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ABSTRACT. We study invertibility of matrices of the form D + R, where D
is an arbitrary symmetric deterministic matrix and R is a symmetric random
matrix whose independent entries have continuous distributions with bounded
densities. We show that ||(D + R)~'|| = O(n2?) with high probability. The
bound is completely independent of D. No moment assumptions are placed
on R; in particular the entries of R can be arbitrarily heavy-tailed.

1. INTRODUCTION

This note concerns the invertibility properties of n X n random matrices of the
type D + R, where D is an arbitrary deterministic matrix and R is a random
matrix with independent entries. What is the typical value of the spectral norm of
the inverse, (D + R)~Y|?

This question is usually asked in the context of smoothed analysis of algorithms
[9]. There D is regarded as a given matrix, possibly poorly invertible, and R models
random noise. Heuristically, adding noise should improve invertibility properties of
D, so the typical value ||(D+R) || should be nicely bounded for any D. Sometimes
this is true, but sometimes not quite.

This is indeed the case when R is a real Ginibre matrix, i.e. the entries of R are
independent N (0, 1) random variables. A result of Sankar, Spielman and Teng [10]
states that

(1.1) P{|(D+ R)~"|| > tv/n} <2.35/t, t>0.

In particular, ||(D+ R)™!|| = O(y/n) with high probability. Note that this bound is
independent of D. Tt is sharp for D = 0, since |R7!|| > y/n with high probability
([1; see [8)).

For general non-gaussian matrices R a new phenomenon emerges: invertibility
of D+ R can deteriorate as || D] — oo.

Suppose the entries of R are Sub—gaussia i.i.d. random variables with mean
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zero and variance one. Then a result of Rudelson and Vershynin [6] (as adapted by
Pan and Zhou [B]) states that as long as ||D|| = O(y/n), one has

P{|[(D+R)"'| > ty/n} <C/t+¢", t>0.

Here C' > 0 and ¢ € (0,1) depend only on a bound on the sub-gaussian moments
of the entries of R and on || D||/v/n.

Surprisingly, sensitivity to ||D]| is not an artifact of the proof, but a genuine
limitation. Indeed, consider the example where each entry of R equals 1 and —1
with probability 1/4 and 0 with probability 1/2. Let D be the diagonal matrix with
diagonal entries (0,d, d, ..., d). Then one can show that [|(D+R)~Y|| = d//n with
probability 1/2. In particular, ||(D 4+ R)™!|| > v/n as soon as ||D|| = d > n.

Note, however, that the typical value of ||(D+ R)™!|| remains polynomial in n as
long as ||D]| is polynomial in n. This result is due to Tao and Vu [IIHI3]; Nguyen
[] proved a similar result for symmetric random matrices R.

To summarize, as long as the deterministic part D is not too large, ||D| =
O(+y/n), Sankar-Spielman-Teng’s invertibility bound (LI)) remains essentially valid
for general random matrices R (with i.i.d. sub-gaussian entries with zero mean and
unit variance). For very large deterministic parts (||D|| > n), the bound can fail.
It is not clear what happens in the regime /n < || D|| < n.

Taking into account all of these results, it would be interesting to describe en-
sembles of random matrices R for which invertibility properties of D 4+ R are in-
dependent of D. In this note we show that if the entries of a symmetric matrix R
have continuous distributions, then the typical value of ||(D + R)™!| is polynomi-
ally bounded independently of D; in particular the bound does not deteriorate as
D] = oo

Theorem 1.1. Let A be an n x n symmetric random matrixz in which the en-
tries {A; j}1<i<j<n are independent and have continuous distributions with densi-
ties bounded by K. Then for all t > 0,

(1.2) P{|A7"| > n’t} <8K/t.

Since we do not assume that the entries have mean zero, this theorem can be
applied to matrices of type A = D + R, and it yields that ||(D + R)~!|| = O(n?)
with high probability. This bound holds for any deterministic symmetric matrix
D, large and small. We conjecture that the bound can be improved to O(y/n) as
in Sankar-Spielman-Teng’s result (LTI).

Remark 1.2. We do not place any upper bound assumptions in Theorem [, either
on the deterministic part D or the random part R. In particular, the entries of
R can be arbitrarily heavy-tailed. The upper bound K on the densities precludes
the distributions concentrating near any value, so effectively, it is a lower bound on
concentration.

Remark 1.3. A result in the same spirit as Theorem [[T] was proved recently by
Rudelson and Vershynin [7] for a different ensemble of random matrices R, namely
for random unitary matrices. If R is uniformly distributed in U(n), then

P{|[(D+ R)~'| > tnC} <t7¢, ¢>0.

2This example is due to M. Rudelson (unpublished); a similar phenomenon was discovered
independently by Tao and Vu [13].
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As in Theorem [[LJl D can be an arbitrary deterministic n X n matrix; C,c¢ > 0
denote absolute constants (independent of D).

Remark 1.4. For the specific class where D is a multiple of the identity, sharper
results are available than Theorem [[LIl In particular, results by Erd8s, Schlein
and Yau [2] and Vershynin [15] yield an essentially optimal bound on the resolvent,
(D — 2I)7!|| = O(y/n). Moreover, the latter estimate does not require that the
entries of D have continuous distributions; see [2[15] for details.

Remark 1.5. While Theorem [[T] is stated for symmetric matrices, it holds as well
for Hermitian matrices. The proof for the Hermitian case only requires an easy
change to the proof of Lemma 2] below.

Remark 1.6. The proof of Theorem [[.T] shows that one can relax the assumption
of joint independence of the entries. Is suffices to assume that the individual dis-
tribution of each entry A;;, conditioned on all other entries except Aj;, has density
bounded by K.

In the rest of the paper, we prove Theorem [[LJl The argument is very short and
is based on computing the influence of each entry of A on the corresponding entry
of A=1.

2. PROOF OoF THEOREM [[L1]
Recall that the weak L, norm of a random variable X is

2.1) 1X ||p.oo := supt (P{|X| > t)?, 0<p< .
( P >0

Lemma 2.1. Let A be the random matriz defined in Theorem [LI. Then for all
1<u,j<mn,
(A7) jl1,00 < 2K.

Proof. Let us determine how a single entry of the inverse, say (A71); ;, depends
on the corresponding entry of A, ie. A;;. To this end, let us condition on all
entries of A except A; ;, thus treating them as constants. We could proceed by the
co-factor expansion. But we find it easier to use Jacobi’s formula, which is valid
for an arbitrary square matrix A = A(t) that depends on a parameter ¢:
dA(t)

dt J
Here and later |A| denotes the determinant and adj(A) denotes the adjugate matrix
of A. Let A(; ;) be the sub-matrix obtained by removing the it" row and j** column
of A, and let A j) (k) be the sub-matrix obtained by removing rows ¢ and k£ and
columns j and [ from A.

Consider the off-diagonal case first, where i # j. The Jacobi formula yields

@101 = tr[adi(A(1)

T [ Aun| = (1| Aq .0, so that

(2:2) Al = D™ AG,60 i +a

for some constant a (meaning that a does not depend on A4, ;). Further,
d

— Al = (=)™ (|45 + 4G = (=1)772|Aq )]
dA;

= 2‘A(i,j),(j,i)|Ai,j + (—1)i+j2a.
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Thus, for some constant b one has
(23) |A‘ = |A(2,j),(],l)|A127] —|- (—1)i+j2aAi)j —|— b

Equations (Z2) and ([23) and Cramer’s rule imply that for all (4, j) there exist
constants p, ¢ such that

|(A71). | _ ‘A(%J)| _ |A’i7j +p‘ o ’ X

il = = =
! 4] |(Aij+p)?+q 1X2+g

First, assume that ¢ > 0. Then |[(A™!); ;| < 1/|X|, and thus we have for all

t>0,

, where X = A; ; + p.

(2.4) P{(A™ 1) ] >t} <P{|X| < 1/t} <2K/t.
Next, assume 0 > g =: —s; then
1
AN = ———.
‘( ) ’J| |X—S/X|

Note that the function f(x) := z — s/z satisfies f'(z) = 1+ s/2? > 1 for all x # 0.
Thus the set of points {z € R : |f(z)| < €} has diameter at most 2¢ for every
€ > 0. When z = X is a random variable with density bounded by K, it follows
that P{|f(X)| < e} < 2Ke. Using this for € = 1/¢, we obtain

P{|(A™)i ] >t} <P{F(X)] < 1/t} < 2K/t

We have shown that in the off-diagonal case i # j, the estimate (Z4]) always holds.
The diagonal case ¢ = j is similar. The Jacobi formula (or just expanding the

determinant along the i*® row) shows that [A| = |A(; ;)|A;; + ¢ for some constant
c. Then a similar analysis yields P{|(A7'); ;| > ¢t} < 2K/t. This completes the
proof. O

Proof of Theorem [[1l. Although the weak L; norm is not equivalent to a norm,
the following inequality holds for any finite sequence of random variables X;:

59 i), <

This inequality is due to Hagelstein (see the proof of Theorem 2 in [3]); it follows
by a truncation argument and Chebyshev’s inequality. We use (23] together with
the estimates obtained in Lemma 2.1 to bound the Hilbert-Schmidt norm of A,

A= asl = (2 ae0?)™”|

|1,oo-

1<ij<n hee
<4 > (A Yijlhee < 8KN2.
1<i,j<n
The definition of the weak L1 norm then yields
sup tP{||A~ " ||lgs > t} < 8Kn?.
>0
Since ||[A71|| < ||A7!||us, the proof of Theorem [[1lis complete. O
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