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PARRY’S TOPOLOGICAL TRANSITIVITY AND f-EXPANSIONS

E. ARTHUR ROBINSON, JR.

(Communicated by Yingfei Yi)

Abstract. In his 1964 paper on f -expansions, Parry studied piecewise-
continuous, piecewise-monotonic maps F of the interval [0, 1], and introduced
a notion of topological transitivity different from any of the modern defini-
tions. This notion, which we call Parry topological transitivity (PTT), is that
the backward orbit O−(x) = {y : x = Fny for some n ≥ 0} of some x ∈ [0, 1]
is dense. We take topological transitivity (TT) to mean that some x has a
dense forward orbit. Parry’s application of PTT to f -expansions is that PTT
implies the partition of [0, 1] into the “fibers” of F is a generating partition

(i.e., f -expansions are “valid”). We prove the same result for TT, and use
this to show that for interval maps F , TT implies PTT. A separate proof is
provided for continuous maps F of perfect Polish spaces. The converse is false.

1. Introduction

The concept of topological transitivity plays an important role in dynamical sys-
tems theory. A map F : X → X, where X is a topological space, is said to be
topologically transitive (TT) if the forward orbit of some x ∈ X, defined as

O+(x) = {Fnx : n ≥ 0},
is dense in X. Note that for U, V ⊆ X and F : X → X,

(1.1) U ∩ FnV �= ∅ ⇔ F−nU ∩ V �= ∅.
Another definition, sometimes called regional topological transitivity (RTT), is that
for any U, V ⊆ X nonempty and open, there exists n > 0 so (1.1) holds. When F
is continuous, there are many situations where TT and RTT are equivalent (see,
e.g., [19], [15], [3] and Proposition 1 below). However, one often wants to apply
topological transitivity with less ideal hypotheses. The benefit of TT is that it
makes sense even when F is not continuous.

In this paper, we will mostly be interested in piecewise-monotonic, piecewise-
continuous maps F on the unit interval. In 1964, Parry [23] gave a different defi-
nition of topological transitivity in this situation. Parry’s definition, which we will
refer to here as Parry topological transitivity (PTT), says that for some x ∈ X, the
backward orbit, defined as

O−(x) := {F−n(x) : n ≥ 0} = {y : x = Fn(y) for some n ≥ 0},
is dense.
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Note that when F is invertible, the backward orbit of x is simply the forward
orbit of x under F−1. For invertible maps, topological transitivity is often defined
as the existence of x ∈ X with dense two-sided orbit, defined as O(x) = {Fn(x) :
n ∈ Z} = O+(x)∪O−(x). We will refer to this as two-sided topological transitivity
(TTT). Again, it is often the case for homeomorphisms F (see Corollary 2 below)
that TTT is equivalent to TT, and thus to PTT. But the situation becomes more
complicated if F is not invertible, and even more complicated if F is not continuous.

A constant function F obviously satisfies PTT in a trivial way. As we will
see, even for surjective maps F , PTT generally does not imply TT. But in many
situations, TT does imply PTT. It is not hard to obtain such results under “nice”
hypotheses, like for continuous maps of perfect Polish spaces (see Theorem 3). In
this case, we show that TT implies O−(x) is dense for a dense Gδ set of x ∈ X.
Recently, it was shown in [19] that continuous TT maps F : R → R satisfy PTT (in
fact [19] proves more: if such an F is TT, then O−(x) is dense for all but possibly
two points x ∈ R).

Our main goal in this paper is to better understand the situation studied by Parry
[23], namely, piecewise-continuous, piecewise-monotonic maps F of the interval. We
call a map F : [0, 1] → [0, 1] a piecewise interval map if there is a finite or countable
partition ξ of Lebesgue almost all of [0, 1] into disjoint intervals, indexed by a “digit
set” D, such that each F |Δ(d) is continuous and strictly monotonic (see Section 3
for details). In his paper [23], Parry considered piecewise interval maps in the
context of f -expansions, as defined by Rènyi [24], Bissinger [5] and Everett [11] in
the 1940’s and 1950’s. Unknown to these authors, the same idea had previously
been studied in 1924 by Kakeya [13].

The idea of f -expansions (the term is due to Rènyi [24]) is to use piecewise
interval maps F to obtain what we call the F -representation r(x) ∈ DN of x ∈ [0, 1]
by recording the sequence r(x) = .d1d2d3 . . . of ξ-intervals visited by the F -iterates
of x (see Section 3). The goal is to find conditions on F so that distinct x have
distinct F -representations (“valid” in Parry’s terminology [23]). We also study the
algorithm (see Section 5) to recover x from r(x). In particular, under appropriate
conditions the “f -expansion” f(d1 + f(d2 + f(d3 + . . . ))) converges to x, where
f : R → [0, 1] is a function satisfying F (x) = f−1(x) mod 1.

There are, of course, two especially well know cases of valid F -representations
and f -expansions. Binary representations/expansions1 of real numbers correspond
to the map F (x) = 2x mod 1 with f(x) = x/2. Continued fraction representa-
tions/expansions correspond to the map F (x) = 1/x mod 1 with f(x) = 1/x. In
each of these cases, F satisfies both TT and PTT.

In [23] Parry proved that PTT implies F -representations are valid (and also, with
some additional hypotheses, that valid F -expansions implies PTT). In this paper,
we prove a slightly strengthened version of Parry’s first result, as well as a “modern”
version of Parry’s result, which says that TT implies F -representations are valid.
One benefit is that TT is often easy to verify. For example (see Proposition 5), any
F that is ergodic for an invariant measure μ equivalent to Lebesgue measure will
satisfy TT. In the end, we show (Theorem 23) that TT implies PTT for piecewise
interval maps F .

1Decimal representations/expansions correspond to replacing the “base” 2 with base 10.
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2. Topological transitivity

We begin by carefully stating two standard results mentioned in the introduction.

Proposition 1. Suppose F : X → X is a continuous map on a Polish space
(i.e., X is separable and completely metrizable). If F satisfies RTT, then the set
X0 = {x : O+(x) is dense in X} contains a dense Gδ set. In particular, RTT
implies TT. If, in addition, X is perfect (i.e., has no isolated points), then TT
implies RTT.

Proof. Assume U∩F−nV �= ∅ for some n ≥ 0. Then for any V open,
⋃

n≥0 F
−nV is

dense open, since it meets any open set U . Thus, whenever {Vk} is a countable base
for X, the Baire category theorem implies the Gδ set X0 =

⋂
k≥0

⋃
n≥0 F

−nVk is

dense. Clearly x ∈ X0 implies that for any k, there exists n ≥ 0 so that Fn(x) ∈ Vk,
so O+(x) is dense.

Now suppose O+(x) is dense and let U and V be open. There exist n,m ≥ 0
with Fnx ∈ U and Fmx ∈ V . Since X is perfect, we have for any nonempty
open V that Vn = V \{F k(x) : x = 0, 1, . . . , n − 1} is nonempty and open. Thus
{k ∈ N : F k(x) ∈ V } is infinite, and we may assume m > n. It follows that
Fnx ∈ U ∩ F−m+nV �= ∅. �
Corollary 2. If F : X → X is a homeomorphism of a perfect Polish space, then
TT is equivalent to TTT. In fact, F and F−1 both satisfy TT, and there is a dense
Gδ subset X0 ⊆ X so that for any x ∈ X0, O

−(x) and O+(x) are both dense.

To see this, note that O(x) dense implies either O+(x) or O−(x) is dense. In the
latter case, U ∩ F−nV �= ∅ for some n ≥ 0.

2.1. The relation between TT and PTT. The following example shows that
even for continuous surjective maps of the closed interval, PTT does not imply TT.

Example 1. Define F : [0, 1] → [0, 1] by2

F (x) =

⎧⎪⎨
⎪⎩
−2x+ 1/2 if x ∈ [0, 1/4),

2x− 1/2 if x ∈ [1/4, 3/4), and

−2x+ 5/2 if x ∈ [3/4, 1].

Note that O−(1/2) is dense, whereas Fn(1/8, 3/8)∩ (5/8, 7/8) = ∅ for all n ≥ 0.
Note also that just a single point has O−(x) dense, and not a dense Gδ set.

In the other direction, we have the following:

Theorem 3. Suppose F : X → X is continuous and TT on a perfect Polish space
X. Then F satisfies PTT, and moreover, X0 = {x : O−(x) is dense} contains a
dense Gδ subset.

Proof. It is well known that X Polish implies XN is Polish: A complete separable
metric on XN is given by d̃(x̃, ỹ) = supn≥1{d(xn, yn)/2

n(1 + d(xn, yn))}, where d

is a complete metric on X. The closed subspace X̃ = {x̃ = (x1, x2, x3, . . . ) ∈ XN0 :

xn = F (xn+1)} ⊆ XN is also Polish. Define F̃ : X̃ → X̃ by F̃ (x1, x2, x3, . . . ) =

(F (x1), x1, x2, x3, . . . ), and note that F̃−1(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ), so F̃ is

a homeomorphism. Call F̃ the natural extension of F .

2My thanks to Ethan Akin for suggesting this example.
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The map πk : X̃ → X, defined by πk(x1, x2, x3, . . . ) = xk, is surjective and open.

It follows that X̃ is perfect since X is perfect. Given a countable base U for X, let

Ũ consist of all nonempty sets of the form

(2.1) Ũ = π−1
1 (U1) ∩ π−1

2 (U2) ∩ · · · ∩ π−1
� (U�) ⊆ X̃,

for some � ≥ 1 and U1, U2, . . . , U� ∈ U . Then Ũ is a countable base for X̃.

We claim that O+(x̃) is dense in X̃ for any x̃ ∈ π−1
1 (X0), and thus F̃ satisfies

TT.
To prove the claim, fix x ∈ X0 and let x̃ = (x, x2, x3, . . . ) ∈ π−1

1 (X0). Note that
for any k ≥ 1,

F̃ k(x̃) = (F k(x), F k−1(x), . . . , F (x), x, x2, x3, . . . ).

Choose Ũ ∈ Ũ , satisfying (2.1), so that

(2.2) U = F−�+1U1 ∩ F−�+2U2 ∩ · · · ∩ U� ⊆ X

is nonempty. Since F satisfies TT, the set

XU :=
⋃
n≥0

F−nU = {x ∈ X : O+(x) ∩ U �= ∅}

is dense open, so X0 =
⋂

U∈U XU is dense Gδ.

Since O+(x) is dense andX is perfect, we can choose n ≥ �−1 so that Fn−�+1x ∈
U . Then

Fn(x) ∈ U1, F
n+1(x) ∈ U2, . . . , Fn+�−1(x) ∈ U�,

and it follows from (2.1) that F̃n(x̃) ∈ Ũ . Since Ũ ∈ Ũ was arbitrary, O+(x̃) is
dense, proving the claim.

Now, since F satisfies TT, and F̃ is a homeomorphism of a perfect metric space

X̃, it follows from Corollary 2 that F̃ satisfies TTT. Thus O−(x̃) is dense for

x̃ ∈ X̃0 ⊆ X̃, where X̃0 contains a dense Gδ. Since π1 is surjective and open,

X0 = π1(X̃0) contains a dense Gδ, and for x̃ ∈ X̃0, π1(O
−(x̃)) is dense in X. But

π1(O
−(x̃)) ⊆ O−(π1(x̃)) = O−(x), so F satisfies PTT. �

For F : X → X, we call a set B− ⊆ X a backward orbit of x ∈ X if x1 = x
and B− = {x1, x2, x3, . . . } with xn = F (xn+1) for all n ≥ 1. We say F satisfies
strong Parry topological transitivity (SPTT) if there exists a dense backward orbit
for some x ∈ X . Clearly SPTT implies PTT. Conversely, the proof of Theorem 3
shows that when F is a continuous map on a perfect Polish space, TT implies
SPTT. Note that Example 1 does not satisfy SPTT although it does satisfy PTT.

2.2. PTT for symbolic dynamical systems. Here we consider the one-sided
full shift

DN = {x = .d1d2d3 · · · : dj ∈ D},
where 2 ≤ #(D) ≤ ℵo, with left shift map S(.d1d2d3 . . . ) = .d2d3 . . . , and also

the two-sided full shift DZ with left shift homeomorphism S̃(. . . d−1.d0d1d2 . . . ) =
. . . d−1d0.d1d2 . . . , and with the product topology in each case. If #(D) < ∞, these
are perfect compact metric spaces, homeomorphic to the Cantor set, but in any
case, they are uncountable, totally disconnected, perfect Polish spaces (since D is
Polish).
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Call a subset X ⊆ DN a one-sided subshift if it is closed and S-invariant: S(X) ⊆
X. Similarly, call a subset Y ⊆ DZ a two-sided subshift if it is closed and S̃-

invariant: S̃(Y ) = Y . The language L of X (or L of Y ) is the set of all finite
words w = w0w1 . . . w�−1 (we say |w| = �) so that there exist x = .d1d2d2 · · · ∈ X
(or y = . . . d−1d0.d1d2 · · · ∈ Y ) and k ∈ N (or k ∈ Z) with w0w1 . . . w�−1 =
dkdk+1 . . . dk+�−1.

Given a one-sided subshift X, we define X̃ to be the two-sided subshift with

the same language. The two-sided shift S̃ on X̃ is conjugate to the natural ex-
tension of the one-sided shift S on X in the sense of (the proof of) Theorem 3.

Indeed, for X̃1 := {x̃ = (x1,x2,x3, . . . ) ∈ XN0 : xn = S(xn+1)} ⊆ XN, one
has x1 = .d1d2d3 . . . , x2 = .d0d1d2 . . . , x3 = .d−1d0d1 . . . , etc., so the map

. . . d−1.d0d1d2 . . . �→ x̃ : X̃ → X̃1 provides the desired conjugacy.

Corollary 4. Let S be a one-sided shift and let S̃ be its two-sided natural extension.

Then S satisfies TT if and only if S̃ satisfies TT, if and only if S̃−1 satisfies TT,

if and only if S̃−1 satisfies TTT, if and only if S satisfies SPTT.

Remark 1. A sub-base for the topology on X (or on Y ) is given by cylinder sets
[w] := {x ∈ X : x|[1,2,...,|w|] = w}, for w ∈ L (or [w] := {y ∈ Y : y|[−�,−�+1,...,�−1,�]

= w}, w ∈ L and |w| = 2�+ 1). One can characterize TT for S (or TTT for S̃) by
the property that L satisfies

∀ v, w ∈ L ∃ c ∈ L so that vcw ∈ L.
Example 2. Let X ⊆ {1, 2, 1, 2}N be the subshift3 defined by forbidding the words
F = {k� : k, � ∈ {1, 2}}. Here we have two one-sided two-shifts: “unbarred” {1, 2}N
and “barred” {1, 2}N, with the possibility of “barring” the tail of a point x ∈ {1, 2}N.
Any point x ∈ X has Sn(x) ∈ {1, 2}N ∪ {1, 2}N for n sufficiently large, so O+(x) is
never dense. However, any x ∈ {1, 2}N has O−(x) dense.

3. Piecewise interval maps

Let λ denote Lebesgue measure on [0, 1]. An interval partition is a finite or
countable indexed collection ξ = {Δ(d) ⊆ [0, 1] : d ∈ D} of 2 ≤ #(ξ) ≤ ℵ0 disjoint
intervals such that D :=

⋃
d∈D Δ(d) satisfies λ(D) = 1. The intervals Δ(d), which

have endpoints ad < bd, may be open, closed, half-open (ad, bd] or half-closed
[ad, bd). Let Δ(d)◦ = (ad, bd) and note that

⋃
d∈D Δ(d)◦ is open and dense. We

generally refer to elements of the index set D as digits.
A piecewise interval map (PIM) F on [0, 1] is an interval partition ξ, together

with a map F : D → [0, 1] (informally, F : [0, 1] → [0, 1]) such that

(1) each F |Δ(d) is continuous and strictly monotonic,

(2) λ(Bc) = 0, where B := {x : Fnx ∈ D for all n ≥ 0} =
⋂

n≥0F
−nD,

(3) for all d, d′ ∈ D (including d = d′) and n ≥ 0, Δ(d) ∩ Fn(Δ(d′)) is either
empty or an interval (i.e., it does not consist of a single point, or equiva-
lently, Δ(d)◦ ∩ Fn(Δ(d′)◦) �= ∅).

We often assume (but do not require) that F is surjective (or, at least “almost

surjective”: F (D) = [0, 1], which is implied by TT). We say F |Δ, Δ ∈ ξ, is type A
if it is increasing and type B if it is decreasing. We say F is type A (or type B)
if every F |Δ is type A (or type B). Otherwise, F is called mixed type. We say F

3It is a nonprimitive subshift of finite type.
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is full on Δ ∈ ξ if (0, 1) ⊆ F (Δ). Condition (3) can always be achieved by taking
each Δ ∈ ξ to be an open interval. The process of removing some endpoints from
ξ to make F satisfy (3) only changes D on a countable set. However, in certain
examples, it is natural to keep the endpoints (see the examples below). We define
TT and PTT for such F as in the introduction (in terms of a point having a dense
orbit).

Since each F |Δ is strictly monotonic, condition (2) is automatic if Dc is count-
able. In particular, (2) always holds if ξ is finite. Condition (2) also holds if
λ ({x : F ′(x) = 0}) = 0, since this is equivalent to F being nonsingular in the sense
that λ(F−1(E)) = 0 for each E ⊆ [0, 1] with λ(E) = 0.

In many cases (see, e.g., [8], [7]) a stronger version of (2) holds. A Borel prob-
ability measure μ on [0, 1] is invariant if μ(Dc) = 0, and μ(F−1J) = μ(J). Call
an invariant measure μ full (FIM) if μ(J) > 0 for any open interval J . An FIM
is absolutely continuous (ACIM) if there exists ρ ∈ L1([0, 1], λ), ρ(x) > 0, with
μ(J) =

∫
J
ρ(x) dλ(x). The existence of an ACIM implies that F is nonsingu-

lar. Often, one can also show that an FIM (or ACIM) μ is ergodic: this means
F (E) = E, for E ⊆ [0, 1] Borel, implies μ(E)μ(Ec) = 0.

Proposition 5. If a PIM F has an ergodic FIM (or ACIM ), then F satisfies TT.

To prove this, let J be the collection of open intervals with rational endpoints.
The Birkhoff ergodic theorem implies that for μ-a.e. x ∈ [0, 1] and any interval
J ∈ J

lim
n→∞

1

n

n−1∑
k=0

χJ (F
kx) = μ(J) > 0,

so O+(x) ∩ J �= ∅, and O+(x) is dense.

3.1. F -representations. Recall that

D =
⋃
d∈D

Δ(d) ⊆ [0, 1] and B =
⋂
n≥0

F−n(D).

By abuse of notation, we also denote by ξ the map ξ : D → D with ξ(x) = d for
x ∈ Δ(d). We call ξ, defined for λ-a.e. x ∈ [0, 1], the digit function. Given a PIM
F , we define the F -representation of x ∈ B to be the sequence

r(x) = .d1d2d3d4 · · · ∈ DN,

where dn = ξ(Fn−1x) for n ∈ N. In ergodic theory, r(x) is called the (F, ξ)-name
of x. We say that F -representations are valid if the map r is injective for λ-a.e.
x ∈ B.

Parry observed in his paper [23] that the conditions for validity known at the
time (i.e., in [5], [11], [24]) were all sufficient conditions, and were all “metric”
in nature. Probably the nicest result of this type is Kakeya’s Theorem [13], which
essentially says that F -representations are valid for PIMs F of type A or B, provided
|F ′(x)| > 1 almost everywhere. Parry observed that one ought to expect the
necessary and sufficient conditions for validity to be dynamical in nature. He went
on to prove that F -representations are valid if F satisfies what we have called Parry
topological transitivity.
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3.2. Examples.

Example 3 (β-representations). A β-transformation is a type A map F : [0, 1] →
[0, 1] defined by F (x) = βx mod 1, for β > 1. Here ξ(x) = �βx� with D =
{0, 1, . . . , β−1} for β ∈ N, and D = {0, 1, . . . , �β�} for β �∈ N. The β-representations
were introduced in [24] by Rényi, who showed that every β-transformation F has
an ergodic ACIM (so satisfies TT). An explicit formula for the density ρ(x) was
given by Parry [22]). Parry (see [23]) studied the more general α-β-transformation,
F (x) = α+ βx mod 1, which he showed are not necessarily ergodic (or TT).

Example 4 (Generalized Gauss transformations). For real numbers r ≥ 1, define
the type 2 map F (x) = r/x mod 1 with ξ(x) = �r/x�. The case r = 1, known
as the Gauss transformation, has an ergodic ACIM with ρ(x) = (log(2)(x+ 1))−1.
The existence of an ergodic ACIM for r > 1 is discussed in [17] (an explicit formula
for each r ∈ N is given in [9]). Thus each such F satisfies TT. The corresponding
F -representations are (generalized) continued fractions.

Example 5 (Quadratic maps). For s ≈ 0.8, s < r ≤ 1, consider F : [0, 1] → [0, 1]
by

F (x) = −4r
(
(1− r − 4r2 + 4r3)− (1− 8r2 + 8r3)x+ r(1− 2r)2x2

)
,

with ξ(x) = 0 if x < (1+2r−4r2)/(2r−4r2) and ξ(x) = 1 otherwise (this is the map
q(x) = 4rx(1 − x), restricted to the interval [q(r), r], then renormalized). These
maps are commonly studied in chaos theory (see [10]). It is known that there is a set
of values for r of positive Lebesgue measure so that F has an ergodic ACIM, and
hence is TT. Closely related to both the quadratic maps and β-transformations
are the tent maps defined for 1 < τ ≤ 2 by P (x) = τ x wod 1, where we define
y wod 1 = y mod 1 if �y� is even, and 1 − (y mod 1) if �y� is odd. For all τ
sufficiently large, F has an ergodic ACIM and hence is TT (see [12]).

Example 6 (The Cantor map). This map F is defined to be linear, increasing,
and full on each interval ξ in the complement Kc of the Cantor set K ⊆ [0, 1]. The
intervals in ξ are naturally indexed by D = Z[1/2] ∩ (0, 1), the dyadic rationals in
(0, 1). Note that in this example D = Kc is measure zero but uncountable. More
generally, ξ can be replaced by any interval partition. Then F is defined to be full
on each Δ ∈ ξ. Such maps F are called generalized Lüroth transformations in [8].
All such maps are TT and ergodic for Lebesgue measure.

Example 7 (Generalized Egyptian fractions). Define F (x) = x − 1/�1/x� and
ξ(x) = �1/x�. Note that O−(0) is dense, so F satisfies PTT, whereas Fn(x) ↘
0 for all x, so F does not satisfy TT. Note also that O−(x) is dense only for
x = 0, and not for a dense Gδ set of x. Here, B is the set of irrationals, and
x = 1/d1+1/d2+1/d3+ . . . is the infinite greedy Egyptian fraction expansion of an
irrational x. More generally, for a strictly increasing sequence a = (a1, a2, a3, . . . )
of positive integers, a1 > 1, such that 1 ≤

∑
1/an ≤ ∞ (e.g. the primes). Let

�y�a = an, where an−1 < y ≤ an, and F (x) = x − 1/�1/x�a. The case an = 2n

gives binary expansions.

Example 8 (Interval exchange transformations). Let ξ be an interval partition,
and let ξ′ be a “permutation” of ξ. Suppose there is a bijection ϕ : ξ → ξ′

such that for each Δ ∈ ξ there is r(Δ) ∈ (−1, 1) so that ϕ(Δ) = Δ + r(Δ).
Define F (x) = x + r(Δ) for x ∈ Δ (see [14], [21]). Interval exchanges preserve
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Lebesgue measure. Various conditions for ergodicity and TT are known (see [14],
[27], [16]). Included here are the circle rotations F , which can be realized as 2-
interval exchanges: ξ = {[0, α), [α, 1)} (labeled 0 and 1), with TT and ergodicity
if and only if α �∈ Q. The resulting F -representations are Sturmian sequences.
Similarly, the von Neumann adding machine transformation F is an exchange of
the partition ξ into intervals of lengths 1/2n, in order of decreasing length, ξ′

the partition into the same intervals, but in order of increasing lengths. See [25]
for applications of interval exchange transformations to F -representations. This
is TT and ergodic. Up to metric isomorphism, any ergodic measure-preserving
transformation F can be realized as a (usually infinite) interval exchange (see [4]).
It should be noted that interval exchange transformations F differ from the other
examples discussed here because they are invertible. Orientation reversing interval
exchange transformations were studied in [20], but they rarely satisfy TT.

4. Parry’s theorem

In this section we first state and then prove our main results about topological
transitivity and valid F -expansions for piecewise interval maps F . The first result
is essentially Parry’s theorem [23]. Our contribution is to extend the proof to the
mixed type case.

Theorem 6. Suppose F is a PIM (type A, type B or mixed type). If F satisfies
PTT, then F -representations are valid.

Parry also proved the following partial converse, which we prove below for com-
pleteness.

Proposition 7 (Parry [23]). Let F be a PIM such that F−1(0) includes all the
endpoints of ξ except possibly 0 or 1. If F -representations are valid, then F satisfies
PTT.

Next, we state our “modern” version of Parry’s theorem.

Theorem 8. Suppose F is a PIM (type A, type B or mixed type). If F satisfies
TT, then F -representations are valid.

4.1. Some preliminaries. Let F be a PIM. An open interval I ⊆ [0, 1] is called a
homterval if Fn|I is continuous and strictly monotonic for each n ≥ 1. In particular,
for each n ≥ 0, Fn is a homeomorphism between I and Fn(I). There are two special
kinds of homtervals. A homterval I is called a wandering interval if Fn(I)∩Fm(I) =
∅ for all m > n ≥ 0. A homterval I is called a period-p absorbing interval if
F p(I) ⊆ I, where p ≥ 1 is as small as possible. Each F k(I), k ≥ 0, is also a
period-p absorbing interval. More generally, for n ≥ 1 and p ≥ 1, call a homterval
I n-pre period-p absorbing if there exists a period-p absorbing interval J so that
I, F (I), . . . , Fn−1(I) are pairwise disjoint, and Fn(I) ⊆ J , where n is as small as
possible. If I is period-p absorbing, we regard it as 0-pre period-p absorbing.

Lemma 9. If I is a homterval, then either I is a wandering interval or I is n-pre
period-p absorbing, for some n ≥ 0 and p ≥ 1.

Proof. Suppose I is a homterval that is not a wandering interval. Then there exist
a smallest n ≥ 0 so that Fn(I) ∩ Fn+p(I) �= ∅ for some p ≥ 1, and then assume
p is also as small as possible. Since I is open, Fn(I) ∩ Fn+p(I) is an interval,
so Fn(I) ∪ Fn+p(I) is a homterval. Repeatedly applying F p gives open intervals
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Fn+�p(I) ∩ Fn+(�+1)p(I) for each � ≥ 0. It follows that J =
⋃∞

�=0 F
n+�p(I) is a

homterval with F p(J) ⊆ J . By assumption I, F (I), . . . , Fn−1(I) are disjoint and
Fn(I) ⊆ J . �

Lemma 10. If a PIM F satisfies TT, then there can be no homtervals.

Proof. Suppose to the contrary that O+(x) is dense and there is a homterval I. If
I is a wandering interval, then O+(x) can meet I at most once. This contradicts
the density of O+(x). By Lemma 9, the only other possibility is that I is an n-pre
period-p absorbing interval. Since O+(x) is dense, F k(x) ∈ O+(x) ∩ I for some
k ≥ 0, and then F k+n(x) ∈ J , where J is period-p absorbing. We may assume
without loss of generality that n + k = 0 so x ∈ J . We claim this implies that
O+(x) ∩ J is not dense, which is a contradiction.

To prove the claim, we first assume p = 1 and show O+(x) is not dense in J .
Note F maps J homeomorphically onto F (J) ⊆ J . If F (x) = x, O+(x) = {x}
is not dense, so assume F (x) �= x. Either F |J is strictly increasing or decreasing.
In the increasing case, for example, assume F (x) > x. Then the sequence Fn(x)
is bounded, increasing, has a limit point, so O+(x) is not. There are three more
identical cases for p = 1. If p > 1, the same argument shows that the orbit of any
F k(x), k = 0, 1, . . . , p− 1, under F p, has at most one limit point. Thus O+(x) has
at most p limit points and is not dense. �

Note that the limit points in the proof are p-periodic. In [26] this is described
as F having a period-p periodic attractor. The next observation is essentially due
to Parry [23].

Lemma 11. If a PIM F satisfies PTT, then there can be no pre absorbing interval.

Proof. It suffices to show there is no absorbing interval, so assume to the contrary
that I is an absorbing interval of period p. As in the proof of Lemma 10, assume
p = 1, so F |I : I → F (I) ⊆ I is a homeomorphism. If x �∈ F (I), then F−1(x)∩I = ∅,
so O−(x) cannot be dense. Thus we assume x ∈ F (I), and show that O−(x) is not
dense in F (I).

Consider the homeomorphism (F |I)−1 : F (I) → I. We assume without loss of
generality that (F |I)−1 is increasing (otherwise replace F |I with (F |I)2). If there is
an n > 0 so that (F |I)−n(x) �∈ F (I), then O−(x) ∩ F (I) is finite. Thus we assume
(F |I)−n(x) ∈ F (I) for all n ≥ 0. One possibility is that (F |I)(x) = x, but this
implies O−(x) is not dense. Thus assume the case (F |I)(x) > x. This implies that
(F |I)−n(x) is a bounded increasing sequence, has a limit, and (F |I)−n(x) is not
dense. �

For d1d2 . . . dn ∈ Dn, let Δ(d1d2 . . . dn) = {x : r(x)|[1,...,n] = d1d2 . . . dn}. Equiv-
alently,

Δ(d1d2 . . . dn) = Δ(d1) ∩ F−1Δ(d2) ∩ · · · ∩ F−n+1Δ(dn)

= Δ(d1) ∩ F−1Δ(d2d3 . . . dn)(4.1)

= Δ(d1d2 . . . dn−1) ∩ F−n+1Δ(dn).

By assumption (3), Δ(d1d2 . . . dn) is either empty or an interval, in which case we
call it a fundamental interval of order n (or a cylinder). Let ξ(n) be the partition
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into fundamental intervals of order n, and define ||ξ(n)|| = sup{|Δ| : Δ ∈ ξ(n)}. It
is clear that r is injective if and only if ||ξ(n)|| → 0. In ergodic theory, one writes

ξ(n) =
n∨

k=1

F−k+1ξ,

and calls ξ a generating partition for F if ||ξ(n)|| → 0.

Proof of Proposition 7. Denote the endpoints of ξ by |ξ|. By the hypotheses |ξ| =
F−1(0)∪{0, 1}, and similarly |ξ(n)| =

⋃n−1
k=0 F

−k(0)∪{0, 1}. Since F -representations

are valid, ||ξ(n)|| → 0, which implies O−(0)∪{0, 1} =
⋃

n≥1 |ξ(n)| is dense. It follows
that F is PTT. �

For x ∈ B, let Δn(x) be the interval in ξ(n) that contains x. Thus, ||ξ(n)|| �→ 0
if and only if there exists an x so that |Δn(x)| �→ 0. Note that Δn+1(x) ⊆ Δn(x).
Define

Δ(x) =
⋂
n∈N

Δn(x).

Either Δ(x) is a (nontrivial) interval or Δ(x) = {x}, with the former if and only if
|Δn(x)| �→ 0 (i.e., if and only if F -representations are not valid).

All y ∈ Δ(x) satisfy r(y) = r(x) and Δ(y) = Δ(x). When Δ(x) is a nontrivial
interval, each map (Fn)|Δ(x), for n ∈ N, is continuous and strictly monotonic (i.e.,
a homeomorphism onto its range). In particular, Δ(x)◦ ⊆ Δ(x) is a homterval. We
summarize.

Lemma 12. If F -representations are not valid, then there exists x ∈ B so that
Δ(x)◦ is a homterval.

Proof of Theorem 8. Suppose F -representations are not valid. By Lemma 12 there
is a homterval Δ(x)◦, and by Lemma 10, F cannot be TT. �

4.2. Flip lexicographic order. Let A = {d ∈ D : F |Δ(d) is increasing} and
B = {d ∈ D : F |Δ(d) is decreasing}, so that D = A ∪· B is a disjoint union. Note
that D = A if F is type A, and D = B if F is type B. For two intervals Δ,Δ′ ∈ ξ
say Δ < Δ′ if x < x′ for all x ∈ Δ, x′ ∈ Δ′. This induces an order on D by d < d′

if Δ(d) < Δ(d′). This order, in turn, leads to the following order on DN, called flip
lexicographic order.

Definition 13. Suppose D ⊆ Z. Given d = .d1d2d3 · · · ∈ DN, e = .e1e2e3 · · · ∈ DN,
with d �= e, let n = min{j ≥ 1 : dj �= ej}. Let p = 0 if n = 1 and otherwise
p = #{j = 1, . . . , n− 1 : dj = ej ∈ B}. Define d ≺ e if dn < en and p is even, or if
dn > en and p is odd. Otherwise, define e ≺ d. We will write d � d if d ≺ e or
d = e.

If F is type A, this is lexicographic order, and if F is type B, it is alternating
lexicographic order. Parry’s proof [23] of Theorem 6 assumes one of these two cases.
Flip lexicographic order appears in [18].

Lemma 14. If x < y, then r(x) � r(y). Conversely, if r(x) ≺ r(y), then x < y.
In particular, if r(x) �= r(y), then x �= y.
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Proof. Let x < y and d = r(x) and e = r(y). One possibility is that y ∈ Δ(x), so
Δ(x) = Δ(y), in which case d = e. Otherwise there is a smallest n ≥ 1 so that
Δn(x) �= Δn(y). If n = 1, then Δ1(x) = Δ(d1) < Δ(e1) = Δ1(y), so d1 < e1. Since
p = 0, this implies r(x) ≺ r(y). If n > 1, then x, y ∈ Δ(d1d2 . . . dn−1) and p ≤ n−1.
If p is even, Fn−1|Δ(d1d2...dn−1) is increasing, and since x < y, Fn−1(x) < Fn−1(y).
We then have Δ(dn) < Δ(en) so that dn < en. This implies d ≺ e since p is even.
If, on the other hand, p is odd, then Fn−1|Δ(d0d1...dn−1) is decreasing, and x < y

implies Fn−(y) < Fn−1(x), which implies Δ(en) < Δ(dn) and en < dn. Since p is
odd, this still implies d ≺ e.

Conversely, suppose r(x) ≺ r(y). If d1 < e1, then Δ(d1) < Δ(e1) and x < y.
Now suppose x, y ∈ Δ(d1d2 . . . dn−1), but dn �= en. Since x ≺ y, we have dn < en
if p is even and en < dn if p is odd. In the first case we have Fn(x) < Fn(y) and in
the second, Fn(y) < Fn(x) (because Fn(x) ∈ Δ(xn), and likewise for y). Note that
Fn|Δ(x0,x1,...,xn−1) is continuous, and either increasing or decreasing, depending on
whether p is even or odd. In both cases, this implies x < y. �

Lemma 15. Let F satisfy PTT, and let x be such that O−(x) is dense in [0, 1].
Then Δ(x) = {x}.

Proof. If Δ(x) �= {x}, then by Lemma 12, Δ(x)◦ is a homterval. Since F satisfies
PTT, Lemma 11 implies Δ(x)◦ cannot be an absorbing interval, so by Lemma 9,
Δ(x)◦ must be a wandering interval. We show this is impossible.

By (1.1), Fn(Δ(x)) ∩ Fm(Δ(x)) = ∅ for all m > n ≥ 0 implies F−m(Δ(x)) ∩
F−n(Δ(x)) = ∅ for all n > m ≥ 0. Now F−n(x) ⊆ F−n(Δ(x)). It follows that
O−(x) =

⋃
n≥0 F

−n(x) cannot be dense in [0, 1]. Thus Δ(x) = {x}. �

Proof of Theorem 6. First note that Δ(z) = {z} whenever Fz = y and Δ(y) = {y}.
Thus for any x with O−(x) dense, z ∈ O−(x) implies Δ(z) = {z}.

Let u < v and take y, z ∈ O−(x) so that u < y < z < v. By Lemma 14,
r(u) � r(y) ≺ r(z) � r(v), so that r(u) ≺ r(v). Then by Lemma 14 again,
r(u) �= r(v). �

5. f-expansions and a generalization

Given a PIM F , define the F -shift

X = {r(x) : x ∈ B} ⊆ DN,

with the left shift map S. Indeed, this is a one-sided shift since S(r(x)) = r(F (x)).

Let X̃, with T̃ , be the two-sided natural extension of X, and let L be the common
language.

Lemma 16. A word d1d2 . . . dn ∈ L if and only if Δ(d1d2 . . . dn) is an interval, or
equivalently, Δ(d1d2 . . . dn)

◦ �= ∅.

Proof. Note that w ∈ L if and only if w = r(x)[1,2,...,n] = .d1d2 . . . dn for some x ∈
B. Then by (3), Δ(d1d2 . . . dn) is an interval. Conversely, suppose Δ(d1d2 . . . dn)
is an interval. Let x ∈ B ∩ Δ(d1d2 . . . dn). Then .d1d2 . . . dn = r(x)|[1,2,...,n] ∈ L
since r(x) ∈ X. �

For w = d1d2 . . . dn ∈ L, let Δ(d1d2 . . . dn) = [an, bn], so Δ(d1d2 . . . dn)
◦ =

(an, bn). Note that Δ(d1d2 . . . dn) ⊆ Δ(d1d2 . . . dn−1). Thus if F -representations
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are valid, |Δ(d1d2 . . . dn)| → 0 as n → ∞ for any d = .d1d2d3 · · · ∈ X. Then

{x} =
⋂
n

Δ(d1d2 . . . dn)

and we define E(d) = x. If d = r(x) for x ∈ B, then x ∈ Δ(d1d2 . . . dn) for all n,
so in this case, E(r(x)) = x. We summarize.

Proposition 17. Suppose F -representations are valid. Then there exists E : X →
[0, 1] so that for d = .d1d2d3 · · · ∈ X, {E(d)} =

⋂
n Δ(d1d2 . . . dn). In particular,

then E(d) = limn an = limn bn. If x ∈ B and d = r(x), then E(d) = x.

Lemma 18. If O+(x) is dense and Δ(d1d2 . . . dn)
◦ �= ∅, then {N : FN (x) ∈

Δ(d1d2 . . . dn)
◦} is infinite.

Proof. Since O+(x) is dense, and Δ(d1d2 . . . dn)
◦ is nonempty and open, there exists

smallest k1 ≥ 0 so that F k1(x) ∈ Δ(d1d2 . . . dn)
◦. We show there exists k2 > k1 so

that F k2(x) ∈ Δ(d1d2 . . . dn)
◦.

We know that r(F k1(x))|[1,2,...,n] = .d1d2 . . . dn and Δ(d1d2 . . . dndn+1 . . . dm)◦ ⊆
Δm(F k1(x)) for all m > n. Since O+(x) is dense, F satisfies TT, and thus The-
orem 8 implies F -representations are valid. This implies that |Δm(F k1(x))| → 0
as m → ∞. It follows that for some m > n, which we choose as small as pos-
sible, the inclusion Δ(d1d2 . . . dm)◦ ⊆ Δ(d1d2 . . . dn)

◦ is proper, and F k1(x) ∈
Δ(d1d2 . . . dm)◦. Then there exists em �= dm so that Δ(d1d2 . . . dm−1em)◦ �= ∅,
Δ(d1d2 . . . dm−1em)◦ ⊆ Δ(d1d2 . . . dm)◦ and F �(x) �∈ Δ(d1d2 . . . dm−1em)◦ for any
� = 0, 1, . . . , k1. Then there is a k2 > k1 so that F k2(x) ∈ Δ(d1d2 . . . dm−1em)◦ ⊆
Δ(d1d2 . . . dn)

◦. �

Proposition 19. If F satisfies TT, then so does the corresponding F -shift X, and

its natural extension X̃ satisfies TTT.

Proof. For w1 = d1d2 . . . dm, w2 = e1e2 . . . ek ∈ L, one has Δ(w1)
◦,Δ(w2)

◦ �= ∅.
Choose x ∈ B so that O+(x) is dense. By Lemma 18 there exist k2 > k1 +m1 so
that F k1(x) ∈ Δ(w1)

◦ and F k2(x) ∈ Δ(w2)
◦ so that F k2−k1(Δ(w1)

◦)∩Δ(w2)
◦ �= ∅.

Equivalently, w1uw2 ∈ L for some u ∈ L. �

Fixing d ∈ D, let Δ(d) = [ad, bd], αd = limx→a+
d
F (x) and βd = limx→b−d

F (x).

Define fd : [0, 1] → [0, 1] by

(5.1) fd(x) =

⎧⎪⎨
⎪⎩
ad if 0 ≤ x < F (αd),

(F |Δ(d))
−1(x) if F (αd) ≤ x < F (βd),

βd if F (β) ≤ x < 1.

Each fd is continuous because F |Δ(d) : Δ(d) → [0, 1] is continuous and strictly
monotonic.

Lemma 20. If d1d2 . . . dn ∈ L, then

Δ(d1d2 . . . dn) = fd1
(fd2

(. . . fdn
([0, 1]) . . . )).



PARRY’S TOPOLOGICAL TRANSITIVITY AND f-EXPANSIONS 2105

Proof. For n = 1 we have fd1
([0, 1]) = [a1, b1] = Δ(d1). Suppose

fd2
(fd3

(. . . fdn
([0, 1]) . . . )) = Δ(d2d3 . . . dn) = [a′, b′],

where b′ > a′. Note that a′ and b′ are

fd2
(fd3

(. . . fdn
(0) . . . )) and fd2

(fd3
(. . . fdn

(1) . . . ))

(in one order or the other). Then

fd1
(fd2

(. . . fdn
([0, 1]) . . . )) = fd1

(Δ(d2d3 . . . dn)) = fd1
([a′, b′]).

Now for any interval [a′, b′] and any d∈D, (5.1) implies that fd([a
′, b′])=F−1([a′, b′])

∩Δ(d). The result now follows by (4.1). �
Theorem 21. Let F be a PIM such that F -representations are valid. Then for
Lebesgue almost every x ∈ [0, 1] (i.e., for x ∈ B)

(5.2) x = E(x) = lim
n→∞

fd0
(fd1

(. . . fdn
(0) . . . )) = lim

n→∞
fd0

(fd1
(. . . fdn

(1) . . . )),

where x = .d0d1d2 · · · = r(x).

For .d1d2d3 · · · ∈ DN we call the limits (5.2) generalized f -expansions. Theo-
rem 21 can be interpreted as saying that if F -representations are valid, then a.e.
f -expansion converges to “what it should”. This occurs whenever F satisfies either
TT or PTT.

Traditionally, additional assumptions on F allow (5.2) to be expressed in a sim-
pler form. We say F (i.e., the digit set D, possibly relabeled) is well ordered if
D ⊆ Z and Δ(d) < Δ(e) if and only if d < e. An example that is not well or-
dered is the Cantor transformation F in Example 6. If F is well ordered, we define
f : R → [0, 1] by f(x) = fd(x− d) if x ∈ [d, d+ 1) for each d ∈ D. We extend f to
a function f : R → [0, 1] by defining f(x) = f(a) for all x < a, where Δ(d) = [a, b)
is the left-most fundamental interval, and f(x) = f(b) if [a, b) is the first funda-
mental interval smaller than x. This is most natural if F is either type A or type
B, in which case f is continuous, and respectively either (not necessarily strictly)
increasing or decreasing.

If we restrict the function f , as defined above, to the intervals in R on which it
is strictly monotonic, then f−1 exists, and we have

F (x) = f−1(x) mod 1.

This is a traditional starting point for the theory (see [13], [23]). Equivalently, we
can view f as the inverse of the function F (x) + ξ(x) (where ξ : D → D ⊆ Z is the
digit function).

Given .d1d2d3 · · · ∈ DN we define the (classical) f -expansion by

f(d1 + f(d2 + f(d3 + . . . ))).

In particular, we understand this expression to be the limit

lim
n→∞

f(d1 + f(d2 + f(d3 + . . . f(dn) . . . ))).

Theorem 22. Suppose F is a well ordered PIM such that F -representations are
valid (i.e., if F satisfies either TT or PTT ). Then f -expansions are valid in the
sense that for λ-a.e x ∈ [0, 1] (i.e., for x ∈ B), r(x) = .d1d2d3 · · · ∈ DN and

x = f(d1 + f(d2 + f(d3 + . . . ))).

We also have x = limn→∞ f(d1 + f(d2 + f(d3 + . . . f(dn + 1) . . . ))).
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6. Topological transitivity implies Parry topological transitivity

We can now prove our main result.

Theorem 23. If F is a piecewise interval map (PIM ) that satisfies TT, then it
satisfies PTT.

Proof. Since F satisfies TT, Proposition 19 implies that the two-sided F -shift

X̃ satisfies TTT. Let y ∈ X̃ be such that O−(y) is dense. For each n ≥ 0,

let yn = S̃−n(y) and xn = π+(yn). Here π+ : X̃ → X is the factor map

π+(. . . d−1d0.d1d2 . . . ) = .d1d2 . . . . Note that π+(S̃(y)) = S(π+(y)), so Sn(xn) =

Sn(π+(yn)) = π+(S̃
n(yn)) = π+(y) = x. Let xn := E(xn), which exists by Theo-

rems 8 and 21. If x := x0, then Fn(xn) = x, so B = {x0, x1, x2, . . . } is a backward

orbit for x. If (S̃−n(y))|[1,2,...,m] = d1d2 . . . dm, then xn ∈ Δ(d1d2 . . . dm). Since

O−(y) is dense, B is dense too, and so F satisfies PTT. �
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