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REMARKS ABOUT THE BESICOVITCH COVERING

PROPERTY IN CARNOT GROUPS

OF STEP 3 AND HIGHER

ENRICO LE DONNE AND SÉVERINE RIGOT

(Communicated by Jeremy Tyson)

Abstract. We prove that the Besicovitch Covering Property (BCP) does not
hold for some classes of homogeneous quasi-distances on Carnot groups of step
3 and higher. As a special case we get that, in Carnot groups of step 3 and
higher, BCP is not satisfied for those homogeneous distances whose unit ball
centered at the origin coincides with a Euclidean ball centered at the origin.
This result comes in contrast with the case of the Heisenberg groups where
such distances satisfy BCP.

1. Introduction

Covering theorems, among which is the Besicovitch Covering Property (BCP)
(see Definition 1.1 below), are known to be some of the fundamental tools of measure
theory. More generally they turn out to be classical tools that play a crucial role
in many problems in analysis and geometry. We refer for example to [4] and [7] for
a more detailed introduction about covering theorems.

In contrast to the Euclidean case, the Heisenberg groups equipped with the
commonly used (Cygan-)Korányi and Carnot-Carathéodory distances are known
not to satisfy BCP ([5], [8], [9]). However, it has been recently proved that BCP
holds in the Heisenberg groups equipped with those homogeneous distances whose
unit ball centered at the origin coincides with a Euclidean ball centered at the origin
([6]; see also Theorem 1.8 below).

For more general Carnot groups, BCP does not hold for Carnot-Carathéodory
distances ([8]). Motivated by the question of whether one can find homogeneous
(quasi-)distances on a given Carnot group for which BCP holds, we prove in the
present paper that BCP does not hold for some classes of homogeneous quasi-
distances on Carnot groups of step 3 and higher; see Theorem 1.6. As a particular
case, we get that the main result in [6] does not extend to Carnot groups of step
3 and higher, that is, BCP is not satisfied when these groups are equipped with
a homogeneous distance whose unit ball centered at the origin coincides with a
Euclidean ball centered at the origin; see Corollary 1.7.

To state our results, we first recall the Besicovitch Covering Property in the
general quasi-metric setting. Given a nonempty set X, we say that d : X ×X →
[0,+∞[ is a quasi-distance on X if it is symmetric, d(p, q) = 0 if and only if p = q,
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and there exists a constant C ≥ 1 such that d(p, q) ≤ C(d(p, p′)+ d(p′, q)) for all p,
p′, q ∈ X (quasi-triangle inequality with multiplicative constant C). We call (X, d)
a quasi-metric space. When speaking of a ball B in (X, d), it will be understood
that B is a set of the form B = Bd(p, r) for some p ∈ X and some r > 0 where
Bd(p, r) := {q ∈ X; d(q, p) ≤ r}. Note that when d satisfies the quasi-triangle
inequality with a multiplicative constant C = 1, then d is nothing but a distance
on X.

Definition 1.1 (Besicovitch Covering Property). Let (X, d) be a quasi-metric
space. We say that (X, d) satisfies the Besicovitch Covering Property (BCP) if
there exists a constant N ∈ N such that the following holds. Let A be a bounded
subset of X and let B be a family of balls such that each point of A is the center of
some ball of B. Then there is a finite or countable subfamily F ⊂ B such that the
balls in F cover A and every point in X belongs to at most N balls in F , that is,

�A ≤
∑

B∈F
�B ≤ N

where �A denotes the characteristic function of the set A.

The Besicovitch Covering Property originates from the work of Besicovitch ([1],
[2]). It is satisfied in the Euclidean space and more generally in any finite-dimen-
sional normed vector space.

Next, we recall the definition of Carnot groups and state the conventions and
notation we shall use throughout this paper. A Carnot group G of step s ≥ 1 is
a connected and simply connected Lie group whose Lie algebra g is endowed with
a stratification, g = V1 ⊕ · · · ⊕ Vs where [V1, Vj ] = Vj+1 for 1 ≤ j ≤ s − 1 and
[V1, Vs] = {0}.

We set n := dim g and consider (X1, . . . , Xn) a basis of g adapted to the strati-
fication, i.e., (Xmj−1+1, . . . , Xmj

) is a basis of Vj for 1 ≤ j ≤ s where m0 := 0 and
mj −mj−1 := dimVj .

We identify G with R
n via a choice of exponential coordinates of the first kind.

Namely, for Carnot groups, the exponential map exp : g → G is a diffeomorphism
from g to G. We then identify p = exp(x1X1 + · · ·+ xnXn) ∈ G with (x1, . . . , xn).
The group law is then given by

(x1, . . . , xn) · (x′
1, . . . , x

′
n) := (x′′

1 , . . . , x
′′
n)

where exp(x′′
1X1+ · · ·+x′′

nXn) = exp(x1X1+ · · ·+xnXn) ·exp(x′
1X1+ · · ·+x′

nXn).
The coordinates (x′′

1 , . . . , x
′′
n) can be calculated via the Baker-Campbell-Hausdorff

Formula from (x1, . . . , xn), (x
′
1, . . . , x

′
n), and the structural constants of the chosen

basis.
Dilations (δλ)λ>0 on G are given by

δλ(x1, . . . , xn) := (λα1x1, . . . , λ
αnxn)

where αi = j for mj−1 + 1 ≤ i ≤ mj . These dilations form a one-parameter group
of group automorphisms.

Definition 1.2. We say that a quasi-distance d on G is homogeneous if d is left-
invariant, i.e., d(p · q, p · q′) = d(q, q′) for all p, q, q′ ∈ G, and one-homogeneous
with respect to the dilations, i.e., d(δλ(p), δλ(q)) = λ d(p, q) for all p, q ∈ G and all
λ > 0.
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Every homogeneous quasi-distance on a Carnot group G induces the topology of
the group. Note also that any two homogeneous quasi-distances on a Carnot group
G are bi-Lipschitz equivalent. In particular, every homogeneous quasi-distance is
bi-Lipschitz equivalent to every homogeneous distance.

One can characterize homogeneous quasi-distances by means of their unit ball
centered at the origin. Namely, if d is a homogeneous quasi-distance on G and K :=
Bd(0, 1), then 0 is in the interior of K, K is relatively compact, K is symmetric, i.e.,
p ∈ K implies p−1 ∈ K, and for all p ∈ G the set {λ > 0; δ1/λ(p) ∈ K} is a closed
subinterval of ]0,+∞[. Conversely, if a subset K of G satisfies these assumptions,
then

(1.3) d(p, q) := inf{λ > 0; δ1/λ(p
−1 · q) ∈ K}

defines a homogeneous quasi-distance on G. It is the homogeneous quasi-distance
whose unit ball centered at the origin is K. 1

In particular, any set K of one of the following forms

(1.4) K := {(x1, . . . , xn) ∈ G; c1|x1|γ1 + · · ·+ cn|xn|γn ≤ 1}
or

(1.5) K := {x ∈ G; c1‖x1‖γ1

d1
+ · · ·+ cs‖xs‖γs

ds
≤ 1}

for some γi > 0, ci > 0, induces a homogeneous quasi-distance via (1.3). In (1.5),
for x = (x1, . . . , xn), we have xj := (xmj−1+1, . . . , xmj

), dj := dimVj and ‖ · ‖dj

denotes the Euclidean norm in R
dj .

Our main result is the following.

Theorem 1.6. Let G be a Carnot group of step 3 or higher. Let K be a subset of
G given by (1.4) or (1.5) and let d be the homogeneous quasi-distance induced by
K via (1.3). Then BCP does not hold in (G, d).

Examples of homogeneous distances, i.e., satisfying the quasi-triangle inequality
with a multiplicative constant C = 1, that satisfy the assumption of Theorem 1.6
have been given by Hebisch and Sikora. They proved in [3] that for any Carnot
group G, there exists some α∗ > 0 such that, for all 0 < α < α∗, the Euclidean ball
{(x1, . . . , xn) ∈ G; |x1|2 + · · ·+ |xn|2 ≤ α2} with radius α induces a homogeneous
distance on G via (1.3). For these distances, we have the following corollary.

Corollary 1.7. Let G be a Carnot group of step 3 or higher and let d be a ho-
mogeneous distance on G whose unit ball centered at the origin is a Euclidean ball
centered at the origin. Then BCP does not hold in (G, d).

As already mentioned, such homogeneous distances were our initial motivation
and this corollary comes in contrast with the case of the Heisenberg groups, which
are Carnot groups of step 2, due to the following result.

Theorem 1.8 ([6]). Let Hn be the n-th Heisenberg group and let d be a homogeneous
distance on H

n whose unit ball centered at the origin is a Euclidean ball centered
at the origin. Then BCP holds in (G, d).

1It may happen that a homogeneous quasi-distance on a Carnot group is not a continuous
function on G×G with respect to the topological structure of the group. The fact that it induces
the topology of the group only means that the unit ball centered at the origin contains the origin
in its interior and that it is relatively compact. One can show that the quasi-distance is continuous
on G×G if and only if its unit sphere at the origin is closed.
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To our knowledge, the case of the Heisenberg groups are the only known exam-
ples of nonabelian Carnot groups for which one can find homogeneous distances
satisfying BCP, and the only known such distances are those considered in The-
orem 1.8. This makes the Heisenberg groups peculiar cases as far as the validity
of BCP for some homogeneous distance on a Carnot group is concerned. Theo-
rem 1.6 indeed shows that natural analogues of these distances do not satisfy BCP
as soon as the step of the group is 3 or higher. There are moreover some hints
towards the fact that these results and this dichotomy between step 2 and step 3
or higher Carnot groups may generalize (and even in the more general setting of
graded groups). One could indeed expect that homogeneous distances whose unit
ball centered at the origin is a Euclidean ball centered at the origin satisfy BCP
on Carnot groups of step 2 whereas there is no homogeneous distance for which
BCP holds as soon as the step of the group is 3 or higher. This will be studied in
a forthcoming paper.

The proof of Theorem 1.6 (see Section 3) is based on two main ingredients. First,
we show that for a Carnot group equipped with a homogeneous quasi-distance whose
unit ball centered at the origin is given by (1.4) (respectively (1.5)), the validity
of BCP implies that γ1, . . . , γm1

(respectively γ1) are bounded below by the step
of the group; see Lemma 3.1. Hence for Carnot groups of step 3 and higher, we
get γ1, . . . , γm1

≥ 3 (respectively γ1 ≥ 3) whenever BCP holds. Next, a reduction
argument on the step of the group by taking a quotient allows us to reduce the
problem to the case of the first Heisenberg group equipped with a homogeneous
quasi-distance inherited from the original one. The fact that the quotient map is
a submetry plays a key role here. Submetries are indeed particularly well adapted
tools in this context. See Section 2 where we prove some of their properties related
to the Besicovitch Covering Property. When γ1, . . . , γm1

≥ 3 (respectively γ1 ≥ 3),
the unit sphere of the homogeneous quasi-distance induced on the first Heisenberg
group by the original one turns out to have vanishing Euclidean curvature at the
poles. On the other hand, we know by [6] that, in the Heisenberg groups, BCP
does not hold for homogeneous quasi-distances whose unit sphere has vanishing
Euclidean curvature at the poles. In particular, BCP cannot hold for the inherited
homogeneous quasi-distance. This implies in turn that BCP is not satisfied by the
original distance.

2. Weak Besicovitch Covering Property and submetries

First, we introduce what we call here the Weak Besicovitch Covering Property
(the terminology might not be standard).

Definition 2.1 (Family of Besicovitch balls). Let (X, d) be a quasi-metric space.
We say that a family B of balls in (X, d) is a family of Besicovitch balls if B = {B =
Bd(xB, rB)} is a finite family of balls such that xB 
∈ B′ for all B, B′ ∈ B, B 
= B′,
and for which

⋂
B∈B B 
= ∅.

Definition 2.2 (Weak Besicovitch Covering Property). We say that a quasi-metric
space (X, d) satisfies the Weak Besicovitch Covering Property (WBCP) if there
exists a constant Q ∈ N such that CardB ≤ Q for every family B of Besicovitch
balls in (X, d).
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If (X, d) satisfies BCP, then (X, d) satisfies WBCP. One can indeed take Q = N
where N is given by Definition 1.1.2 We will prove in Section 3 that WBCP, and
hence BCP, does not hold in Carnot groups of step 3 and higher equipped with
homogeneous quasi-distances as in Theorem 1.6.

Submetries will play a key role in our arguments. In the rest of this section, we
recall the definition of submetries and prove some of their properties to be used in
the proof of Theorem 1.6; see Proposition 2.7 and Corollary 2.11.

Definition 2.3 (Submetry). Let (X, dX) and (Y, dY ) be quasi-metric spaces. We
say that π : X → Y is a submetry if π is a surjective map such that

(2.4) π(BdX
(p, r)) = BdY

(π(p), r)

for all p ∈ X and all r > 0.

Remark 2.5. Any submetry π : (X, dX) → (Y, dY ) is 1-Lipschitz. Indeed, given
p, q ∈ X, set r := dX(p, q). We have q ∈ BdX

(p, r), hence π(q) ∈ π(BdX
(p, r)) =

BdY
(π(p), r). Hence dY (π(p), π(q)) ≤ r = dX(p, q).

The following characterization of submetries will be technically convenient. For
subsets A,B ⊂ X, we set dX(A,B) := inf(dX(p, q); p ∈ A, q ∈ B).

Proposition 2.6. Let (X, dX) and (Y, dY ) be quasi-metric spaces. Let π : (X, dX)
→ (Y, dY ) be a surjective map. Then the following are equivalent:

(i) π is a submetry,
(ii) for all p̂ ∈ Y , all q̂ ∈ Y and all p ∈ π−1(p̂), there exists q ∈ π−1(q̂) such that

dX(p, q) = dY (p̂, q̂) = dX(π−1(p̂), π−1(q̂)) = dX(p, π−1(q̂)) .

Proof. Assume that π is a submetry. Let p̂ ∈ Y , q̂ ∈ Y and p ∈ π−1(p̂). Since π is
1-Lipschitz (see Remark 2.5), we have dY (p̂, q̂) ≤ dX(p′, q′) for all p′ ∈ π−1(p̂) and
all q′ ∈ π−1(q̂). It follows that

dY (p̂, q̂) ≤ dX(π−1(p̂), π−1(q̂)) ≤ dX(p, π−1(q̂)).

Set r := dY (p̂, q̂). We have q̂ ∈ BdY
(p̂, r) = π(BdX

(p, r)), hence one can find
q ∈ π−1(q̂)∩BdX

(p, r). Then we have dX(p, q) ≤ r = dY (p̂, q̂). All together, we get
that

dY (p̂, q̂) ≤ dX(π−1(p̂), π−1(q̂)) ≤ dX(p, π−1(q̂)) ≤ dX(p, q) ≤ dY (p̂, q̂),

from which (ii) follows.
Conversely, assume that (ii) holds. Since π is assumed to be surjective, we

only need to prove that (2.4) holds. Let p ∈ X and r > 0. Let us first prove
that π(BdX

(p, r)) ⊂ BdY
(π(p), r). Let q̂ ∈ π(BdX

(p, r)). Then q̂ = π(q) for some
q ∈ BdX

(p, r) and it follows from (ii) that

dY (π(p), q̂) = dX(p, π−1(q̂)) ≤ dX(p, q) ≤ r ,

i.e., q̂ ∈ BdY
(π(p), r). Conversely, let q̂ ∈ BdY

(π(p), r). It follows from (ii) that one
can find q ∈ π−1(q̂) such that

dX(p, q) = dY (π(p), q̂) ≤ r ,

i.e., q ∈ BdX
(p, r). Hence q̂ = π(q) ∈ π(BdX

(p, r)) and this concludes the proof. �

2WBCP is in general strictly weaker than BCP. However, BCP and WBCP are equivalent in
doubling metric spaces.
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The next proposition shows that submetries preserve the validity of WBCP.

Proposition 2.7. Let (X, dX) and (Y, dY ) be quasi-metric spaces. Assume that
there exists a submetry from (X, dX) onto (Y, dY ). If (X, dX) satisfies WBCP, then
(Y, dY ) satisfies WBCP.

Proof. Let π : (X, dX) → (Y, dY ) be a submetry. Let B̂ = {B = BdY
(yB , rB)} be a

family of Besicovitch balls in (Y, dY ) (see Definition 2.1). Let p̂ ∈ ⋂
B∈B̂ B and fix

some p ∈ π−1(p̂). Using Proposition 2.6, for each BdY
(yB, rB) ∈ B̂, one can find

xB ∈ π−1(yB) such that dX(p, xB) = dY (p̂, yB). It follows that dX(p, xB) ≤ rB
and hence p ∈ ⋂

B∈B̂ BdX
(xB, rB). On the other hand, since π is 1-Lipschitz (see

Remark 2.5), we have dX(xB, xB′) ≥ dY (yB, yB′) > max(rB, rB′) for all B, B′ ∈ B̂,
B 
= B′. It follows that {BdX

(xB, rB); B ∈ B̂} is a family of Besicovitch balls in

(X, dX). Since (X, dX) satisfies WBCP, we have Card B̂ ≤ Q for some Q ∈ N (see
Definition 2.2). Hence (Y, dY ) satisfies WBCP as well. �

In the next proposition we give a sufficient condition on the fibers of a surjective
map that allows us to construct on the target space a quasi-distance for which this
map is a submetry.

Proposition 2.8. Let (X, dX) be a quasi-metric space and Y a nonempty set. Let
π : X → Y be a surjective map. Assume that the fibers of π are parallel, i.e.,
assume that for all p̂ ∈ Y , all q̂ ∈ Y and all p ∈ π−1(p̂), one can find q ∈ π−1(q̂)
such that

(2.9) dX(π−1(p̂), π−1(q̂)) = dX(p, q) .

Then,

dY (p̂, q̂) := dX(π−1(p̂), π−1(q̂))

defines a quasi-distance on Y and π is a submetry from (X, dX) onto (Y, dY ).

Proof. First, let us check that dY defines a quasi-distance on Y . Assume that
dY (p̂, q̂) = 0. Then, by definition of dY and using (2.9), for all p ∈ π−1(p̂), one
can find q ∈ π−1(q̂) such that dX(p, q) = dY (p̂, q̂) = 0. This implies that p = q
and hence p̂ = q̂. The fact that dY (p̂, q̂) = dY (q̂, p̂) is obvious from the definition
of dY . Next, we check that dY satisfies the quasi-triangle inequality with the same
multiplicative constant C as dX . Let p̂, q̂ and p̂′ ∈ Y . Let p′ be some point in
π−1(p̂′). Using (2.9), one can find p ∈ π−1(p̂) such that dY (p̂

′, p̂) = dX(p′, p).
Similarly, one can find q ∈ π−1(q̂) such that dY (p̂

′, q̂) = dX(p′, q). Then we get
that

dY (p̂, q̂) = dX(π−1(p̂), π−1(q̂)) ≤ dX(p, q)

≤ C(dX(p, p′) + dX(p′, q)) = C(dY (p̂, p̂
′) + dY (p̂

′, q̂)) .

Finally, the fact that π is a submetry from (X, dX) onto (Y, dY ) follows from
Proposition 2.6 together with (2.9). �

We show in the following proposition that Proposition 2.8 can be applied to
quotient maps from a topological group modulo a boundedly compact normal sub-
group.

Proposition 2.10. Let G be a topological group equipped with a left-invariant
quasi-distance d that is continuous with respect to the topology of the group.
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Let N � G be a normal subgroup of G. Assume that N is boundedly compact.
Then the cosets, i.e., the fibers of the quotient map π : G → G/N , are parallel.

Proof. Let p̂, q̂ ∈ G/N and p ∈ π−1(p̂). Since the quasi-distance on G is left-
invariant and N is boundedly compact, any coset is boundedly compact as well.
It follows that one can find q ∈ π−1(q̂) such that d(p, q) = d(p, π−1(q̂)). For each
ε > 0, take p′ ∈ π−1(p̂) and q′ ∈ π−1(q̂) such that d(p′, q′) ≤ d(π−1(p̂), π−1(q̂)) + ε.
By left-invariance of d and noting that p · (p′)−1 · q′ ∈ π−1(q̂), we get that

ε+ d(π−1(p̂), π−1(q̂)) ≥ d(p′, q′) = d(p, p · (p′)−1 · q′)
≥ d(p, π−1(q̂)) = d(p, q) ≥ d(π−1(p̂), π−1(q̂)) .

Since ε is arbitrary, it follows that d(π−1(p̂), π−1(q̂)) = d(p, q) and hence the fibers
of the quotient map π are parallel. �

The next corollary is a straightforward consequence of Proposition 2.8 and
Proposition 2.10.

Corollary 2.11. Let G be a topological group equipped with a left-invariant quasi-
distance d that is continuous with respect to the topology of the group. Let N �G be
a normal subgroup of G. Assume that N is boundedly compact. Let π : G → G/N
denote the quotient map. Then

dG/N (p̂, q̂) := d(π−1(p̂), π−1(q̂))

defines a quasi-distance on G/N and π is a submetry from (G, d) onto (G/N, dG/N ).

3. Proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6. We consider a Carnot group
G of step s equipped with a homogeneous quasi-distance d whose unit ball centered
at the origin is given by (1.4), i.e., can be described as

Bd(0, 1) = {(x1, . . . , xn) ∈ G; c1|x1|γ1 + · · ·+ cn|xn|γn ≤ 1}
for some γi > 0, ci > 0. The case of a homogeneous quasi-distance whose unit ball
centered at the origin is given by (1.5) is similar and can be proved with the same
arguments.

First, we prove that the validity of BCP implies that γ1, . . . , γm1
are bounded

below by the step of the group. Recall that m1 denotes the dimension of the first
layer V1 of the stratification of the Lie algebra g of G.

Lemma 3.1. Assume that BCP holds in (G, d). Then min(γ1, . . . , γm1
) ≥ s.

Proof. Let 1 ≤ i ≤ m1 be fixed and set Ni := {(x1, . . . , xn) ∈ G; xk = 0 for k 
=
i, n}. Since BCP, and hence WBCP (see Definition 2.2), holds in (G, d), WBCP
also holds in (Ni, dNi

) where dNi
denotes the quasi-distance d restricted to Ni.

3

On the other hand, Ni is an abelian subgroup of G that can be identified with
R

2 equipped with the usual addition, denoted by +, as a group law and with the
family of dilations δ̃λ(x, y) := (λx, λsy) for λ > 0. With this identification, the
quasi-distance dNi

is then a left-invariant and one-homogeneous quasi-distance on

(R2,+, (δ̃λ)λ>0) whose unit ball centered at the origin can be described as {(x, y) ∈
R

2; ci|x|γi + cn|y|γn ≤ 1}. It then follows from Lemma 3.2 below that γi ≥ s. �
3More generally, if Y is a subset of a quasi-metric space (X, dX) that satisfies WBCP, then

(Y, dY ) also satisfies WBCP where dY denotes the quasi-distance dX restricted to Y .
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Lemma 3.2. Let R2 be equipped with the usual addition, denoted by +, as a group
law and the family of dilations δ̃λ(x, y) := (λx, λsy) for some s > 0. Let ρ be

a left-invariant and one-homogeneous quasi-distance on (R2,+, (δ̃λ)λ>0). Assume
that the unit ball centered at the origin can be described as

Bρ(0, 1) = {(x, y) ∈ R
2; α|x|a + β|y|b ≤ 1}

for some a > 0, b > 0, α > 0, β > 0. If WBCP holds in (R2, ρ), then a ≥ s.

Proof. First, we note that we only need to consider the case α = β = 1. Indeed,
considering the group automorphism

f(x, y) := (α1/a x, β1/b y) ,

which commutes with the dilations δ̃λ, then

ρ′(p, q) := ρ(f−1(p), f−1(q))

defines a homogeneous quasi-distance on (R2,+, (δ̃λ)λ>0) and f : (R2, ρ) → (R2, ρ′),
f−1 : (R2, ρ′) → (R2, ρ) are submetries. It then follows from Proposition 2.7 that
WBCP holds in (R2, ρ) if and only if WBCP holds in (R2, ρ′).

Thus let us assume that

Bρ(0, 1) = {(x, y) ∈ R
2; |x|a + |y|b ≤ 1} .

Arguing by contradiction, let us assume that 0 < a < s. We will prove that one
can find r > 1 and a positive sequence (εn)n≥1 decreasing to 0 such that, setting
pn := (xn, yn) where

(3.3) xn = r−n and yn = ε−s
n

(
1− εan r−na

)1/b
,

the following hold. First,

(3.4) 0 ∈ ∂Bρ(pn, ε
−1
n )

for all n ≥ 1. Second,

(3.5) ρ(pn, pk) > ε−1
n

for all n ≥ 2 and all 1 ≤ k ≤ n− 1. Since the sequence (ε−1
n )n≥1 is increasing, we

get from (3.5) that

ρ(pn, pk) > max(ε−1
n , ε−1

k )

for all n 
= k, hence pk 
∈ Bρ(pn, ε
−1
n ) for all n 
= k. Combining this with (3.4), we

get that {Bρ(pn, ε
−1
n ); n ∈ J} is a family of Besicovitch balls for any J ⊂ N finite

which gives a contradiction to the validity of WBCP in (R2, ρ).
First, it follows from (3.3) that

|εnxn|a + |εsn yn|b = εan r
−na + (1− εan r

−na) = 1,

hence ρ(0, δ̃εn(pn)) = 1. By homogeneity it follows that ρ(0, pn) = ε−1
n , hence (3.4)

holds for any fixed r > 1 and any positive sequence (εn)n≥1. Hence it remains to
find some r > 1 and some positive sequence (εn)n≥1 decreasing to 0 such that (3.5)
holds to conclude the proof.

Let r > 1 to be fixed later and set ε1 = 1. By induction, assume that ε1 >
· · · > εn have already been chosen. We are looking for εn+1 ∈ (0, εn) such that
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ρ(pn+1, pk) > ε−1
n+1, i.e.,

(3.6) ρ(δ̃εn+1
(pn+1), δ̃εn+1

(pk)) > 1

for all 1 ≤ k ≤ n. We have

|εn+1(xk − xn+1)|a + |εsn+1(yn+1 − yk)|b

= εan+1 (r
−k − r−(n+1))a + |(1− εan+1 r

−(n+1)a)1/b − εsn+1ε
−s
k (1− εak r

−ka)1/b|b .

Since s > a > 0, we have, for all k ∈ {1, . . . , n} fixed,

(1− εan+1 r
−(n+1)a)1/b− εsn+1ε

−s
k (1− εak r

−ka)1/b = 1− b−1 εan+1 r
−(n+1)a+ o(εan+1).

It follows that

|εn+1(xk − xn+1)|a + |εsn+1(yn+1 − yk)|b

= 1 + εan+1 ((r
−k − r−(n+1))a − r−(n+1)a) + o(εan+1)

= 1 + εan+1 r
−ak ((1− r−(n+1)+k)a − r(−(n+1)+k)a) + o(εan+1)

≥ 1 + εan+1 r
−ak ((1− r−1)a − r−a) + o(εan+1) .

Hence choosing r > 1 so that (1 − r−1)a − r−a > 0, we get that one can choose
εn+1 small enough so that

|εn+1(xk − xn+1)|a + |εsn+1(yn+1 − yk)|b > 1

for all 1 ≤ k ≤ n, which proves (3.6). �

From now on, we assume that G is a Carnot group of step 3 or higher and we
argue by contradiction, assuming that BCP holds in (G, d). Hence we have from
Lemma 3.1 that

(3.7) min(γ1, . . . , γm1
) ≥ 3 .

Let us consider N := exp(V3 ⊕ · · · ⊕ Vs). Then N is a normal subgroup of G.

The quotient group Ĝ := G/N can be identified with R
m2 equipped with the group

law

p̂ ∗ p̂′ := π̂([p̂, 0] · [p̂′, 0])
where π̂(x1, . . . , xn) := (x1, . . . , xm2

) and where, for p = (x1, . . . , xn) ∈ G, we set
p := [p̂, p̃] with p̂ := π̂(p) and p̃ := (xm2+1, . . . , xn).

The group Ĝ inherits from G a natural structure of Carnot group of step 2 with
dilations given by

δ̂λ(x1, . . . , xm2
) := (λx1, . . . , λ xm1

, λ2 xm1+1, . . . , λ
2 xm2

) .

Since the exponential map is here a global diffeomorphism, N is boundedly
compact in (G, d) and it follows from Corollary 2.11 that

dĜ(p̂, q̂) := d(π̂−1(p̂), π̂−1(q̂))

defines a quasi-distance on Ĝ and π̂ : (G, d) → (Ĝ, dĜ) is a submetry. Hence, by

Proposition 2.7, (Ĝ, dĜ) satisfies WBCP.

Let us now check that dĜ is the homogeneous quasi-distance on Ĝ whose unit
ball centered at the origin is given by

(3.8) BdĜ
(0, 1) = {(x1, . . . , xm2

) ∈ Ĝ; c1|x1|γ1 + · · ·+ cm2
|xm2

|γm2 ≤ 1} .
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The fact that dĜ is left-invariant can be easily checked using the left invariance
of d and the fact that π̂ is a group homomorphism. The homogeneity of dĜ with

respect to dilations δ̂λ can be easily checked as well noting that π̂−1(δ̂λ(p̂)) =

δλ(π̂
−1(p̂)) for all p̂ ∈ Ĝ and λ > 0 and using the homogeneity of d.

Let us now check that (3.8) holds. For p = (x1, . . . , xn) ∈ G, we have

d(0, p) = inf{r > 0; δ1/r(p) ∈ Bd(0, 1)}
= inf{r > 0; f(r−α1 |x1|, . . . , r−αn |xn|) ≤ 1}

where f : (R+)n → R
+ is given by f(t1, . . . , tn) := c1 t

γ1

1 + · · · + cn t
γn
n . Since this

function increases with respect to the (n−m2) last coordinates, we have

d(0, [π̂(p), 0]) ≤ d(0, p)

for all p ∈ G. Together with Proposition 2.6, this implies that

dĜ(0, p̂) = d(0, π̂−1(p̂)) = d(0, [p̂, 0])

for all p̂ ∈ Ĝ. Hence

BdĜ
(0, 1) = {(x1, . . . , xm2

) ∈ Ĝ; f(|x1|, . . . , |xm2
|, 0, . . . , 0) ≤ 1},

which proves (3.8).

Let (Y1, . . . , Ym2
) be the basis of the Lie algebra ĝ of Ĝ inherited from the chosen

basis (X1, . . . , Xn) adapted to the stratification of g. Let us fix i, j ∈ {1, . . . ,m1}
such that [Yi, Yj ] 
= 0. Set h := span(Yi, Yj , [Yi, Yj ]) and H := exp h. Then H is a

subgroup of Ĝ that can be identified with the first Heisenberg group. Recall that
the first Heisenberg group is the Carnot group of step 2 whose stratification of the
Lie algebra is given by W1⊕W2 where dimW1 = 2 and dimW2 = 1. Hence we can
identify H with R

3 equipped with the Heisenberg group structure given by

(x, y, z) · (x′, y′, z′) := (x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y)) ,

where we identify exp(xYi + yYj + z[Yi, Yj ]) with (x, y, z), and equipped with the
family of dilations ((x, y, z) �→ (λx, λy, λ2z))λ>0.

The quasi-distance dH induced by the restriction of dĜ on H is then a homoge-
neous quasi-distance whose unit ball centered at the origin is given by

BdH
(0, 1) = {(x, y, z) ∈ H; ci|x|γi + cj |y|γj + cm1+1|ξm1+1 z|γm1+1

+ · · ·+ cm2
|ξm2

z|γm2 ≤ 1}

where [Yi, Yj ] = ξm1+1Ym1+1 + · · ·+ ξm2
Ym2

.

Since WBCP holds in (Ĝ, dĜ), WBCP also holds in (H, dH) (see footnote 3). On
the other hand, we have γi, γj ≥ 3 by (3.7). Near the north pole, i.e., the intersec-
tion of ∂BdH

(0, 1) with the positive z-axis, BdH
(0, 1) can thus be described as the

subgraph {(x, y, z) ∈ H; z ≤ ϕ(x, y)} of a C2 function ϕ whose first and second
order partial derivatives vanish at the origin. Then it follows from [6, Theorem 6.1]
that WBCP can not hold in (H, dH). Note that Theorem 6.1 in [6] holds not only for
homogeneous distances but more generally for homogeneous quasi-distances (with
the same proof). This gives a contradiction and concludes the proof of Theorem 1.6.
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