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A GLOBAL NULLSTELLENSATZ FOR IDEALS

OF DENJOY-CARLEMAN FUNCTIONS

FRANCESCA ACQUISTAPACE, FABRIZIO BROGLIA, AND ANDREEA C. NICOARA

(Communicated by Lev Borisov)

Abstract. We prove a Nullstellensatz result for global ideals of Denjoy-
Carleman quasi-analytic functions in both finitely generated and infinitely gen-
erated cases.

1. Introduction

Let a be an ideal in a ring C(Rn) of Denjoy-Carleman quasi-analytic functions
so that the process of resolution of singularities applies to C(Rn); see [3] and [4].
The classical theory of the Denjoy-Carleman quasi-analytic functions may be found
in [5], while [6] is a comprehensive recent survey. We will characterize here the
ideal I(Z(a)) of functions vanishing on the variety of the ideal a in terms of the
�Lojasiewicz radical, another notion of �Lojasiewicz radical computed on compact
sets, and the saturation.

1.1. Theorem. Let a be an ideal in C(Rn).

(i) If a is finitely generated, then I(Z(a)) = �̃L
√
a, the saturation of the �Lojasiewicz

radical of a.
(ii) I(Z(a)) =

(
�L
√
a
)
K
, where

(
�L
√
a
)
K

is the �Lojasiewicz radical of a computed on
all compact subsets of Rn.

The main theorem will be derived from the following result proven in [2].

1.2. Theorem. Let a ⊂ E(Rn) be a �Lojasiewicz ideal, where E(Rn) is the ring of
smooth functions on Rn. Then the following hold:

(a) �̃L
√
a = �L

√
a, i.e. the saturation of �L

√
a equals its Whitney closure.

(b) I(Z(a)) = �L
√
a.
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2. Definitions

We start by defining C(Rn) in the most general way such that it contains all
real-analytic functions on Rn and the resolution of singularities holds for finitely
generated ideals in C(Rn); see [3].

2.1. Definition. C(Rn) is an R-subalgebra of E(Rn) such that on every open set U
in Rn, the following properties hold:

(i) O(U) ⊂ C(U), where O(U) denotes the algebra of restrictions to U of real-
analytic functions on Rn.

(ii) C is closed under composition with mappings whose components are in C.
(iii) C is closed under differentiation.
(iv) C is quasi-analytic, namely if f ∈ C(U), a ∈ U, and the Taylor series of f at a

is identically zero, Taf ≡ 0, then f vanishes in a neighborhood of a.
(v) C is closed under division by a coordinate.
(vi) C is closed under inverse, and hence it satisfies the Implicit Function Theorem.

The statements of Theorems 1.1 and 1.2 contain the saturation, the Whitney
closure, two notions of �Lojasiewicz radical, as well as the notion of a �Lojasiewicz
ideal. We define all of them now.

2.2. Definition. The saturation of an ideal a in C(Rn) is the ideal

ã = {g ∈ C(Rn) | ∀x ∈ Rn gx ∈ aCx},
where Cx is the local ring of germs of Denjoy-Carleman functions at the point x.
The saturation of an ideal a in E(Rn) is the ideal

ã = {g ∈ E(Rn) | ∀x ∈ Rn gx ∈ aEx},
where Ex is the ring of germs of smooth functions in n variables at x.

As shown in [2], if a is an ideal in E(Rn), then

ã = {g ∈ E(Rn) | ∀ compact K ⊂ Rn ∃h ∈ E(Rn) s.t.

Z(h) ∩K = ∅ and hg ∈ a}
= {g ∈ E(Rn) | ∀x ∈ Rn ∃h ∈ E(Rn) s.t. h(x) 
= 0 and hg ∈ a},

where Z(h) is the zero set of h.

2.3. Definition. Let the algebra E(Rn) of smooth real-valued functions on Rn be
endowed with the compact open topology. Let a be an ideal in E(Rn). The Whitney
closure a is the closure of a in this topology. By the Whitney Spectral Theorem,
a = a∗, where

a
∗ = {g ∈ E(Rn) | ∀x ∈ Rn Txg ∈ Txa}.

2.4. Definition. The �Lojasiewicz radical of an ideal a in E(Rn) is given by
�L
√
a := {g ∈ E(Rn) | ∃ f ∈ a andm ≥ 1 s.t. f − g2m ≥ 0 on Rn}.

If a is an ideal in C(Rn), then
�L
√
a := {g ∈ C(Rn) | ∃ f ∈ a andm ≥ 1 s.t. f − g2m ≥ 0 on Rn}.

2.5. Definition. The �Lojasiewicz radical computed on all compact subsets of Rn

of an ideal a in C(Rn) is given by(
�L
√
a
)
K

:= {g ∈ C(Rn) | ∀ compact K ⊂ Rn ∃ f ∈ a and m ≥ 1

s.t. f − g2m ≥ 0 on K}.
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2.6. Definition. An ideal a ⊂ E(Rn) is a �Lojasiewicz ideal if

(1) a is generated by finitely many smooth functions f1, . . . , fl;
(2) a contains an element f with the property that for any compact K ⊂ Rn

there exist a constant c and an integer m such that |f(x)| ≥ c d(x,Z(a))m

on an open neighborhood of K.

2.7. Remark. The element f can be taken to be the sum of squares of the generators
f2
1 + · · ·+ f2

l .

3. Proof of Theorem 1.1

Proof of part (i) of Theorem 1.1. The ideal a is finitely generated so a=(f1, . . . , fl).
In [3] Bierstone and Milman extended the resolution of singularities to the Denjoy-
Carleman quasi-analytic classes. As a result, each of the generators fi of a satisfies
a �Lojasiewicz inequality; see Theorem 6.3 of [3]. Let â be the ideal in the ring E(Rn)
generated by the elements of a. Clearly, â is a �Lojasiewicz ideal since f = f2

1+· · ·+f2
l

satisfies part (2) of Definition 2.6. Theorem 1.2 then implies that I(Z(â)) =
�̃L
√
â.

Since Z(a) = Z(â), it follows that I(Z(a)) = I(Z(â))∩C(Rn) =
�̃L
√
â∩C(Rn). If we

could show that �L
√
a =

�L
√
â ∩ C(Rn), then it would follow that �̃L

√
a =

�̃L
√
â ∩ C(Rn),

where saturation on the left-hand side is in C(Rn), while saturation on the right-

hand side is in E(Rn). �L
√
a =

�L
√
â ∩ C(Rn) is a consequence of the following lemma.

3.1. Lemma. Let O(Rn) be the ring of real-analytic functions on Rn, and let A(Rn)
be any ring of functions on Rn such that O(Rn) ⊂ A(Rn) ⊂ E(Rn). If a is any
ideal in A(Rn) and if â is the ideal generated by the elements of a in E(Rn), then
�L
√
a =

�L
√
â ∩A(Rn).

3.2. Remark. It is not necessary for a to be finitely generated.

Proof. Note that �L
√
a ⊂ �L

√
â ∩ A(Rn) is trivially true, so the proof of the lemma

reduces to showing the reverse inequality
�L
√
â ∩A(Rn) ⊂ �L

√
a.

Let g ∈ �L
√
â ∩ A(Rn), then there exist f ∈ â and m ≥ 1 such that f ≥ g2m on

Rn. The latter implies f2 ≥ g4m on Rn. Since f ∈ â, there exist f1, . . . , fk ∈ a,
h1, . . . , hk ∈ E(Rn) such that f = h1f1 + · · · + hkfk. Therefore, |f | ≤ |h1| |f1| +
· · ·+ |hk| |fk|, so

|f |2 ≤ (|h1| |f1|+ · · ·+ |hk| |fk|)2 ≤ k (|h1|2 |f1|2 + · · ·+ |hk|2 |fk|2).
If we could bound from above the coefficient functions h1, . . . , hk by functions in
A(Rn), we would be done. Let ε > 0 be given. Since the coefficient functions are
smooth, they are clearly continuous, so there exist global real-analytic functions
h̃1, . . . , h̃k ∈ O(Rn) such that |h̃i(x)−hi(x)| < ε for all x ∈ Rn and all i = 1, . . . , k.

Therefore, hi(x) < h̃i(x)+ ε for all x ∈ Rn and all i = 1, . . . , k. Note that O(Rn) ⊂
A(Rn). We have thus shown that

g4m ≤ f2 < k
(
(h̃2

1 + ε)2 f2
1 + · · ·+ (h̃2

k + ε)2 f2
k

)
,

where f̃ = k
(
(h̃2

1 + ε)2 f2
1 + · · ·+ (h̃2

k + ε)2 f2
k

)
∈ a as needed. �

We now let A(Rn) = C(Rn) noting that global real-analytic functions are con-
tained in any Denjoy-Carleman ring of global functions of the type we are consid-

ering. We obtain �L
√
a =

�L
√
â ∩ C(Rn), hence �̃L

√
a =

�̃L
√
â ∩ C(Rn). �
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3.3. Remarks. (1) It should be noted here that part (i) of Theorem 1.1 parallels the
result obtained by Acquistapace, Broglia, and Fernando in [1] for an ideal of global
real-analytic functions on a C-analytic set.

(2) Let A(Rn) be a non-quasi-analytic class containing all real-analytic functions.
Let a be a finitely generated ideal in A(Rn) such that the definition of a �Lojasiewicz
ideal, Definition 2.6, is verified for â. The proof given above shows that part (i) of
Theorem 1.1 holds for a. Characterizing which non-quasi-analytic functions satisfy
�Lojasiewicz inequalities is an open problem, however. Only isolated examples were
given by the Malgrange school.

Proof of part (ii) of Theorem 1.1. The ideal a here is not necessarily finitely gen-
erated. Note that only I(Z(a)) ⊂

(
�L
√
a
)
K

needs to be proven as
(

�L
√
a
)
K

⊂ I(Z(a))
is obvious. Consider g ∈ I(Z(a)). Let K be any compact subset of Rn. We
will use topological noetherianity, a consequence of the resolution of singulari-
ties for the Denjoy-Carleman classes, to show there exist a finite number of el-
ements of the original ideal f1, . . . , fl ∈ a and an open set U ⊃ K such that
Z(a)∩U = Z ((f1, . . . , fl))∩U. If a = (0), there is nothing to be proven, so assume
a 
= (0), and take some f1 ∈ a not identically zero. If there exists an open set
U ⊃ K such that Z((f1)) = Z(a) on U, we are done with l = 1; otherwise, there
is some f2 ∈ a such that Z((f1, f2)) � Z((f1)). Inductively, we will have chosen
f1, . . . , fk ∈ a such that Z((f1, f2, . . . , fk)) � Z((f1, f2, . . . , fk−1)). Hence we have
a sequence of finitely generated ideals (f1) ⊂ (f1, f2) ⊂ . . . ⊂ (f1, . . . , fk) ⊂ . . . .

Topological noetherianity, Theorem 6.1 in [3] (see also Theorem 3.1 in [4]), guar-
antees that the sequence of corresponding zero sets stabilizes, i.e. there exists some
k and some open set U ⊃ K such that Z((f1, f2, . . . , fk)) = Z(a) on U. Set l = k.
We have obtained Z(a) ∩ U = Z ((f1, . . . , fl)) ∩ U. We now recall the following
lemma from [2].

3.4. Lemma. Let a be a �Lojasiewicz ideal generated by f1, . . . , fl and f = f2
1 + · · ·+

f2
l . Let g ∈ E(Rn) be such that Z(g) ⊃ Z(f) = Z(a). Then for any compact set
K ⊂ Rn, there exist a constant c and a positive integer m such that g2m ≤ cf on
an open neighborhood of K. In particular, there exist an integer m and an element
a ∈ a such that g2m ≤ |a| on an open neighborhood of K.

Its proof from [2] carries over if instead of Rn we restrict to an open set U ⊂ Rn

provided that all compact sets considered are subsets of U. The ideal generated by

f1, . . . , fl in E(Rn) is �Lojasiewicz and since g ∈ I(Z(a)), it follows that Z(g)
∣∣∣
U
⊃

Z ((f1, . . . , fl))
∣∣∣
U
. By the lemma, there exist a constant c and a positive integer m

such that g2m ≤ cf on some set Ũ , where K ⊂ Ũ ⊂ U. Therefore, g ∈
(

�L
√
a
)
K
. �

3.5. Remark. Unlike �L
√
·,

(
�L
√
·
)
K

already contains in its definition a saturation oper-

ation. In other words, for any ideal a in C(Rn),
(

�L
√
a
)
K

is already saturated, while
�L
√
a might not be.
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