursively for � ∈ [i∗, i + 2). Let pβ(�) (or pβ(�)0,
if � ∈ X) be such that pβ � � forces that pβ(�) is the greatest lower bound of
〈pα(�) | α < β〉. Such a greatest lower bound exists because Player II has been
playing according to her winning strategy on coordinate �. For � ∈ X, we have
two cases for pβ(�)1. If 〈γpα(
)1 | α < β〉 is eventually equal to some ordinal η + 1,

then let pβ(�)1 be forced by pβ � ��pβ(�)0 to be equal to (
⋃

α<β s
pα(
)1 , η + 1). If

〈γpα(
)1 | α < β〉 is not eventually constant, let η = sup({γpα(
)1 | α < β}) and
again let pβ(�)1 be forced by pβ � ��pβ(�)0 to be equal to (

⋃
α<β s

pα(
)1 , η+1). The

key point here is that, for each � ∈ X, we have ensured that {max(ṫβ(�)) | α < β}
is a club in η and witnesses that

⋃
α<β s

pα(
)1 is not stationary in η. Finally,

let ṫβ be such that, for all � ∈ X, letting η be as in the definition of pβ(�)1,

pβ �Pi∗,i+2
“ṫβ(�) =

⋃
α<β

ṫα(�) ∪ {η}”. It is easily seen that (pβ, ṫβ) ∈ U and is a

greatest lower bound of 〈(pα, ṫα) | α < β〉. �

As in Case 1, κi∗ is still supercompact in V [Gk∗ ], so let j : V [Gk∗ ] → M [Gk∗ ]
witness that κi∗ is κi+2-supercompact. Since Pi∗,i+2T has a dense, strongly κk∗-
strategically closed subset, we can use Fact 2.2 to lift j to j : V [Gi∗ ] → M [G∗K∗H],
where H is generic over V [G ∗K] for κk∗-closed forcing. We now define a master

condition p∗ ∈ j(Pi∗,i+2) such that p∗ ≤ j(p) for every p ∈ Gi∗ . This is done exactly
as in Case 1 except for the following: if � ∈ X, let η
 = j“κ
+1. Then p∗(�)1 is
defined so that it is forced by p∗ � ��p∗(�)0 to be equal to (

⋃
p∈Gi∗ sp(
)1 , η+1). Note

that it is forced that sup(sp
∗(
)1) = η
 and p∗(�)1 ∈ j(Sκ�+1

), since
⋃

t∈K j(t)(�) is

forced to be a club in η disjoint from sp
∗(
)1 . Also, since i < crit(j), elements of

j(Pi∗,i+2) can also be thought of as functions with domain [i∗, i+2), so this finishes
the definition of p∗.

Thus, letting I be j(Pi∗,i+2)-generic over V [G∗K∗H] with p∗ ∈ I, we can lift our
embedding to j : V [G] → M [G ∗K ∗H ∗ I]. If T does not reflect in V [G], then, as
before, we can find a club E in κi+1 such that E ∈ V [G ∗K] and E ∩ T = ∅. Thus,
we will reach a contradiction and finish the proof if we demonstrate the following
claim.

Claim 3.4. T remains stationary in V [G ∗K].

Proof. Work in V [G]. Let t0 ∈ T, and let Ḋ be a T-name for a club in κi+1. We will

find t ≤ t0 such that t �T “Ḋ∩Ť �= ∅”. Let θ be a sufficiently large regular cardinal.
Since APκi

holds (it was forced by Pi,i+1), we can find an internally approachable
continuous chain of elementary substructures of H(θ), 〈Mξ | ξ < κk〉 such that:

• T, {κ
 | � ≤ i+ 1}, t0, Ḋ ∈ M0.
• κ+

k ⊂ M0.
• For all ξ < κk, |Mξ| < κk∗ .
• Letting M =

⋃
ξ<κk

Mξ, sup(M ∩ κi+1) ∈ T .
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For all � ∈ X, let λ
 = sup(M ∩ κ
+1). For each � ∈ X, cf(λ
) = κk and
〈sup(Mξ ∩ κ
+1) | ξ < κk〉 enumerates a club C0


 in λ
, all of whose initial seg-

ments are in M . In fact, since κ+
k ⊂ M , every bounded subset of C0


 is in M . Also,
for all � ∈ X, since k > ω, S
 does not reflect at λ
, so there is a club C1


 in λ


such that C1

 ∩S
 = ∅. For all � ∈ X, let C
 = C0


 ∩C1

 . By the preceding, we have

that C
 is a club in κ
+1 disjoint from S
, all of whose initial segments are in M .
In fact, again since κ+

k ⊂ M , any sequence 〈C ′

 | � ∈ X〉 such that each C ′


 is an

initial segment of C
 is in M . For each � ∈ X, let 〈η
α | α < κk〉 be an increasing
enumeration of C
.

We now construct a descending sequence 〈tα | α < κk〉 of conditions in T ∩M .
In fact, any initial segment of the construction can be computed inside M , so any
initial segment of the sequence of conditions will also be in M .

t0 has already been given. Suppose tα ∈ M is given. We will construct tα+1.
First, let t′α be the <θ-least condition in T such that t′α ≤ tα and there is γ > ηiα
such that t′α �T “γ̌ ∈ Ḋ”. Then, let tα+1 be the <θ-least condition such that
tα+1 ≤ t′α and, for every � ∈ X, there is β > α such that max(tα+1(�)) = η
β . Note
that the calculation of tα+1 only requires sufficiently long initial segments of the
clubs C
, so tα+1 ∈ M .

If β < κk is a limit ordinal and 〈tα | α < β〉 has been constructed, then, for each
� ∈ X, let δ
 = sup(

⋃
α<β tα(�)) and define tβ by letting tβ(�) =

⋃
α<β tα(�)∪ {δ
}.

tβ is a valid condition in T since, for each � ∈ X, δ
 is in C
 and hence not in S
.
Also, the calculation of tβ only requires 〈tα | α < β〉, calculation of which itself
only requires sufficiently long initial segments of the C
’s, so tβ ∈ M .

Finally, define t ∈ T by, for each � ∈ X, letting t(�) =
⋃

α<κk
tα(�) ∪ {λ
}. Each

λ
 has cofinality κk > ω, so λ
 �∈ S
 and thus t is in fact in T. Also, t ≤ tα for all
α < κk, so t �T “λ̌i ∈ Ḋ”, so, in particular, t �T “Ḋ ∩ Ť �= ∅”. � �

It remains open whether we can find a model in which bounded stationary re-
flection holds at the successor of every singular cardinal greater ℵω. The difficulty
in dealing with successors of cardinal fixed points lies in the fact that, if we are
unable to use an elementary embedding with critical point in the interval (i, κi),
then our proof of Claim 3.4 does not work. By suitably varying the cofinalities of
the points at which the stationary sets S
 are allowed to reflect, we can obtain a
model in which bounded stationary reflection holds at the successors of all singular
cardinals greater than ℵω which are not limits of cardinal fixed points, but it seems
that this approach cannot be extended to attain a truly global result.
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