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ON KAC’S PRINCIPLE OF NOT FEELING THE BOUNDARY

FOR THE KOHN LAPLACIAN ON THE HEISENBERG GROUP

MICHAEL RUZHANSKY AND DURVUDKHAN SURAGAN

(Communicated by Joachim Krieger)

Abstract. In this note we construct an integral boundary condition for the
Kohn Laplacian in a given domain on the Heisenberg group extending to the
setting of the Heisenberg group M. Kac’s “principle of not feeling the bound-
ary”. This also amounts to finding the trace on smooth surfaces of the Newton
potential associated to the Kohn Laplacian. We also obtain similar results for
higher powers of the Kohn Laplacian.

1. Introduction

In a bounded domain of the Euclidean space Ω ⊂ R
d, d ≥ 2, it is very well

known that the solution to the Laplacian equation

(1.1) Δu(x) = f(x), x ∈ Ω,

is given by the Green formula (or the Newton potential formula)

(1.2) u(x) =

∫
Ω

εd(x− y)f(y)dy, x ∈ Ω,

for suitable functions f supported in Ω. Here εd is the fundamental solution to Δ
in Rd given by

(1.3) εd(x− y) =

{ 1
(2−d)sd

1
|x−y|d−2 , d ≥ 3,

1
2π log |x− y|, d = 2,

where sd = 2π
d
2

Γ( d
2 )

is the surface area of the unit sphere in Rd.

An interesting question having several important applications is what boundary
conditions can be put on u on the (smooth) boundary ∂Ω so that equation (1.1)
complemented by this boundary condition would have the solution in Ω still given
by the same formula (1.2), with the same kernel εd given by (1.3). It turns out that
the answer to this question is the integral boundary condition

(1.4) −1

2
u(x) +

∫
∂Ω

∂εd(x− y)

∂ny
u(y)dSy −

∫
∂Ω

εd(x− y)
∂u(y)

∂ny
dSy = 0, x ∈ ∂Ω,

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω. A converse

question to the one above would be to determine the trace of the Newton potential

Received by the editors January 26, 2015.
2010 Mathematics Subject Classification. Primary 35R03, 35S15.
Key words and phrases. Sub-Laplacian, Kohn Laplacian, integral boundary conditions, Heisen-

berg group, Newton potential.
The authors were supported in part by EPSRC grant EP/K039407/1 and by the Leverhulme

grant RPG-2014-02, as well as by MESRK grant 5127/GF4.

c©2015 American Mathematical Society

709

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/12792


710 M. RUZHANSKY AND D. SURAGAN

(1.2) on the boundary surface ∂Ω, and one can use the potential theory to show
that it has to be given by (1.4).

The boundary condition (1.4) appeared in M. Kac’s work [10] where he called it
and the subsequent spectral analysis “the principle of not feeling the boundary”.
This was further expanded in Kac’s book [11] with several further applications to
the spectral theory and the asymptotics of the Weyl’s eigenvalue counting function.
In [12], by using the boundary condition (1.4) the eigenvalues and eigenfunctions
of the Newton potential (1.2) were explicitly calculated in the 2-disk and in the
3-ball. In general, the boundary value problem (1.1)-(1.4) has various interesting
properties and applications (see, for example, Kac [10, 11] and Saito [19]). The
boundary value problem (1.1)-(1.4) can also be generalised for higher degrees of
the Laplacian; see [13, 14].

In this note we are interested in and we give answers to the following questions:

• What happens if an elliptic operator (the Laplacian) in (1.1) is replaced
by a hypoelliptic operator? We will realise this as a model of replacing the
Euclidean space by the Heisenberg group and the Laplacian on R

d by a
sub-Laplacian (or the Kohn Laplacian) on Hn−1. We will show that the
boundary condition (1.4) is replaced by the integral boundary condition
(2.5) in this setting (see also (1.11)).

• Since the theory of boundary value problems for elliptic operators is well
understood, we know that the single condition (1.4) on the boundary ∂Ω
of a bounded domain Ω guarantees the unique solvability of the equation
(1.1) in Ω. Is this uniqueness preserved in the hypoelliptic model as well for
a suitably chosen replacement of the boundary condition (1.4)? The case
of the second order operators is favourable from this point of view due to
the validity of the maximum principle; see Bony [1]. The Dirichlet problem
has been considered by Jerison [9]. The answer in the case of the boundary
value problem in our setting is given in Theorem 2.1.

• What happens if we consider the above questions for higher order equa-
tions? In general, it is known that for higher order Rockland operators on
stratified groups, fundamental solutions may be not unique; see Folland [5]
and Geller [6], and for a unifying discussion see also the book [2]. However,
for powers of the Kohn Laplacian we still have the uniqueness provided
that we impose higher order boundary conditions in a suitable way; see
Theorem 3.1.

We now describe the setting of this paper. The Heisenberg group Hn−1 is the space
Cn−1 × R with the group operation given by

(1.5) (ζ, t) ◦ (η, τ ) = (ζ + η, t+ τ + 2 Im ζη),

for (ζ, t), (η, τ ) ∈ C
n−1 × R. Writing ζ = x + iy with xj , yj , j = 1, . . . , n − 1, the

real coordinates on Hn−1, the left-invariant vector fields

X̃j =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n− 1,

Ỹj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n− 1,

T =
∂

∂t
,

form a basis for the Lie algebra hn−1 of Hn−1.
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On the other hand, Hn−1 can be viewed as the boundary of the Siegel upper half
space in Cn,

Hn−1 = {(ζ, zn) ∈ C
n : Im zn = |ζ|2, ζ = (z1, . . . , zn−1)}.

Parameterizing Hn−1 by z = (ζ, t) where t = Re zn, a basis for the complex tangent
space of Hn−1 at the point z is given by the left-invariant vector fields

Xj =
∂

∂zj
+ iz

∂

∂t
, j = 1, . . . , n− 1.

We denote their conjugates by Xj ≡ Xj =
∂

∂zj
− iz ∂

∂t . The operator

(1.6) �a,b =
n−1∑
j=1

(aXjXj + bXjXj), a+ b = n− 1,

is a left-invariant, rotation-invariant differential operator that is homogeneous of
degree two (cf. [3]). This operator is a slight generalisation of the standard sub-
Laplacian or Kohn Laplacian �b on the Heisenberg group Hn−1 which, when acting
on the coefficients of a (0, q)-form, can be written as

�b = − 1

n− 1

n−1∑
j=1

((n− 1− q)XjXj + qXjXj).

Folland and Stein [4] found that a fundamental solution of the operator �a,b is
a constant multiple of

(1.7) ε(z) = ε(ζ, t) =
1

(t+ i|ζ|2)a(t− i|ζ|2)b ,

and defined the Newton potential (volume potential) for a function f with compact
support contained in a set Ω ⊂ Hn−1 by

(1.8) u(z) =

∫
Ω

f(ξ)ε(ξ−1z)dν(ξ),

with dν being the volume element (the Haar measure on Hn−1), coinciding with
the Lebesgue measure on Cn−1 × R. More precisely, they proved that

�a,bu = ca,bf,

where the constant ca,b is zero if a and b = −1,−2, . . . , n, n+1, . . . , and ca,b �= 0 if
a or b �= −1,−2, . . . , n, n+ 1, . . . . In fact, then we can take

ca,b =
2(a2 + b2)Vol(B1)

(2i)n
(n− 1)!

a(a− 1) . . . (a− n+ 1)
(1− exp(−2iaπ)),

for a �∈ Z; see the proof of Theorem 1.6 in Romero [16]. Similar conclusions by
different methods were obtained by Greiner and Stein [8]. For a more general
analysis of fundamental solutions for sub-Laplacians we can refer to Folland [5]
as well as to a discussion and references in Stein [20]. The Kohn Laplacian and
its generalisations may be considered as natural models for dealing with sums of
squares also on more general manifolds, as it is now well known; see e.g. Rothschild
and Stein [17].
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In the above notation, the distribution 1
ca,b

ε is the fundamental solution of �a,b,

while ε satisfies the equation

(1.9) �a,bε = ca,bδ.

However, although we could have rescaled ε for it to become the fundamental
solution, we prefer to keep the notation yielding (1.9) in order to follow the notation
of [4] and [16] to be able to refer to their results directly.

Throughout this paper we assume that ca,b �= 0, i.e. both

a and b �= −1,−2, . . . , n, n+ 1, . . . .

In addition, without loss of generality we may also assume that a, b ≥ 0.
Now, in analogy to the elliptic boundary value problem (1.1)–(1.4) for the Lapla-

cian Δ in Rd, we consider the hypoelliptic boundary value problem for the sub-
Laplacian �a,b on Hn−1, namely the equation

(1.10) �a,bu = ca,bf

in a bounded set Ω ⊂ Hn−1 with smooth boundary ∂Ω. The first aim of this paper
is to find a boundary condition of the Newton potential u on ∂Ω such that with this
boundary condition the equation (1.10) has a unique solution, which is the Newton
potential (1.8).

Basing our arguments on the analysis of Folland and Stein [4] and Romero [16]
we show that the boundary condition (1.4) for the Laplacian in Rd is now replaced
by the integral boundary condition (2.5) in this setting, namely by the condition

(1.11) (ca,b−H.R(z))u(z)−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉+p.v.Wu(z) = 0, z ∈ ∂Ω,

on the boundary ∂Ω, where H.R(z) is the so-called half residue, and where the
second and the third term can be interpreted as coming from the suitably defined
respectively single and double layer potentials S andW for the problem. See Section
2 for the definitions and the precise statement.

In Section 2, by using properties of fundamental solutions, we construct a well-
posed boundary value problem for the differential equation (1.10) with the required
properties. In Section 3, we generalise this result for higher powers of the Kohn
Laplacian. Throughout this paper we may use notation from [16], [15], and [18].

2. The Kohn Laplacian

Let Ω ⊂ Hn−1 be an open bounded domain with a smooth boundary ∂Ω ∈ C∞.
Consider the following analogy of the Newton potential on the Heisenberg group:

(2.1) u(z) =

∫
Ω

f(ξ)ε(ξ, z)dν(ξ) in Ω,

where ε(ξ, z) = ε(ξ−1z) is the rescaled fundamental solution (1.7) of the sub-
Laplacian, satisfying (1.9). As we mentioned, u is a solution of (1.10) in Ω. The aim
of this section is to find a boundary condition for u such that with this boundary
condition the equation (1.10) has a unique solution in C2(Ω), say, and this solution
is the Newton potential (2.1).
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We recall a few notions and properties first. For z = (ζ, t) ∈ Hn−1, we define its
norm by |z| := (|ζ|4+|t|2)1/4. As any (quasi-)norm on Hn−1, this satisfies a triangle
inequality with a constant, and allows for a polar decomposition. For 0 < α < 1,
Folland and Stein [4] defined the anisotropic Hölder spaces Γα(Ω) by

Γα(Ω) =

⎧⎪⎨
⎪⎩f : Ω → C : sup

z1,z2∈Ω

z1 �=z2

|f(z2)− f(z1)|
|z−1

2 z1|α
< ∞

⎫⎪⎬
⎪⎭ .

For k ∈ N and 0 < α < 1, one defines Γk+α(Ω) as the space of all f : Ω → C such
that all complex derivatives of f of order k belong to Γα(Ω).

A starting point for us will be that if f ∈ Γα(Ω) for α > 0, then u defined by (2.1)
is twice differentiable in the complex directions and satisfies the equation �a,bu =
ca,bf . We refer to Folland and Stein [4], Greiner and Stein [8], and to Romero [16]
for three different approaches to this property. Moreover, Folland and Stein have
shown that if f ∈ Γα(Ω, loc) and �a,bu = ca,bf , then f ∈ Γα+2(Ω, loc). These
results extend those known for the Laplacian, in suitably redefined anisotropic
Hölder spaces.

We record relevant single and double layer potentials for the problem (1.10). In
[9], Jerison used the single layer potential defined by

S0g(z) =

∫
∂Ω

g(ξ)ε(ξ, z)dS(ξ),

which, however, is not integrable over characteristic points. On the contrary, the
functional

Sg(z) =

∫
∂Ω

g(ξ)ε(ξ, z)〈Xj, dν(ξ)〉,

where 〈X, dν〉 is the canonical pairing between vector fields and differential forms,
is integrable over the whole boundary ∂Ω. Moreover, it was shown in [16, Theorem
2.3] that if the density of g(ξ)〈Xj, dν〉 in the operator S is bounded, then Sg ∈
Γα(Hn−1) for all α < 1. Parallel to S, it is natural to use the operator

(2.2) Wu(z) =

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉,

as a double layer potential. Our main result for the sub-Laplacian is the following
justification of formula (1.11) in the introduction:

Theorem 2.1. Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution to �a,b,
so that

(2.3) �a,bε = ca,bδ on Hn−1.

For any f ∈ Γα(Ω), the Newton potential (2.1) is the unique solution in C2(Ω) ∩
C1(Ω) of the equation

(2.4) �a,bu = ca,bf,

with the boundary condition

(2.5) (ca,b −H.R(z))u(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0, for z ∈ ∂Ω,
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where H.R(z) is the so-called half residue given by the formula

(2.6) H.R(z) = lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

〈∇a,bε(ξ, z), dν(ξ)〉,

with

∇a,bg =
n−1∑
j=1

(aXjgXj + bXjgXj).

The half residue H.R(z) in (2.6) appears in the jump relations for the problem
(2.4) in the following way. The double layer potential Wu in (2.2) has two limits

W+u(z) = lim
z0→z

z0∈Ω

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉,

and

W−u(z) = lim
z0→z

z0 �∈Ω

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉,

and the principal value

W 0u(z) = p.v. Wu(z) = lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉.

We note that this principal value enters as the second term in the integral boundary
condition (2.5). It was proved in [16, Theorem 2.4] that for sufficiently regular u
(e.g. u ∈ Γα(Ω)) and z ∈ ∂Ω, these limits exist and satisfy the jump relations

W+u(z)−W−u(z) = ca,bu(z),

W 0u(z)−W−u(z) = H.R(z)u(z),

W+u(z)−W 0u(z) = (ca,b −H.R(z))u(z),(2.7)

the last property (2.7) following from the first two by subtraction.

Proof of Theorem 2.1. Since the solid potential

(2.8) u(z) =

∫
Ω

f(ξ)ε(ξ, z)dν(ξ)

is a solution of (2.4), from the aforementioned results of Folland and Stein it follows
that u is locally in Γα+2(Ω, loc) and that it is twice complex differentiable in Ω. In
particular, it follows that u ∈ C2(Ω) ∩ C1(Ω).

The following representation formula can be derived from the generalised second
Green’s formula (see Theorem 4.5 in [16] and cf. [15]), for u ∈ C2(Ω) ∩ C1(Ω) we
have

(2.9) ca,bu(z) = ca,b

∫
Ω

f(ξ)ε(ξ, z)dν(ξ) +

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉, for any z ∈ Ω.

Since u(z) given by (2.8) is a solution of (2.4), using it in (2.9) we get

(2.10)

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0,

for any z ∈ Ω.



ON KAC’S PRINCIPLE OF NOT FEELING THE BOUNDARY 715

It is easy to see that the fundamental solution, i.e. the function ε(z) in (1.7) is
homogeneous of degree −2n+ 2, that is,

ε(λz) = λ−2a−2bε(z) = λ−2n+2ε(z) for any λ > 0,

since a + b = n − 1. It follows that ε and its first order complex derivatives are
locally integrable. Since ε(ξ, z) = ε(ξ−1z), we obtain that as z approaches the
boundary, we can pass to the limit in the second term in (2.10).

By using this and the relation (2.7) as z ∈ Ω approaches the boundary ∂Ω from
inside, we find that

(2.11) (ca,b −H.R(z))u(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0, for any z ∈ ∂Ω.

This shows that (2.1) is a solution of the boundary value problem (2.4) with the
boundary condition (2.5).

Now let us prove its uniqueness. If the boundary value problem has two solutions
u and u1, then the function w = u−u1 ∈ C2(Ω)∩C1(Ω) satisfies the homogeneous
equation

(2.12) �a,bw = 0 in Ω,

and the boundary condition (2.5), i.e.

(2.13) (ca,b −H.R(z))w(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉 = 0,

for any z ∈ ∂Ω.
Since f ≡ 0 in this case instead of (2.9), we have the representation formula

(2.14) ca,bw(z) =

∫
∂Ω

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −
∫
∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉,

for any z ∈ Ω. As above, by using the properties of the double and single layer
potentials as z → ∂Ω, we obtain

(2.15) ca,bw(z) = (ca,b −H.R(z))w(z)

+ lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −
∫
∂Ω

ε(ξ, z)〈∇b,aw, dν(ξ)〉,

for any z ∈ ∂Ω. Comparing this with (2.13), we arrive at

(2.16) w(z) = 0, z ∈ ∂Ω.

The homogeneous equation (2.12) with the Dirichlet boundary condition (2.16)
has only trivial solution w ≡ 0 in Ω; see e.g. [16, Theorem 4.3]. This shows that
the boundary value problem (2.4) with the boundary condition (2.5) has a unique
solution in C2(Ω) ∩ C1(Ω). This completes the proof of Theorem 2.1. �
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3. Powers of the Kohn Laplacian

As before, let Ω ⊂ Hn−1 be an open bounded domain with a smooth boundary
∂Ω ∈ C∞. For m ∈ N, we denote �m

a,b := �a,b�m−1
a,b . Then for m = 1, 2, . . ., we

consider the equation

(3.1) �m
a,bu(z) = ca,bf(z), z ∈ Ω.

Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution of the Kohn Laplacian
as in (2.3). Let us now define

(3.2) u(z) =

∫
Ω

f(ξ)εm(ξ, z)dν(ξ),

in Ω ⊂ Hn−1, where εm(ξ, z) is a rescaled fundamental solution of (3.1) such that

�m−1
a,b εm = ε.

We take, with a proper distributional interpretation, for m = 2, 3, . . .,

(3.3) εm(ξ, z) =

∫
Ω

εm−1(ξ, ζ)ε(ζ, z)dν(ζ), ξ, z ∈ Ω,

with

ε1(ξ, z) = ε(ξ, z).

A simple calculation shows that the generalised Newton potential (3.2) is a so-
lution of (3.1) in Ω. The aim of this section is to find a boundary condition on ∂Ω
such that with this boundary condition the equation (3.1) has a unique solution in
C2m(Ω), which coincides with (3.2).

Although fundamental solutions for higher order hypoelliptic operators on the
Heisenberg group may not have unique fundamental solutions (see Geller [6]), in
the case of the iterated sub-Laplacian �m

a,b we still have the uniqueness for our
problem in the sense of the following theorem, and the uniqueness argument in its
proof.

Theorem 3.1. For any f ∈ Γα(Ω), the generalised Newton potential (3.2) is a
unique solution of the equation (3.1) in C2m(Ω) ∩ C2m−1(Ω) with m boundary
conditions

(3.4) (ca,b −H.R(z))�i
a,bu(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

�j+i
a,b u(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b u(ξ)dν(ξ)〉 = 0, z ∈ ∂Ω,

for all i = 0, 1, . . . ,m− 1, where

∇a,bg =

n−1∑
j=1

(aXjgXj + bXjgXj)

and H.R(z) is the half residue given by the formula (2.6).
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Proof. By applying Green’s second formula for each z ∈ Ω, as in (2.9), we obtain

(3.5) ca,bu(z) = ca,b

∫
Ω

f(ξ)εm(ξ, z)dν(ξ) =

∫
Ω

�m
a,bu(ξ)εm(ξ, z)dν(ξ)

=

∫
Ω

�m−1
a,b u(ξ)�a,bεm(ξ, z)dν(ξ)−

∫
∂Ω

�m−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

εm(ξ, z)〈∇b,a�m−1
a,b u(ξ), dν(ξ)〉

=

∫
Ω

�m−2
a,b u(ξ)�2

a,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

�m−2
a,b u(ξ)〈∇a,b�a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

�a,bεm(ξ, z)〈∇b,a�m−2
a,b u(ξ), dν(ξ)〉

−
∫
∂Ω

�m−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

εm(ξ, z)〈∇b,a�m−1
a,b u(ξ), dν(ξ)〉

= · · · = ca,bu(z)−
m−1∑
j=0

∫
∂Ω

�j
a,bu(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

+
m−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j

a,bu(ξ), dν(ξ)〉, z ∈ Ω.

This implies the identity

(3.6)

m−1∑
j=0

∫
∂Ω

�j
a,bu(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j

a,bu(ξ), dν(ξ)〉 = 0, z ∈ Ω.

By using the properties of the double and single layer potentials as z approaches
the boundary ∂Ω from the interior, from (3.6) we obtain

(ca,b−H.R(z))u(z)+
m−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

�j
a,bu(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j

a,bu(ξ), dν(ξ)〉 = 0, z ∈ ∂Ω.

Thus, this relation is one of the boundary conditions of (3.2). Let us derive the
remaining boundary conditions. To this end, we write

(3.7) �m−i
a,b �i

a,bu = ca,bf, i = 0, 1, . . . ,m− 1, m = 1, 2, . . . ,
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and carry out similar considerations just as above. This yields

ca,b�i
a,bu(z) = ca,b

∫
Ω

f(ξ)�i
a,bεm(ξ, z)dν(ξ)

=

∫
Ω

�m−i
a,b �i

a,bu(ξ)�i
a,bεm(ξ, z)dν(ξ)

=

∫
Ω

�m−i−1
a,b �i

a,bu(ξ)�a,b�i
a,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

�m−i−1
a,b �i

a,bu(ξ)〈∇a,b�i
a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

�i
a,bεm(ξ, z)〈∇b,a�m−i−1

a,b �i
a,bu(ξ), dν(ξ)〉

=

∫
Ω

�m−i−2
a,b �i

a,bu(ξ)�2
a,b�i

a,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

�m−i−2
a,b �i

a,bu(ξ)〈∇a,b�a,b�i
a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

�a,b�i
a,bεm(ξ, z)〈∇b,a�m−i−2

a,b �i
a,bu(ξ), dν(ξ)〉

−
∫
∂Ω

�m−i−1
a,b �i

a,bu(ξ)〈∇a,b�i
a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

�i
a,bεm(ξ, z)〈∇b,a�m−i−1

a,b �i
a,bu(ξ), dν(ξ)〉

= · · · =
∫
Ω

�i
a,bu(ξ)�m−i

a,b �i
a,bεm(ξ, z)dν(ξ)

−
m−i−1∑
j=0

∫
∂Ω

�j
a,b�i

a,bu(ξ)〈∇a,b�m−i−1−j
a,b �i

a,bεm(ξ, z), dν(ξ)〉

+
m−i−1∑
j=0

∫
∂Ω

�m−i−1−j
a,b �i

a,bεm(ξ, z)〈∇b,a�j
a,b�i

a,bu(ξ), dν(ξ)〉

= ca,b�i
a,bu(z)−

m−i−1∑
j=0

∫
∂Ω

�j+i
a,b u(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

+

m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b u(ξ), dν(ξ)〉, z ∈ Ω,

where, as usual, εm(ξ, z) = εm(ξ−1z), and �i
a,bεm is a rescaled fundamental solution

of the equation (3.7), i.e.

�m−i
a,b �i

a,bεm = ca,bδ, i = 0, 1, . . . ,m− 1.

From the previous relations, we obtain the identities

m−i−1∑
j=0

∫
∂Ω

�j+i
a,b u(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b u(ξ), dν(ξ)〉 = 0,
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for any z ∈ Ω and i = 0, 1, . . . ,m − 1. By using the properties of the double and
single layer potentials as z approaches the boundary ∂Ω from the interior of Ω, we
find that

(ca,b −H.R(z))�i
a,bu(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

�j+i
a,b u(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b u(ξ), dν(ξ)〉 = 0, z ∈ ∂Ω,

are all boundary conditions of (3.2) for each i = 0, 1, . . . ,m− 1.
Conversely, let us show that if a function w ∈ C2m(Ω) ∩ C2m−1(Ω) satisfies the

equation �m
a,bw = f and the boundary conditions (3.4), then it coincides with the

solution (3.2). Indeed, otherwise the function

v = u− w ∈ C2m(Ω) ∩ C2m−1(Ω),

where u is the generalised Newton potential (3.2), satisfies the homogeneous equa-
tion

(3.8) �m
a,bv = 0,

and the boundary conditions (3.4), i.e.

Ii(v)(z) := (ca,b −H.R(z))�i
a,bv(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

�j+i
a,b v(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b v(ξ), dν(ξ)〉 = 0, i = 0, 1, . . . ,m− 1,

for z ∈ ∂Ω. By applying the Green formula to the function v ∈ C2m(Ω)∩C2m−1(Ω)
and by following the lines of the above argument, we obtain

0 =

∫
Ω

�m
a,bv(z)�i

a,bεm(ξ, z)dν(ξ) =

∫
Ω

�m−i
a,b �i

a,bv(z)�i
a,bεm(ξ, z)dν(ξ

=

∫
Ω

�m−1
a,b v(z)�a,b�i

a,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

�m−1
a,b v(z)〈∇a,b�i

a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

�i
a,bεm(ξ, z)〈∇a,b�m−1

a,b v(z), dν(ξ)〉

= · · · = ca,b�i
a,bv(z)−

m−i−1∑
j=0

∫
∂Ω

�j+i
a,b v(ξ)〈∇a,b�m−1−j

a,b εm(ξ, z), dν(ξ)〉

+
m−i−1∑
j=0

∫
∂Ω

�m−1−j
a,b εm(ξ, z)〈∇b,a�j+i

a,b v(ξ), dν(ξ)〉, i = 0, 1, . . . ,m− 1.
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By passing to the limit as z → ∂Ω, we obtain the relations

(3.9) �i
a,bv(z) |z∈∂Ω= Ii(v)(z) |z∈∂Ω= 0, i = 0, 1, . . . ,m− 1.

Assuming for the moment the uniqueness of the solution of the boundary value
problem

(3.10) �m
a,bv = 0,

�i
a,bv |∂Ω= 0, i = 0, 1, . . . ,m− 1,

we get that v = u− w ≡ 0, for all z ∈ Ω, i.e. w coincides with u in Ω. Thus, (3.2)
is the unique solution of the boundary value problem (3.1), (3.4) in Ω.

It remains to argue that the boundary value problem (3.10) has a unique solution
in C2m(Ω) ∩ C2m−1(Ω). Denoting ṽ := �m−1

a,b v, this follows by induction from the

uniqueness in C2(Ω) ∩ C1(Ω) of the problem

�a,bṽ = 0, ṽ |∂Ω= 0.

The proof of Theorem 3.1 is complete. �

Remark 3.2. It follows from Theorem 3.1 that the kernel (3.3), which is a rescaled
fundamental solution of the equation (3.1), is the Green function of the boundary
value problem (3.1), (3.4) in Ω. Therefore, the boundary value problem (3.1), (3.4)
can serve as an example of an explicitly solvable boundary value problem in any
domain Ω (with smooth boundary) on the Heisenberg group.
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