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CRITICAL VALUES

OF GAUSSIAN SU(2) RANDOM POLYNOMIALS

RENJIE FENG AND ZHENAN WANG

(Communicated by Walter Van Assche)

Abstract. In this article we will get the estimate of the expected distribution
of critical values of Gaussian SU(2) random polynomials as the degree is large
enough. The result about the expected density is a direct application of the
Kac-Rice formula. The critical values will accumulate at infinity, then we will
study the rate of this convergence and its rescaling limit as n → ∞.

1. Introduction

Random polynomials and random holomorphic functions are studied as ways to
gain insight for problems arising in string theory and analytic number theory [5,
11,16]. In [14] Kac studied and determined a formula for the expected distribution
of zeros of some real Gaussian random polynomials. His work was generalized to
complex random polynomials and random analytic functions throughout the years;
we refer to [3, 4, 6, 13, 17] for more background and results.

1.1. SU(2) polynomials. When the random polynomial is defined invariant with
respect to some group action, the problem can turn out to be particularly inter-
esting; we refer §2.3 in [13] for examples. In this article we will study a special
family: the Gaussian SU(2) random polynomials. This is of particular interest
in the physics literature as the zeros describe a random spin state for the Majo-
rana representation (modulo phase) on the unit sphere [11].

Given a probability space Ω and {aj}∞j=0, a collection of i.i.d complex random

variables with density 1
π e

−|z|2 on it, the family of SU(2) random polynomials is
defined as

(1) pn(z) =

n∑
j=0

aj

√(
n

j

)
zj .

Although this polynomial is defined on C, we may also view it as an analytic
function on CP

1 = C ∪∞ with a pole at ∞.
Various properties of the zeros of random SU(2) polynomials have been studied

such as the distribution of zeros and the two points correlation function [3,11]. First,
zeros of these polynomials are uniformly distributed on S2 ∼= CP

1 with respect to
the Fubini-Study metric, i.e., the average distribution of zeros is invariant under
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the SU(2) action on CP
1 [13]. To be more precise, let us denote

Zpn
=

∑
z∈CP1: pn(z)=0

δz

as the empirical measure of zeros of Gaussian SU(2) random polynomials and define
the pairing

〈Zpn
, φ〉 =

∑
z∈CP1: pn(z)=0

φ(z), where φ ∈ C∞(CP1).

We define the expectation

〈EZpn
, φ〉 := E〈Zpn

, φ〉 = 1

πn+1

∫
Cn+1

⎛
⎝ ∑

z∈CP1: pn(z)=0

φ(z)

⎞
⎠ e−|a|2d�a0

· · · d�an
,

where d�aj
= 1

2idaj ∧ dāj is the Lebesgue measure on C.
Then the expected density of zeros is calculated in [3] as

EZpn
= nωFS ,

in the sense that

E〈Zpn
, φ〉 = n

∫
CP1

φωFS , where φ ∈ C∞(CP1),

where ωFS is the Fubini-Study form on CP
1 [10].

We can also study the two points correlation function of zeros of SU(2) poly-
nomials and its scaling property. We define the two points correlation function as
[3]

Kn(z, w) := E (Zpn
(z)⊗ Zpn

(w)) ,

such that for any smooth test function φ1(z)⊗ φ2(w), we have the pairing

〈Kn(z, w), φ1(z)⊗ φ2(w)〉 = E (〈Zpn
, φ1〉) (〈Zpn

, φ2〉) .
If we scale the two points correlation function by a factor 1√

n
, then we have

Kn(
z√
n
,
w√
n
) =

(sinh t2 + t2) cosh t− 2t sinh t

sinh t3
+O(

1√
n
),

where t = |z−w|2
2 and |z−w| is the geodesic distance of z and w on CP

1. It is easy
to see that

Kn(
z√
n
,
w√
n
) = t− 2

9
t3 +O(t5) as t → 0,

which implies zeros repel each other. We refer to [3, 11] for more details.

1.2. Main results. In this article we will study the expected distribution of non-
vanishing critical values of |pn| as n tends to infinity.

Note that the modulus |pn| is a subharmonic function, thus there is no local
maximum; local minimums are all zeros and thus nonvanishing critical values are
obtained only at saddlepoints [7]. Hence, the expected density of nonvanishing
critical values of |pn| that we study in this article are in fact the expected density
of values of saddlepoints of |pn|.

The nonvanishing critical values of |pn| are obtained at points

(2) {z ∈ C : p′n = 0 and pn �= 0}.
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A random polynomial pn has no repeated zeros almost surely, which implies that
the set (2) is almost surely equivalent to

(3) {z ∈ C : p′n = 0};
i.e., (nonvanishing) |pn| and pn have the same critical points almost surely.

Hence, we will first get the expected density of critical values of pn in Theorem
1. As a direct consequence, we can apply the polar coordinate to get the expected
density of nonvanishing critical values of |pn| in Theorem 2.

We denote the empirical measure of critical values of pn as

(4) Cpn
=

∑
z: p′

n(z)=0

δpn(z).

We now define the pairing

(5) 〈Cpn
, φ〉 =

∑
z: p′

n(z)=0

φ(pn(z)), ∀φ(x) ∈ C∞
c (R2),

where C∞
c (R2) is the space of smooth functions on R

2 with compact support.
We denote Dpn

(x) as the expected density of critical values of pn in the sense
that

(6) E〈Cpn
, φ〉 =

∫
C

φ(x)Dpn
(x)d�x, ∀φ(x) ∈ C∞

c (R2),

whereas d�x is the Lebesgue measure of C.
Those definitions also apply to the empirical measure of the nonvanishing critical

values of |pn| which is

(7) C|pn| =
∑

z: p′
n=0

δ|pn|,

which is a measure defined on the nonnegative real line R+.
We define its expectation as

(8) 〈EC|pn|, φ〉 := E〈C|pn|, φ〉 =
∫ ∞

0

φ(x)D|pn|dx, ∀ φ(x) ∈ C∞
c (R+),

where dx is the Lebesgue measure on R.
In this article, we will first get the exact formula for the expected density Dpn

in
Proposition 1 by the Kac-Rice formula (see section §2), then we study the asymp-
totic behavior of Dpn

as n → ∞. Our main results follow.

Theorem 1. The expected density Dpn
of the empirical measure Cpn

of the critical
values of pn satisfies the estimate

(9) Dpn
=

1− e−|x|2

π|x|2 +
1

π

∫ 1

0

e−(s−s log s)|x|2ds+ o(1) as n → ∞,

for any x ∈ C.

As proved in Proposition 1, the density Dpn
d�x only depends on |x|, i.e., the mod-

ulus of |pn|, thus we can rewrite it as Dpn
(|x|)|x|d|x|dθ under the polar coordinate.

If we integrate on θ variable, then

(10) D|pn| =

∫ 2π

0

Dpn
(|x|)|x|dθ = 2π|x|Dpn

(|x|)
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will be the density of critical values of |pn|. Thus we get

Theorem 2. The expected density D|pn| of the empirical measure C|pn| of the non-
vanishing critical values of |pn| satisfies the estimate

(11) D|pn|(x) =
2(1− e−x2

)

x
+ 2x

∫ 1

0

e−(s−s log s)x2

ds+ o(1) as n → ∞,

for any x ∈ R+.

The decay of D|pn|(x) is of order 1/x as x goes to infinity, thus the total mass on
the interval [a,∞) is infinity for any a > 0, i.e., the critical values will accumulate
at infinity as n → ∞. In order to study the rate of this accumulation, we consider
the distribution function Fn(x) of the probability density

D|pn|
n− 1

=
1

n− 1
E(

∑
p′
n=0

δ|pn|).

Next, we will show that the critical values are spreading out exponentially.

Theorem 3. For any fixed ε > 0, Fn(e
n

1−ε
2 ) → 0 and Fn(e

n
1+ε
2 ) → 1 as n → ∞.

Then the modulus of critical values of pn will mainly concentrate in the interval

[en
1−ε
2 , en

1+ε
2 ] as n large enough. Thus we need to consider the following rescaled

probability density to get more information about this convergence

Rn(x) = (Fn(e
nx
2 ))′.

Then we prove that Rn(x) satisfies the rescaled limit

Theorem 4.

lim
n→∞

Rn(x) =

⎧⎪⎨
⎪⎩
e−x if x > 0,

limn→∞ Dpn
(1) if x = 0,

0 if x < 0,

where limn→∞ Dpn
(1) is the constant given by the leading term in (9) evaluated at

1.

1.3. Further remarks. First note that our setting is different from the one in [5].
For example, in [5], critical points of SU(2) polynomials are defined to be the points

{z ∈ CP
1 : ∇′pn = 0},

where ∇′ = ∂
∂z −

nz̄dz
1+|z|2 is the smooth Chern connection on the line bundle O(n) →

CP
1 with respect to the Fubini -Study metric and pn is a global holomorphic section

of the line bundle O(n) → CP
1 [10]. By choosing such a smooth Chern connection,

the expected distribution of critical points is also invariant under the SU(2) action
[5]. But in this article, the critical points are defined by the usual derivative

{z ∈ C :
∂pn
∂z

= 0}.

In fact, the derivative ∂
∂z is a meromorphic flat Chern connection on O(n) → CP

1

with a pole at ∞. Under this setting, the expected density of critical points is not
SU(2) invariant; we refer to [12] for more details.

Our second remark is as following. In [8] and [9] the authors studied the expected
density of nonvanishing critical values of the pointwise norm of Gaussian random
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holomorphic sections of the positive holomorphic line bundle over compact Kähler
manifolds. Now let us briefly explain the main result in [8] and [9] and compare
it with Theorem 2. Take Gaussian SU(2) random polynomials (sections) pn for
example. We equip the line bundle O(n) → CP

1 with a Hermitian metric hn =
e−nφ, where φ = log(1 + |z|2) is the Kähler potential of the Fubini-Study metric.

Then the pointwise h-norm of the holomorphic section |pn|hn = |pn|e−
nφ
2 is globally

defined on CP
1 [10], and hence the critical points of |pn|hn are defined as

Σn = {z ∈ CP
1 :

∂|pn|hn

∂z
= 0}.

We define the (normalized) empirical measure of critical values of |pn|hn as

C|pn|hn :=
1

n

( ∑
z∈Σn

δ|pn|hn

)
,

which is also a measure defined on R+.
Then the expectation of C|pn|hn satisfies the estimate

(12) EC|pn|hn = x
(
2x2 − 4 + 8e−

x2

2

)
e−x2

+O(
1

n
), x ∈ R+,

as n large enough. In fact, this estimate is universal: it holds on any Riemannian
surfaces [8], [9].

Thus, the (normalized) density EC|pn|hn is decaying exponentially as x is large
enough, which is quite different from the behavior of (nonnormalized) density EC|pn|
in Theorem 2. This is mainly because of the connection we choose: the usual
derivative ∂

dz in this article is a meromorphic flat connection on CP
1 with a pole

at ∞, while in [8] and [9] the proof of (12) relies on a choice of smooth Chern
connection ∇′ = ∂

∂z − nz̄dz
1+|z|2 .

2. Kac-Rice formula

In this section, we first review the Kac-Rice formula for a stochastic process,
referring to [1, 14, 15] for more details. Then we generalize the formula to the
expected distribution of critical values of pn.

The Kac-Rice formula is as follows: let f(z) be a real valued stochastic process
indexed by a compact interval I ⊂ R. Then the Kac-Rice formula for the expected
number of zeros is

E#{z ∈ I : f(z) = 0} =

∫
I

∫
R

|y|pz(0, y)dydz,

where pz(0, y) is the joint density pz(x, y) of (f, f ′) evaluated at (0, y). If f is a
Gaussian process, then the joint density pz(x, y) is determined by the covariance
matrix of (f, f ′) [1].

The proof of this formula is explained in more detail in [1]. The idea of the proof
is based on the observation that

#{z ∈ I : f(z) = 0} =

∫
I

δ0(f(z))|f ′(z)|dz.
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We take expectation on both sides to get

E#{z ∈ I : f(z) = 0} =

∫
I

∫
Ry

∫
Rx

δ0(x)pz(x, y)|y|dxdydz

=

∫
I

∫
R

|y|pz(0, y)dydz.

Thus the expected density of zeros of f is given by

(13) E

⎛
⎝ ∑

z∈I: f(z)=0

δz

⎞
⎠ =

(∫
R

|y|pz(0, y)dy
)
dz.

If f(z) is a complex stochastic process indexed by a compact complex domain, the
above formula reads

(14) E

⎛
⎝ ∑

z∈I: f(z)=0

δz

⎞
⎠ =

(∫
C

|y|2pz(0, y)d�y
)
d�z,

where d�y and d�z are Lebesgue measures on C. Compared with (13), we get |y|2
since a one-dimensional complex random process is a two-dimensional real random
process. In fact, this formula is based on the definition of the delta function and
the identity

#{z ∈ I : f(z) = 0} =

∫
I

δ0(f(z))
1

2i
df ∧ df̄ =

∫
I

δ0(f(z))|f ′|2d�z.

The formula arises when we take expectation on both sides.

2.1. Kac-Rice formula: Revisited. In this subsection, let us get the formula for
the expected density of critical values of a (real or complex) stochastic process f
by the method of Kac and Rice.

For simplicity, let us first consider a smooth real Gaussian process f ∈ C∞(I),
where I is a compact subset in R.

Let Θ ⊂ R be a compact subset. Let us denote the set of critical values in Θ as

CΘ = {z ∈ I : f(z) ∈ Θ, f ′(z) = 0}.
Let us denote the measure μ(x)dx on Θ as

μ(x)dx = E

( ∑
z∈CΘ

δf(z)

)
,

in the sense that

E

(
〈
∑
z∈CΘ

δf(z), φ〉
)

=

∫
Θ

φμ(x)dx,

where φ is any smooth test function defined on Θ.
Then we have the following lemma.

Lemma 1. Let us denote pz(x, y, ξ) as the joint density of (f, f ′, f ′′) at z. Then

μ(x)dx =

(∫
I

∫
R

|ξ|pz(x, 0, ξ)dξdz
)
dx,

where dx, dξ, and dz are Lebesgue measures on R.
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Proof. We will first do a formal calculation:

(15) 〈
∑

f∈Θ, f ′=0

δf(z), φ(x)〉 =
∑

f∈Θ, f ′=0

φ(f(z)) =

∫
I

χ{f∈Θ}φ(f(z))δ(f
′)df ′.

By taking expectation on both sides and considering df ′ = f ′′dz, we have

E

〈 ∑
f∈Θ, f ′=0

δf(z), φ(x)

〉
=

∫
Rx

∫
I

∫
Rξ

∫
Ry

pz(x, y, ξ)χ{x∈Θ}φ(x)δ(y)|ξ|dydξdzdx

(16)

=

∫
Θ

(∫
I

∫
Rξ

pz(x, 0, ξ)|ξ|dξdz
)
φ(x)dx(17)

=

∫
Θ

φ(x)μ(x)dx.(18)

This calculation requires justification in (15), (16), and (17). The way to rigor-
ously do that is to approximate the δ function by a sequence of simple functions
and do a verbatim repetition of the proof in [1, Theorem 11.2.3,Corollary 11.2.4].

From (18) to the conclusion, one needs to prove that the density on both left and
right hand sides are continuous. To prove the continuity of μ, it is again repeating
the argument in [1, Theorem 11.2.3, Corollary 11.2.4]; see [1, Section 11.4] and [2]
for details. �

In the proof of Lemma 1 we have assumed I and Θ are compact subsets in R.
But the proof of Lemma 1 can be generalized to the SU(2) random polynomials
pn, which are a collection of complex Gaussian stochastic processes indexed by C.

The generalization of Θ to be C only requires picking up a sequence of discs
centered at the origin with radius m ∈ {1, 2, . . .} and taking limit in weak sense.
And the generalization from I to C is the same.

However, we do need to modify the pairing by choosing the test functions φ(z)
in the smooth compact supported space C∞

c (R2) in order to change the order of the
integration on C. Following the proof of Lemma 1, we have

Lemma 2. The expected density of critical values of pn is

(19) Dpn
d�x =

(∫
C

∫
C

|ξ|2pz(x, 0, ξ)d�ξd�z
)
d�x,

where d�x, d�ξ, and d�z are Lebesgue measures on C and

(20) pz(x, 0, ξ) =
1

π3 detΔz
exp

⎧⎨
⎩−

〈⎛
⎝x
0
ξ

⎞
⎠ ,Δ−1

z

⎛
⎝x̄
0
ξ̄

⎞
⎠〉⎫⎬

⎭
is the joint density of (pn, p

′
n, p

′′
n), where Δz is the covariance matrix of (pn, p

′
n, p

′′
n).

Proof. The proof of this formula is the same as the one in Lemma 1.
We start with a disk U in place of I, take Θ ⊂ C compact, and write CΘ =

{z ∈ U : f(z) ∈ Θ, f ′(z) = 0} again. Then we have
(21)

〈
∑

f∈Θ, f ′=0

δf(z), φ(x)〉 =
∑

f∈Θ, f ′=0

φ(f(z)) =

∫
U

χ{f∈Θ}φ(f(z))δ(f
′)(

1

2i
df ′ ∧ df̄ ′).
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Taking expectation on both left and right hand sides and noting df ′ ∧ df̄ ′ =
|f ′′|2dz ∧ dz̄ = |f ′′|d�z , we have

E

〈 ∑
f∈Θ, f ′=0

δf(z), φ(x)

〉
=

∫
Cx

∫
U

∫
Cξ

∫
Cy

pz(x, y, ξ)χ{x∈Θ}φ(x)δ(y)|ξ|2d�yd�ξd�zd�x

=

∫
Θ

(∫
U

∫
Cξ

pz(x, 0, ξ)|ξ|2d�ξd�z

)
φ(x)d�x

=

∫
Θ

φ(x)μ(x)d�x.

The justification process here is the same as in Lemma 1.
The lemma follows if we replace f(z) by pn(z). Since pn is a Gaussian process,

the joint density pz(x, y, ξ) is uniquely determined by the covariance matrix of
(pn, p

′
n, p

′′
n). �

3. Proof of main theorems

3.1. The density Dpn
. In this subsection, we will derive the exact formula for Dpn

based on Lemma 2. We prove

Proposition 1. The expected density of the empirical measure of Cpn
is given by

the formula

(22) Dpn
=

n− 1

π

∫ ∞

1

n(r − 1) + 1

rn+2
e−

n(r−1)+1
rn |x|2dr.

Thus Dpn
is a function only depending on |x|.

Proof. By Lemma 2 in order to compute the expected density of critical values of
pn, we first need to compute the covariance matrix of (pn, p

′
n, p

′′
n).

By definition, the covariance matrix of the Gaussian process (pn, p
′
n, p

′′
n) is given

by [1, 5]

Δ =

⎛
⎝E(pnpn) E(p′npn) E(p′′npn),
E(pnp′n) E(p′np

′
n) E(p′′np

′
n),

E(pnp′′n) E(p′np
′′
n) E(p′′np

′′
n)

⎞
⎠ .

The covariance kernel for the Gaussian process pn is

E(pn(z)pn(w)) := Πn(z, w) = (1 + zw̄)n.
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Then we can express each entry in the covariance matrix as follows:

E(pnpn) = Πn(z, z) = (1 + |z|2)n,

E(p′npn) =
∂Πn(z, w)

∂z
|z=w = nw̄(1 + zw̄)n−1|z=w = nz̄(1 + |z|2)n−1,

E(p′′npn) =
∂2Πn(z, w)

∂2z
|z=w = n(n− 1)w̄2(1 + zw̄)n−2

z=w = n(n− 1)z̄2(1 + |z|2)n−2,

E(p′np
′
n) =

∂2Πn(z, w)

∂z∂w̄
|z=w = n(1 + zw̄)n−2((n− 1)zw̄ + 1 + zw̄)|z=w

= n(n|z|2 + 1)(1 + |z|2)n−2,

E(p′′np
′
n) =

∂3Πn(z, w)

∂2z∂w̄
|z=w = n(n− 1)(1 + zw̄)n−3w̄(nzw̄ + 2)|z=w

= n(n− 1)(1 + |z|2)n−3z̄(n|z|2 + 2),

E(p′′np
′′
n) =

∂4Πn(z, w)

∂2z∂2w̄
|z=w

= n(n− 1)((n− 2)(n− 3)z2w̄2(1 + zw̄)n−4

+ 4(n− 2)zw̄(1 + zw̄)n−3 + 2(1 + zw̄)n−2)|z=w

= n(n− 1)(1 + |z|2)n−4(n(n− 1)|z|4 + 4(n− 1)|z|2 + 2).

These show the covariance matrix is

Δz = (1 + |z|2)n

×

⎛
⎜⎜⎝

1 nz̄
1+|z|2

n(n−1)z̄2

(1+|z|2)2
nz

1+|z|2
n+n2|z|2
(1+|z|2)2

2n(n−1)z̄+(n−1)n2z̄|z|2
(1+|z|2)3

n(n−1)z2

(1+|z|2)2
2n(n−1)z+(n−1)n2z|z|2

(1+|z|2)3
2n(n−1)+4n(n−1)2|z|2+n2(n−1)2|z|4

(1+|z|2)4

⎞
⎟⎟⎠ .

Hence

(23) detΔz = (1 + |z|2)3n 2n3 − 2n2

(1 + |z|2)6 ,

which never degenerates when n > 1. We denote

Qz(x, ξ) =:

〈⎛
⎝x
0
ξ

⎞
⎠ ,Δ−1

z

⎛
⎝x̄
0
ξ̄

⎞
⎠〉

.

Then by direct computations, we rewrite.

Qz(x, ξ) =
(1 + |z|2)2n

detΔz

×
〈(

x
ξ

)
,

(
n5|z|4+2n4(|z|2−|z|4)+n3(|z|4−2|z|2+2)−2n2

(1+|z|2)6
(n3−n2)z̄2

(1+|z|2)4
(n3−n2)z2

(1+|z|2)4
n

(1+|z|2)2

)(
x̄
ξ̄

)〉

(note we only need to calculate the four corner entries of the inverse matrix). We
expand this expression and further rewrite Qz(x, ξ) as

(24)
1

2(1 + |z|2)n

(∣∣∣∣√n2 − nz̄2x+
1√

n2 − n
ξ(1 + |z|2)2

∣∣∣∣
2

+ 2(n|z|2 + 1)|x|2
)
.
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By Lemma 2, the expected density of critical values of pn is given by the formula

(25) Dpn
(x) =

1

π3

∫
C

∫
C

e−Qz(x,ξ)

detΔz
|ξ|2d�ξd�z.

Let us integrate ξ variable first. Plugging (24) into (25), we can rewrite (25) as

(26) Dpn
(x) =

1

π3

∫
C

Kz
e
− n|z|2+1

(1+|z|2)n
|x|2

detΔz
d�z,

where Kz is the following integral in ξ variable:

Kz =

∫
C

exp

{
− 1

2(1 + |z|2)n

∣∣∣∣√n2 − nz̄2x+
1√

n2 − n
ξ(1 + |z|2)2

∣∣∣∣
2
}
|ξ|2d�ξ.

We will first make the exponent into a perfect square. We change variables ξ →
1√

n2−n
ξ(1 + |z|2)2 to get

Kz =
(n2 − n)2

(1 + |z|2)8
∫
C

exp

{
− 1

2(1 + |z|2)n
∣∣∣√n2 − nxz̄2 + ξ

∣∣∣2} |ξ|2d�ξ.

Further, we changing variable ξ →
√
n2 − nxz̄2 + ξ to get

Kz =
(n2 − n)2

(1 + |z|2)8
∫
C

exp

{
− |ξ|2
2(1 + |z|2)n

} ∣∣∣ξ −√
n2 − nxz̄2

∣∣∣2 d�ξ.
This turns into a Gaussian integral. Noting that the first moment terms are equal
to zero after expanding the norm square, we have

Kz = π
(n2 − n)2

(1 + |z|2)8
[
2(1 + |z|2)n(n2 − n)|x|2|z|4 + 4(1 + |z|2)2n

]
.

If we change variable r = 1 + |z|2, we can rewrite

Kz = π
(n2 − n)2

r8
[
2rn(n2 − n)|x|2(r − 1)2 + 4r2n

]
and

detΔz = r3n−6(2n3 − 2n2), e
− n|z|2+1

(1+|z|2)n
|x|2

= e−
n(r−1)+1

rn |x|2 .

Now we plug these two lines back into formula (26) and use the polar coordinate
d�z = 1

2drdθ, integrate on θ variable, we can rewrite Dpn
as

(27) Dpn
=

n− 1

π

∫ ∞

1

(n2 − n)rn(r − 1)2|x|2 + 2r2n

r3n+2
e−

n(r−1)+1
rn |x|2dr.

There are two parts in the numerator. We integrate by part to simplify the first
term in the numerator. Note that

de−
n(r−1)+1

rn |x|2 = e−
n(r−1)+1

rn |x|2 [r−n−1(n2 − n)(r − 1)|x|2]dr,
then the first part is equal to

n− 1

π

∫ ∞

1

(n2 − n)rn(r − 1)2|x|2
r3n+2

e−
n(r−1)+1

rn |x|2dr

=
n− 1

π

∫ ∞

1

(r − 1)

rn+1
de−

n(r−1)+1
rn |x|2

=
n− 1

π

∫ ∞

1

[
n

rn+1
− n+ 1

rn+2
]e−

n(r−1)+1
rn |x|2dr.
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Hence, the density (27) is further simplified to be

Dpn
(x) =

n− 1

π

∫ ∞

1

n(r − 1) + 1

rn+2
e−

n(r−1)+1
rn |x|2dr,

which completes the proof. �

3.2. Proof of Theorem 1. Now we turn to the proof of our main Theorem 1.
We denote t = 1

r and

yn(t) =
n(r − 1) + 1

rn
= ntn−1 − (n− 1)tn,

then we have t ∈ [0, 1] and yn(t) ∈ [0, 1] with yn(0) = 0 and yn(1) = 1.

Substituting n(r−1)+1
rn by yn(t), we rewrite Dpn

in Proposition 1 as

(28)

Dpn
=
n− 1

π

∫ ∞

1

yn(t)

r2
e−yn(t)|x|2dr

=
n− 1

π

∫ 1

0

yn(t)e
−yn(t)|x|2dt,

where in the last step we change variable t → 1
r .

The trick to estimate Dpn
is to calculate

gn(|x|2) :=
∫ 1

0

e−yn(t)|x|2dt.

Integrating by part, we have

gn(|x|2) =
∫ 1

0

t′e−yn(t)|x|2dt

= e−|x|2 +

∫ 1

0

ty′n(t)|x|2e−yn(t)|x|2dt

= e−|x|2 + n(n− 1)|x|2
∫ 1

0

(tn−1 − tn)e−yn(t)|x|2dt

= e−|x|2 + n|x|2
∫ 1

0

(ntn−1 − (n− 1)tn)e−yn(t)|x|2dt

− n|x|2
∫ 1

0

tn−1e−yn(t)|x|2dt

= e−|x|2 + n|x|2
∫ 1

0

yn(t)e
−yn(t)|x|2dt− |x|2hn(|x|2)

= e−|x|2 +
πn|x|2
n− 1

Dpn
− |x|2hn(|x|2),

where we denote

(29) hn(|x|2) := n

∫ 1

0

tn−1e−yn(t)|x|2dt.

Thus,

(30) Dpn
=

n− 1

nπ

(
gn(|x|2)− e−|x|2

|x|2 + hn(|x|2)
)
.
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We claim

lim
n→∞

gn(|x|2) = 1.

This is quite straightforward. As ∀ε ∈ (0, 1), we rewrite

gn(|x|2) =
∫ 1

0

e−yn(t)|x|2dt =

∫ 1−ε

0

+

∫ 1

1−ε

.

Since yn(t) → 0 uniformly on [0, 1− ε] as n → ∞, thus

lim
n→∞

∫ 1−ε

0

e−yn(t)|x|2dt =

∫ 1−ε

0

lim
n→∞

e−yn(t)|x|2dt = 1− ε.

For the second integration, since yn(t) ≥ 0 on [0, 1], we have
∫ 1

1−ε
e−yn(t)|x|2dt ≤ ε.

Hence we get

1− ε ≤ lim
n→∞

∫ 1

0

e−yn(t)|x|2dt ≤ lim
n→∞

∫ 1

0

e−yn(t)|x|2dt ≤ 1.

As ε is chosen arbitrarily, letting ε → 0+ yields the claim.
Now we estimate (30) to be

(31)

Dpn
=
n− 1

nπ

(
1− e−|x|2

|x|2 + hn(|x|2) + o(1)

)

=
1− e−|x|2

π|x|2 +
1

π
hn(|x|2) + o(1)

as n → ∞.
We now turn to estimate hn(|x|2). Change variable s = tn, hn will be rewritten

as ∫ 1

0

ezn(s)|x|
2

ds,

where

zn(s) = −ns
n−1
n + (n− 1)s.

It is easy to check that

zn(s) ≤ zn+1(s)

for any fixed s ∈ [0, 1]. Thus we have zn(s) monotone increasing to −(s − s log s)
as n → ∞; hence, hn(|x|2) will satisfy

lim
n→∞

hn(|x|2) =
∫ 1

0

e−(s−s log s)|x|2ds.

This will give us the estimate

hn(|x|2) =
∫ 1

0

e−(s−s log s)|x|2ds+ o(1)

as n → ∞. Hence, we further estimate (31) to be

Dpn
=

1− e−|x|2

π|x|2 +
1

π

∫ 1

0

e−(s−s log s)|x|2ds+ o(1) as n → ∞,

which completes the proof of Theorem 1.
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4. Growth of critical values and rescaling limit

By Theorem 2, the expected density of the modulus of critical values is 1/x
decay as n large enough, which implies that the integration of the density over the
interval [a,∞) is infinity for any a > 0 large enough, i.e., critical values accumulate
at infinity as n tends to ∞. In this section, we will consider the rate of growth of
the critical values and its rescaling limit.

4.1. Rate of growth. We consider the distribution function Fn(x) of the proba-
bility density

D|pn|
n− 1

=
1

n− 1
E(

∑
p′
n=0

δ|pn|).

We write the distribution function as

(32) Fn(x) =

∫ x

0

D|pn|
n− 1

dy =
2π

n− 1

∫ x

0

yDpn
(y)dy

by relation (10).
Using identity (28) and integrating by part, we will have

Fn(x) = 1− gn(|x|2).
Now we turn to prove Theorem 3.

Proof. We only need to prove gn(e
n1+ε

) → 0 and gn(e
n1−ε

) → 1. Let us apply the
dominated convergence theorem to gn(n

1±ε). We have

lim
n→∞

gn(n
1±ε) =

∫ 1

0

e
− lim

n→∞
yn(t)e

n1±ε

dt.

For the “+” part, we know that for any fixed 0 < t < 1,

lim
n→∞

yn(t)e
n1+ε

= lim
n→∞

(ntn−1 − (n− 1)tn)en
1+ε ≥ lim

n→∞
tn−1en

1+ε

= ∞.

For the “−” part, we know that ∀t > 0,

lim
n→∞

yn(t)e
n1+ε ≤ lim

n→∞
ntn−1en

1−ε

= 0,

which implies the conclusions. �
4.2. Rescaling limit. As illustrated by Theorem 3, we need to consider the re-
scaled distribution

F̃n(x) = Fn(e
nx
2 )

and the corresponding rescaled probability density

Rn(x) = (F̃n(x))
′ = nenx

∫ 1

0

yn(t)e
−yn(t)e

nx

dt

by relations (28) and (32), where yn(t) = ntn−1 − (n− 1)tn ∈ [0, 1].
Now we prove Theorem 4.

Proof. For x = 0, we have

lim
n→∞

Rn(0) = lim
n→∞

∫ 1

0

nyn(t)e
−yn(t)dt

= lim
n→∞

πn

n− 1
Dpn

(1) = π lim
n→∞

Dpn
(1),

where limn→∞ Dpn
(1) is a constant given by the leading term in (9).
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For x < 0, we have

0 ≤ lim
n→∞

∫ 1

0

nyn(t)e
nxe−yn(t)e

nx

dt ≤ lim
n→∞

∫ 1

0

nyn(t)e
nxdt

≤ lim
n→∞

∫ 1

0

nenxdt ≤ lim
n→∞

nenx = 0,

which implies

(33) lim
n→∞

Rn(x) = 0 for x < 0.

Now we consider the case for x > 0. We integrate by part∫ 1

0

e−yn(t)e
nx

dt = te−yn(t)e
nx |10 +

∫ 1

0

y′n(t)e
nxte−yn(t)e

nx

dt

= e−enx

+

∫ 1

0

n(n− 1)(tn−1 − tn)enxe−yn(t)e
nx

dt

= e−enx

+Rn(x)−
∫ 1

0

ntn−1enxe−yn(t)e
nx

dt

= : e−enx

+Rn(x)−Qn(x).

Thus we have

(34) Rn(x) =

∫ 1

0

e−yn(t)e
nx

dt+Qn(x)− e−enx

.

For x > 0, the third term e−enx → 0 as n → ∞.
Now we claim that

(35)

∫ 1

0

e−yn(t)e
nx

dt → e−x, Qn(x) → 0

as n → ∞.
If the claim holds, we will get

(36) lim
n→∞

Rn(x) = e−x for x > 0,

which completes the proof of Theorem 4.
We now prove the first claim: For any t < e−x,

lim
n→∞

yn(t)e
nx ≤ lim

n→∞
ntn−1exn = 0;

for any t > e−x,

lim
n→∞

yn(t)e
nx ≥ lim

n→∞
tn−1exn = ∞.

Therefore, by the dominated convergence theorem, we have

lim
n→∞

∫ 1

0

e−yn(t)e
nx

dt =

∫ e−x

0

1dt = e−x.

Now we prove Qn(x) → 0 as n → ∞. By changing variables, we write Qn as

(37)

Qn(x) =

∫ 1

0

n(tex)n−1e−n(tex)n−1ex+(n−1)(tex)nd(tex)

=

∫ ex

0

nrn−1e−nrn−1ex+(n−1)rndr.
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We separate the integral
∫ ex

0
in Qn to be

Qn(x) =

∫ 1

0

+

∫ ex

1

:= I1,n + I2,n.

First note I1,n ≥ 0, I2,n ≥ 0. We rewrite

(38)

I1,n =

∫ 1

0

nrn−1e−nrn−1ex+(n−1)rndr

=

∫ 1

0

e−nu
n−1
n ex+(n−1)udu,

where we change variable u = rn.

Since ex > 1 strictly, we must have −nu
n−1
n ex + (n− 1)u → −∞ as n → ∞. By

the dominated convergent theorem, we have I1,n → 0 as n → ∞.
For the second integration, we further separate

(39) I2,n =

∫ 1+ε

1

+

∫ ex

1+ε

=: I3,n + I4,n,

where we choose 1 > ε > 0 such that 1 + 3ε < ex.
For the first part, since ex > 1 + 3ε > 1 + ε, we have

rn−1(−nex + (n− 1)r) ≤ rn−1(−nr(1 + ε) + (n− 1)r) = −rn(1 + nε),

thus

I3 ≤
∫ 1+ε

1

e−rn(1+nε)+log n+(n−1) log rdr.

But −rn + (n− 1) log r ≤ 0 for r ≥ 1; and −rnnε+ log n ≤ −nε+ log n → −∞ as
n → ∞. Thus, I3,n ≤ nεe−nε → 0 as n → ∞.

For the second part in (39), we have∫ ex

1+ε

nrn−1e−nrn−1ex+(n−1)rndr ≤
∫ ex

1+ε

nrn−1e−rn−1exdr

=

∫ ex

1+ε

e(n−1) log r+logn−rn−1exdr.

But for r ∈ [1 + ε, ex], we have

−rn−1ex + (n− 1) log r + log n ≤ −(1 + ε)n−1ex + (n− 1)x+ log n → −∞

as n → ∞. Hence, the I4,n will tend to 0 as n → ∞. Therefore I2,n tends to 0 as
n → ∞.

Now we must have limn→∞ Qn(x) → 0, which completes the claim. �
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