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THE GRADED COUNT OF QUASI-TREES

IS NOT A KNOT INVARIANT

CODY ARMOND AND MOSHE COHEN

(Communicated by Ken Ono)

Abstract. In “A survey on the Turaev genus of knots”, Champanerkar and
Kofman propose several open questions. The first asks whether the polynomial
whose coefficients count the number of quasi-trees of the all-A ribbon graph
obtained from a diagram with minimal Turaev genus is an invariant of the
knot. We answer negatively by showing a counterexample obtained from the
two diagrams of 821 on the Knot Atlas and KnotScape.

1. Introduction

The Tutte polynomial is a graph invariant with many beautiful properties, in-
cluding duality and a deletion-contraction relation. Bollobás devotes an entire
chapter to the subject in his text [Bol98, Chapter X]. Bollobás and Riordan gen-
eralize this polynomial invariant in [BR01,BR02] for the setting of ribbon graphs,
generalizing many of its properties. We use the definition summing over all subsets:

C(G;X,Y, Z) =
∑

H⊆G

(X − 1)k(H)−k(G)Y n(H)Zg(H)

where: v(G), e(G), and k(G) are the numbers of vertices, edges, and components
of G, respectively; r(G) = v(G)− k(G) is the rank of G; n(G) = e(G)− r(G) is the
nullity of G; and bc(G) is the number of connected components of the boundary of
G. Finally 2g(G) = k(G)− bc(G) + n(G) is twice the genus of G.

Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus show in [DFK+08] that the Jones
polynomial is a specialization of the Bollobás-Riordan-Tutte polynomial
C(G, X, Y, Z), where G is the all-A ribbon graph of a knot diagram. In [CKS11]
Champanerkar, Kofman, and Stoltzfus defined a polynomial q(G; t, Y ) for ribbon
graphs, which is also a specialization of the Bollobás-Riordan-Tutte polynomial,
whose coefficients count the number of quasi-trees of G.

Proposition 1.1 ([CKS11, Proposition 2]). Let q(G; t, Y ) = C(G; 1, Y, tY −2).
Then q(G; t, Y ) is a polynomial in t and Y such that

(1.1) q(G; t) := q(G; t, 0) =
∑

j

ajt
j

where aj is the number of quasi-trees of genus j. Consequently q(G; 1) equals the
number of quasi-trees of G.
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Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus in [DFK+10, Theorem 3.2] show
that the absolute value of the evaluation of this polynomial with t = −1 gives
the determinant of the knot, an invariant defined to be the absolute value of the
evaluation of the Jones polynomial with t = −1.

In “A survey on the Turaev genus of knots” [CK14], Champanerkar and Kofman
ask whether the polynomial itself is an invariant when the Turaev genus gT of the
diagram is equal to that of the knot, that is, when it is minimal.

Question 1.2 ([CK14, Question 1]). Let G be the all-A ribbon graph for a diagram
D of a knot K. If gT (D) = gT (K), is q(G; t) an invariant of K?

We give a negative answer to this question by providing a counterexample.

Theorem 1.3. The polynomial whose coefficients count the number of quasi-trees
of the all-A ribbon graph obtained from a diagram with minimal Turaev genus is
not an invariant of the knot.

We prove this Theorem 1.3 by considering the two diagrams of 821 obtained
from the Knot Atlas [BNMea] and KnotScape [HT99]. We address these cases in
Examples 3.1 and 3.2, respectively.

We rely on an algorithm given by Armond, Druivenga, and Kindred in [ADK14]
to obtain alternating diagrams on a surface with minimal Turaev genus.

2. Definitions

A ribbon graph G is a graph embedded on a given surface Σ such that each
component of Σ\G is a disk; these components are called faces. This embedding
provides a cycling orientation of the edges around each vertex. The genus g(G) is
the genus of the surface g(Σ). Given a sub-ribbon graph H of G, the surface on
which H naturally embeds may not be the same as that of G, although it is the
case that g(H) ≤ g(G). A spanning sub-ribbon graph is one that contains all of the
vertices of G. A quasi-tree H of G is a spanning sub-ribbon graph that has only
one face.

The all-A ribbon graph is obtained by converting the all-A state into a ribbon
graph. Given a knot diagram D, we can smooth a crossing in two ways as in
Figure 1. A state of the diagram is a choice of smoothing for each crossing, resulting
in a disjoint union of circles in the plane. We consider the state where the A-
smoothing is chosen for each crossing. We convert it to a ribbon graph by taking
each circle in the state to be a vertex, each crossing to be an edge, and the cyclic
ordering of the edges around each vertex to be the cyclic ordering of the crossings
connected to each circle. The orientation of a circle is taken to be counter-clockwise
if the circle is nested in an even number of other circles and clockwise if it is nested
in an odd number of other circles.

AB

Figure 1. The A and B smoothings of a crossing in a knot diagram.
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Example 2.1. The construction of the all-A ribbon graph may be seen in an
example from [DFK+10, Figure 3] for a digram for 821 shown in Figure 2 below.

Figure 2. The construction of the all-A ribbon graph from a di-
agram for 821 (as appearing in [DFK+10, Figure 3]).

The genus of the all-A ribbon graph is called the Turaev genus of the diagram
and is denoted gT (D). The Turaev genus gT (K) of a knot K is the minimum value
of gT (D) where D can be any diagram for K.

The Turaev genus of a knot was first defined in [DFK+08]. Champanerkar and
Kofman offer a very complete “survey on the Turaev genus of knots” [CK14], and
we refer the reader to this short survey for further details.

3. A counterexample: Diagrams from the Knot Atlas and KnotScape

In Examples 3.1 and 3.2 below, we count the quasi-trees of the all-A ribbon graph
obtained from diagrams coming from the Knot Atlas [BNMea] and KnotScape
[HT99], respectively, as given on the left- and right-hand sides, respectively, in
Figure 3. We will actually consider the mirror image of the diagram on the right.
We show that the polynomial q(G, t) is not invariant on the knot.

Figure 3. The knot 821 presented in diagrams given by the Knot
Atlas [BNMea] and KnotScape [HT99], respectively. We will actu-
ally consider the mirror image of the diagram on the right.

Example 3.1. Consider first the knot diagram of 821 given by the Knot Atlas
[BNMea], as shown in Figure 3. This diagram has Turaev genus 2. We perform a
Reidemeister III move on the upper central three crossings to obtain a diagram of
Turaev genus 1.
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Armond, Druivenga, and Kindred [ADK14] give an algorithm to obtain an alter-
nating diagram on a surface. We apply this to obtain a Heegaard diagram, where
the dashed and dotted lines represent α and β curves, respectively, as given on the
left-hand side in Figure 4.

Figure 4. Alternating diagrams on the torus for 821 coming from
the Knot Atlas and KnotScape, respectively, after applying the
algorithm of [ADK14]. We will actually consider the mirror image
of the diagram on the right.

We checkerboard color this diagram on the torus to obtain the all-A ribbon
graph given on the left-hand side in Figure 5. We proceed to count the number of
quasi-trees.

c

b

a

h

g

e d

f

Figure 5. The all-A ribbon graphs for diagrams of 821 com-
ing from the Knot Atlas after a Reidemeister move III and from
KnotScape (as appearing in [DFK+10, Figure 3]), respectively. We
will actually take the dual of the ribbon graph on the right.

First of all, any spanning tree of G must contain exactly two edges from the loop
consisting of edges a, b, and c. From here the spanning trees fall into two classes:
those with one of the two edges g and h and those with neither g nor h. Any
spanning tree in the first class must contain one of the two edges d and e giving
a total of 3 × 2 × 2 = 12 spanning trees in the first class. Any spanning tree in
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the second class must contain two of the three edges d, e, and f giving a total of
3 × 3 = 9 spanning trees in the second class. Thus for this ribbon graph we get
a0 = 21.

A quasi-tree of G with genus 1 must contain all of the edges a, b, and c as well
as one of the two edges g and h and again these quasi-trees fall into two classes:
those that contain the edges d and e but not f and those that contain the edge f
and exactly one of the edges d and e. This gives us a1 = 4 + 2 = 6 for this ribbon
graph.

Thus, we obtain q(G, t) = 6t+ 21.

Example 3.2. Now consider the knot diagram of 821 given by KnotScape [HT99]
having Turaev genus 1 already and appearing on the right-hand side of Figure 3.
We will actually consider the mirror image.

Begin with the original diagram before taking the mirror image.
We apply the algorithm of [ADK14] to obtain an alternating diagram on a sur-

face, which again is a Heegaard diagram, where the dashed and dotted lines repre-
sent α and β curves, respectively, as given on the right-hand side in Figure 4.

We checkerboard color this diagram on the torus to obtain the all-A ribbon
graph, given in Figure 3 from [DFK+10], which we include on the right-hand side
in our Figure 5.

As observed in [DFK+10], this ribbon graph contains 9 spanning trees and 24
genus-1 quasi-trees, yielding q(G, t) = 24t+ 9.

Now we take the mirror image, which exchanges the all-A ribbon graph and the
similarly defined all-B ribbon graph, which is obtained from the all-B state; these
ribbon graphs are dual to each other. Thus we obtain q(G, t) = 9t+ 24.
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