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BOUNDS ON THE NORMAL HILBERT COEFFICIENTS

ALBERTO CORSO, CLAUDIA POLINI, AND MARIA EVELINA ROSSI

(Communicated by Irena Peeva)

Abstract. In this paper we consider extremal and almost extremal bounds on
the normal Hilbert coefficients of m-primary ideals of an analytically unramified
Cohen-Macaulay ring R of dimension d > 0 and infinite residue field. In these
circumstances we show that the associated graded ring of the normal filtration
of the ideal is either Cohen-Macaulay or almost Cohen-Macaulay.

1. Introduction

The examination of the asymptotic properties of m-primary ideals of a Cohen-
Macaulay local ring (R,m) of dimension d and infinite residue field has evolved
into a challenging area of research, touching most aspects of commutative algebra,
including its interaction with computational algebra and algebraic geometry. It
takes expression in two graded algebras attached to I: the Rees algebra R = R(I)
and the associated graded ring G = G(I); namely,

R =

∞⊕
k=0

Iktk ⊂ R[t] and G = R/IR =

∞⊕
k=0

Ik/Ik+1,

where R[t] is the polynomial ring in the variable t over R. These two graded objects
are collectively referred to as blowup algebras of I as they play a crucial role in the
process of blowing up the variety Spec(R) along the subvariety V (I).

A successful approach in the study of the ring-theoretic properties of the blowup
algebras uses a minimal reduction of the ideal. This notion was first introduced and
exploited by Northcott and Rees more than half a century ago for its effectiveness
in studying multiplicities in local rings [11]: an ideal J is a reduction of I if the
inclusion of Rees algebras R(J) ↪→ R(I) is module finite. Since I is also an m-
primary ideal, another pathway to studying blowup algebras – and more precisely
G – is to make use of information encoded in the Hilbert-Samuel function of I, that
is, the function that measures the growth of the length of R/In, denoted λ(R/In),
for all n ≥ 1. For n � 0, it is known that λ(R/In) is a polynomial in n of degree
d, whose normalized coefficients ei = ei(I) are called the Hilbert coefficients of
I. The general philosophy, pioneered by Sally in a sequence of remarkable papers
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(see [18–22]), is that an ‘extremal’ behavior of bounds involving the ei’s yields good
depth properties of the associated graded ring of I. These results are somewhat
unexpected since the Hilbert coefficients encode asymptotic information on the
Hilbert-Samuel function of I. The literature is very rich with results, especially
relating e0 through e3 to other data of our ideal. We refer to the monograph by
Rossi and Valla [17] for a collective overview.

Over the years, various filtrations other than the I-adic one have proved to be of
far-reaching applications in commutative algebra: the integral closure filtration, the
Ratliff-Rush filtration, the tight closure filtration, and the symbolic power filtration,
just to name a few. It is important to observe that the theory and results that are
valid in the case of the I-adic filtration cannot be trivially extended to these other
types of filtrations. These in fact are not, in general, good or stable filtrations. In
other words, the Rees algebra associated to these filtrations may not be generated
in degree one or may even fail to be Noetherian.

The focus of our paper is on the significance of the asymptotic properties encoded
in the Hilbert function of the integral closure filtration of an m-primary ideal I,
namely {In}. In addition to the local Cohen-Macaulay property of our ambient ring
R we also require R to have a canonical module and to be analytically unramified,

that is, its m-adic completion R̂ is reduced. This latter assumption guarantees that
the normalization R of the Rees algebra R of I in R[t] is Noetherian (see [15]).

Hence we have that λ(R/In+1) is a polynomial in n of degree d for n � 0:

λ(R/In+1) = e0

(
n+ d

d

)
− e1

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded.

The above polynomial is referred to as the normal Hilbert polynomial of I and
the ei = ei(I)’s are the normal Hilbert coefficients. We note that e0 = e0 is
the multiplicity of I. As in the case of the I-adic filtration, there has been quite
some interest in relating bounds among the normalized Hilbert coefficients and
the depth of the associated graded ring of the normal filtration of I, denoted G.
The forerunners of results along this line of investigation are Huneke (see [5]) and
Itoh (see [6, 7]). We refer again to [17] for a detailed account of the results, which
typically deal with the first few normal Hilbert coefficients, as in the I-adic case.

We now describe the contents of our paper. In Section 2 we first introduce a
version of the Sally module for the normal filtration. We prove in Proposition 2.2
analogous homological properties to the ones of the classical Sally module (see
[23]). This allows us to recover, in Proposition 2.4, the bound e1 ≥ e0 − λ(R/I),
established by Huneke [5, Theorem 4.5] and Itoh [7, Corollary]. That the equality
in the bound is equivalent to the Cohen-Macaulayness of G translates in our setting
to the vanishing of the variant of the Sally module. We then show in Theorem 2.6
the main result of this section. Namely, we show that if the previous bound is
almost extremal, that is, e1 ≤ e0−λ(R/I)+1, then the depth of G is at least d−1.

In [7], Itoh already established lower bounds on e2 and e3. More precisely,
he showed that e2 ≥ e1 − λ(I/J) with equality if and only if the normal filtra-
tion of I has reduction number two (see [7, Theorem 2(2)]). In particular G is
Cohen-Macaulay. He also showed that e3 ≥ 0 (see [7, Theorem 3(1)]). When R is
Gorenstein and I = m he was able to conclude that the vanishing of e3 is equivalent
to the normal filtration of I having reduction number two (see [7, Theorem 3(2)]).
Again this implies that G is Cohen-Macaulay.
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In Section 3 we generalize Itoh’s result on the vanishing of e3 by consider-
ing arbitrary Cohen-Macaulay rings of type t(R) together with the assumption

λ(I2/JI) ≥ t(R)− 1 (see Theorem 3.3). Obviously the latter is a vacuous assump-
tion when R is Gorenstein. We also extend Itoh’s result with no further assumptions
to rings of type at most two (see Theorem 3.6). We note that a condition on the
type of the ring is not unexpected as it is reminiscent of the celebrated result of
Sally [22, Theorem 3.1] on Cohen-Macaulay rings of type e+ d− 2.

2. The Sally module and Hilbert coefficients

of the normal filtration

One of the first inequalities involving the Hilbert coefficients of an m-primary
ideal I goes back to 1960, when Northcott [10] showed that e1 − e0 + λ(R/I) ≥ 0.
Later it was shown by Huneke [5] and Ooishi [12] that equality is equivalent to
the ideal having reduction number one for any minimal reduction J of I, that is,
I2 = JI. Hence G is Cohen-Macaulay.

An elegant and theoretical explanation of the results by Northcott, Huneke and
Ooishi was captured by Vasconcelos [23] with the introduction of a new graded
object: the so-called Sally module. As noted in the monograph [17], the Sally
module can actually be defined for an arbitrary filtration. However, additional
properties on the filtration are needed to be able to go the extra mile. This is the
case in this article where we consider the normal filtration of an ideal.

We denote by R the integral closure of the Rees algebra R of I inside the
polynomial ring R[t]. Notice that

R = R + It+ I2t2 + · · · .
In the following lemma we show that under mild assumptions the graded algebra

R satisfies the property S2 of Serre.

Lemma 2.1. Let (R,m) be an analytically unramified, Cohen-Macaulay local ring
with a canonical module ωR and let I be an ideal of height at least two. Then the
integral closure R of the Rees algebra R = R[It] of I in R[t] satisfies the property
S2 of Serre.

Proof. Let B denote the polynomial ring R[t] and let A denote the integral closure
of the Rees algebra R of I inside B. Let K be the total ring of quotients of A and of
B. Write ωA for a canonical module of A; it exists since R has a canonical module.
The S2-ification EndA(ωA) of A can be identified with the subring D of K that
contains A (see [2]). To show that A satisfies the property S2 of Serre it suffices
to prove the equality A = D. This follows once we show that D is contained in B.
Indeed the inclusions A ↪→ D ↪→ B together with the fact that D is a module finite
extension of A force A = D, as A is the integral closure of R in B.

It suffices to show the inclusion D ↪→ B at the height one prime ideals of B.
Indeed, consider the short exact sequence

0 → B −→ B[D] −→ C → 0,

where C is the cokernel of the inclusion map. We observe that any associated prime
P of C as a B-module has height at most one. Otherwise the depth of BP is at
least two, since B is Cohen-Macaulay, whereas the depth of B[D]P is at least one,
as all our rings are unmixed. These facts force the depth of CP to be at least one,
thus contradicting the fact that P is an associated prime of C.
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Finally, suppose that P is a height one prime of B and let Q be its contraction
to A. We claim that Q is still a prime ideal of height one. The contraction of P to
R, say p, is a prime ideal of height one, given that B is a polynomial ring over R.
Thus p does not contain I, as I has height at least two. When we localize R[It] at
p it becomes R[t]p, which forces Ap to also be equal to Bp. In particular it follows
that AQ = BP , because they are further localizations. Hence Q has height one,
since the dimension of BP is one.

Now AQ = DQ since A is unmixed and Q has height one. Therefore DQ = BP

for every height one prime P of B. This proves our statement. �

The Sally module of the normal filtration of an m-primary ideal I with minimal
reduction J is defined by the short exact sequence of R(J)-modules

0 → IR(J) −→ R+[+1] −→ S → 0.(2.1)

More explicitly, one has

S =
⊕
n≥1

In+1/JnI.

In Proposition 2.2 we establish a key homological property of S that will be used
in Theorem 2.6, the main theorem of this section. This is the same property of the
classical Sally module. However it does not follow directly from the original result
because the normal filtration is not multiplicative.

Proposition 2.2. Let (R,m) be an analytically unramified, Cohen-Macaulay local
ring with a canonical module ωR, of dimension d ≥ 2 and infinite residue field. Let
I be an m-primary ideal, J a minimal reduction of I, and S the Sally module of the
normal filtration of I with respect to J , as defined in (2.1). Then S is a nonzero
module if and only if AssR(J)(S) = {mR(J) }. In particular, S has dimension d.

Proof. Let us assume that S �= 0, as the other implication is trivial. As AssR(J)(S)
�= ∅, let P ∈ AssR(J)(S) and write P ∩R = p. If p �= m, it follows that Sp = 0, from

(2.1) and the fact that (IR(J))p = (R+[+1])p. Hence p = m and P ⊇ mR(J).
We claim that P = mR(J). Notice that mR(J) is a prime of height one, thus

if P � mR(J), we have that P is a prime ideal of height at least two. A depth
computation in the short exact sequence (2.1) shows that depth SP ≥ 1, which
contradicts the fact that P is an associated prime of S.

The asserted depth estimate follows since IR(J) is maximal Cohen-Macaulay
and R+ has property S2 of Serre. The first assertion is a consequence of the short
exact sequence

0 → IR(J) −→ R(J) −→ R(J)/IR(J) → 0

and the fact that the module R(J)/IR(J) is isomorphic to R/I[T1, . . . , Td]. Now,
the short exact sequence

0 → R+ −→ R −→ R → 0

establishes instead the second assertion, since R has property S2 of Serre, by
Lemma 2.1, and R is Cohen-Macaulay of dimension d ≥ 2. �

Our next goal is to determine the relationship between the coefficients of the
Hilbert polynomial of the Sally module S and the ones of the Hilbert polynomial
of the associated graded ring G of the normal filtration of I. The construction we
describe allows us, in particular, to give a concrete characterization of the sectional
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normal genus gs = e1 − e0 + λ(R/I), defined by Itoh in [7], as the multiplicity of
the Sally module S. We then use this characterization to give an estimate of the
depth of the associated graded ring G.

Discussion 2.3. Following the construction of [17, Proposition 6.1], there exists a
graded module N which fits in the short exact sequences

(2.2) 0 → G(E) −→ N −→ S[−1] → 0,

(2.3) 0 → S −→ N −→ G → 0.

More precisely, E denotes the J-good filtration {E0 = R,En = Jn−1I for all n ≥ 1}
induced by the R-ideal I, G(E) denotes the associated graded ring of E, G denotes
the associated graded ring of the normal filtration of I, and, finally, N denotes the
graded module

⊕
n≥0 I

n/JnI.

From the results of [17, Sections 6.1 and 6.2] modified to suit our situation, we
have that the Hilbert series of the graded modules appearing in (2.2) and (2.3) are
related by the equation

(1− z)HSS(z) = HSG(E)(z)−HSG(z).(2.4)

Furthermore, G(E) is Cohen-Macaulay with minimal multiplicity since En+1 = JEn

for all n ≥ 1. Hence its Hilbert series is given by [17, (6.1)]

HSG(E)(z) =
λ(R/I) + (e0 − λ(R/I))z

(1− z)d
.

By combining all this information we obtain the following result.

Proposition 2.4. Let (R,m) be an analytically unramified, Cohen-Macaulay local
ring with a canonical module ωR, of dimension d ≥ 2 and infinite residue field. Let
I be an m-primary ideal, J a minimal reduction of I, and S the Sally module of the
normal filtration of I with respect to J . Let G denote the associated graded ring of
the normal filtration of I. Let si and ei denote the normalized Hilbert coefficients
of S and G, respectively. The following properties hold:

(a) if S = 0, then G is Cohen-Macaulay ;
(b) if S �= 0, then depth G ≥ depth S − 1;
(c) s0 = e1 − e0 + λ(R/I) and si = ei+1 for all 1 ≤ i ≤ d− 1.

Proof. (a) follows from (2.2) and (2.3) because G ∼= N ∼= G(E), whenever S = 0, and
G(E) is Cohen-Macaulay. (b) follows from depth chase in (2.2) and (2.3). Finally,
(c) follows from (2.4) and the fact, shown in Proposition 2.2, that if S �= 0, then
its dimension is d. �

Remark 2.5. Proposition 2.4(c) provides a simple proof of the bounds

e1 ≥ e0 − λ(R/I) = λ(I/J) ≥ 0.

Moreover, Proposition 2.4(a) is equivalent to the equality e1 = e0 − λ(R/I); it
is also equivalent to the isomorphism G ∼= G(E); it is also equivalent to the fact
that the reduction number of the integral closure filtration is at most one, see
[5, Theorem 4.5] and [7, Corollary 6].
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In the main theorem of this section we study the relation between an upper bound
on e1 and the depth of G. That is, we investigate the depth property of G whenever
e1 ≤ e0 − λ(R/I) + 1. This is equivalent to assuming that the multiplicity of the
Sally module S is at most one. (See also [23, Proposition 3.5] and [23, Corollary 3.7]
in the I-adic case.)

Theorem 2.6. Under the same assumptions as in Proposition 2.4, if e1 ≤ e0 −
λ(R/I) + 1, then depthG ≥ d− 1.

Proof. By Proposition 2.4(c), our assumption on e1 implies that either e1 = e0 −
λ(R/I) or e1 = e0 − λ(R/I) + 1. In the first case we have that the Sally module
S is zero and hence G is Cohen-Macaulay by Proposition 2.4(a). Thus we are left
to consider the second case. From e1 = e0 − λ(R/I) + 1 we obtain that S is a
nonzero module of multiplicity one. By Proposition 2.2 we have that AssR(J)(S) =
{mR(J) }. Thus S is a torsion free B-module of rank one, where B = R(J)/mR(J)
is a polynomial ring in d variables over the residue field. We claim that S is a
reflexive B-module, hence it is free since B is a UFD. In particular, depthS = d.
Hence, by Proposition 2.4(b), we conclude that depthG ≥ d − 1. Our claim is
equivalent to the fact that S has the property S2 of Serre as a B-module. As
AssB(S) = {0} it suffices to show depthSP ≥ 2 for each P ∈ Spec(B) with height
at least two. Let Q ∈ Spec(R(J)) be such that P = Q/mR(J).

As we observed in the proof of Proposition 2.2, IR(J) is maximal Cohen-
Macaulay and R+ has property S2 of Serre, hence depth chasing in (2.1) yields
depth SQ ≥ 2. Thus depth SP = depth SQ ≥ 2. �

Remark 2.7. Theorem 2.6 would be a consequence of [8, Proposition 4.9]. However
the proof of [8, Proposition 4.9] is not correct as it relies on [9, Theorem 3.26] which

is incorrectly stated. Indeed in dimension d > 1 it is not clear that I2 = JI implies
that the normal filtration has reduction number at most one, that is, In+1 = JIn

for all n ≥ 1.

3. On the vanishing of e3

As we mentioned in the introduction Itoh showed that the vanishing of e3 is
equivalent to the normal filtration of I having reduction number two, provided R is
Gorenstein and I = m (see [7, Theorem 3(2)]). Again this implies that G is Cohen-
Macaulay. We now generalize Itoh’s result on the vanishing of e3 by considering
an arbitrary Cohen-Macaulay ring R and imposing a condition on the type t(R) of
the ring.

Proposition 3.1. Let (R,m) be an analytically unramified, Cohen-Macaulay local
ring of dimension d ≥ 3, type t(R) and infinite residue field. Let I be an R-ideal
with I = m and J a minimal reduction of I. Assume that e3 = 0. Then

λ(In+1/JnI) ≤ t(R)

(
n+ d− 2

d− 1

)
for all n ≥ 1. In particular, λ(I2/JI) ≤ t(R).

Proof. By [7, Theorem 3(1)] the assumption e3 = 0 yields In+2 ⊂ Jn for all n ≥ 0.
By assumption we have that I = m, hence

mIn+1 = I In+1 ⊂ In+2 ⊂ Jn.
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This implies that In+1 ⊂ Jn : m, thus

λ(In+1/JnI) = λ(In+1/(Jn ∩ In+1)) = λ(In+1 + Jn/Jn)

≤ λ(Jn : m/Jn) = t(R)

(
n+ d− 2

d− 1

)
.

We observe that in the first equality we used [6, Theorem 1] or [5, Theorem 4.7 and
Appendix] whereas the last equality holds because λ(Jn : m/Jn) is the dimension
of the socle of the ring R/Jn, which can be computed from the Eagon-Northcott
resolution of R/Jn.

The second inequality asserted in the theorem follows by setting n = 1 in the
general inequality. �

In the next result we present both a lower and an upper bound on e1 under the
running assumptions of this section, namely, I = m and e3 = 0. The lower bound
appears already in [7, Theorem 2(1)]. We also establish a condition that assures
that the upper bound is tight.

Proposition 3.2. Let (R,m) be an analytically unramified, Cohen-Macaulay local
ring of dimension d ≥ 3, type t(R) and infinite residue field. Let I be an R-ideal
with I = m and J a minimal reduction of I. Assume that e3 = 0. Then

e0 − 1 + λ(I2/JI) ≤ e1 ≤ e0 − 1 + t(R).

Moreover, if t(R) �= λ(I2/JI), then e1 < e0 − 1 + t(R).

Proof. Notice that e0 − 1 = λ(I/J), since I = m. By [6, Proposition 10] we have
for any n ≥ 0

λ(R/In+1) ≤ e0

(
n+ d

d

)
− [λ(I/J) + λ(I2/JI)]

(
n+ d− 1

d− 1

)
(3.1)

+ λ(I2/JI)

(
n+ d− 2

d− 2

)
.

Now

λ(R/In+1) = λ(R/Jn+1)− λ(JnI/Jn+1)− λ(In+1/JnI)

= λ(R/Jn+1)− λ(Jn/Jn+1) + λ(Jn/JnI)− λ(In+1/JnI)

= e0

(
n+ d

d

)
− e0

(
n+ d− 1

d− 1

)
+ λ(R/I)

(
n+ d− 1

d− 1

)
− λ(In+1/JnI)

where λ(Jn/JnI) = λ(R/I)

(
n+ d− 1

d− 1

)
follows since

Jn/JnI ∼= Jn/Jn+1 ⊗R/I ∼= [G(J)]n ⊗R/I ∼= [G(J)⊗R/I]n

∼= [R/J [T1, . . . , Td]⊗R/I]n ∼= [R/I [T1, . . . , Td]]n.
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By Proposition 3.1 it follows that for any n ≥ 0 we have that

λ(R/In+1) ≥ e0

(
n+ d

d

)
− e0

(
n+ d− 1

d− 1

)
+ λ(R/I)

(
n+ d− 1

d− 1

)
(3.2)

− t(R)

(
n+ d− 2

d− 1

)

= e0

(
n+ d

d

)
− [λ(I/J) + t(R)]

(
n+ d− 1

d− 1

)

+ t(R)

(
n+ d− 2

d− 2

)
.

Note that

(
n+ d− 2

d− 1

)
=

(
n+ d− 1

d− 1

)
−

(
n+ d− 2

d− 2

)
and recall that for all n � 0

we have

λ(R/In+1)=e0

(
n+d

d

)
−e1

(
n+d− 1

d−1

)
+e2

(
n+d−2

d−2

)
+ lower terms.(3.3)

Comparing (3.1), (3.2) and (3.3) we obtain immediately that

λ(I/J) + λ(I2/JI) ≤ e1 ≤ λ(I/J) + t(R).

Now assume that t(R) �= λ(I2/JI). If in (3.2) the inequality is strict for at least
one n � 0, then comparing (3.2) and (3.3) we obtain the desired conclusion, that
is,

e1 < λ(I/J) + t(R).

Otherwise in (3.2) the equality holds for all n � 0. Again comparing (3.2) and
(3.3) we obtain

e1 = λ(I/J) + t(R), e2 = t(R).

Hence e2 = e1 − λ(I/J), which implies In+1 = Jn−1I2 for all n ≥ 1 by [7, Theo-
rem 2(2)]. Now by [6, Proposition 10] we have that equality holds in (3.1), hence

t(R) = e2 = λ(I2/JI),

which is a contradiction. �

In the following theorem we analyze the case when λ(I2/JI) is maximal or almost
maximal. In accordance with the classical philosophy we prove that if the bound is
attained, then the associated graded ring of the normal filtration is Cohen-Macaulay
and furthermore the normal filtration has reduction number two.

Theorem 3.3. Let (R,m) be an analytically unramified, Cohen-Macaulay local ring
of dimension d ≥ 3, type t(R) and infinite residue field. Let I be an R-ideal with

I = m and J a minimal reduction of I. Assume that e3 = 0 and λ(I2/JI) ≥
t(R)− 1. Then G is Cohen-Macaulay and In+1 = Jn−1I2 for all n ≥ 1.

Proof. Using Proposition 3.1 and our assumption we have that

λ(I2/JI) ≤ t(R) ≤ λ(I2/JI) + 1.

If t(R) = λ(I2/JI), then by Proposition 3.2 we have e1 = λ(I/J) + λ(I2/JI).

Hence by [7, Theorem 2.(1)], we have In+1 = Jn−1I2 for every n ≥ 1.
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If t(R) = λ(I2/JI) + 1, then again by Proposition 3.2 we have

λ(I/J) + λ(I2/JI) ≤ e1 < λ(I/J) + λ(I2/JI) + 1.

Thus e1 = λ(I/J) + λ(I2/JI) and we conclude as before.

Notice that if In+1 = Jn−1I2, then G is Cohen-Macaulay by the Valabrega-Valla
criterion (see [17, Theorem 1.1]), since I2∩J = JI by [6, Theorem 1] or [5, Theorem
4.7 and Appendix]. �

If we strengthen the assumptions in Theorem 2.6 by adding the vanishing of e3,
we obtain the Cohen-Macaulayness of G. Furthermore, the normal filtration of I
has reduction number at most two.

Proposition 3.4. Let (R,m) be an analytically unramified, Cohen-Macaulay local
ring with a canonical module ωR, of dimension d ≥ 3 and infinite residue field. Let I
be an m-primary ideal and J a minimal reduction of I. Assume e1 = e0−λ(R/I)+1
and e3 = 0. Then G is Cohen-Macaulay and the normal filtration of I has reduction
number at most two.

Proof. We have that

λ(I/J) + 1 = e1 ≥ λ(I/J) +
∑
n≥1

λ(In+1/J ∩ In+1),

where the equality holds by assumption and the inequality is given by [4, Corollary

4.8]. Hence
∑

n≥1 λ(I
n+1/J ∩ In+1) ≤ 1. Again by [4, Corollary 4.8] equality

holds if and only if G is Cohen-Macaulay and the reduction number of the normal
filtration is at most two.

Thus we may assume that
∑

n≥1 λ(I
n+1/J ∩ In+1) = 0. In particular, I2 =

J ∩ I2 = JI by [6, Theorem 1] or [5, Theorem 4.7 and Appendix].
By Theorem 2.6 depthG ≥ d− 1. According to [4, Proposition 4.6] we have

e3 =
∑
j≥2

(
j

2

)
λ(Ij+1/JIj).

As e3 = 0, we obtain that Ij+1 = JIj for all j ≥ 1. Thus G is Cohen-Macaulay by
the Valabrega-Valla criterion (see [17, Theorem 1.1]). �

Remark 3.5. Notice that
∑

n≥1 λ(I
n+1/J∩In+1) = 0 in the proof of Proposition 3.4

cannot happen. In fact one would have that e1 > λ(I/J)+
∑

n≥1 λ(I
n+1/J ∩ In+1)

and G is Cohen-Macaulay, thus contradicting [4, Corollary 4.8].

Theorem 3.6. Let (R,m) be an analytically unramified, Cohen-Macaulay local ring
with a canonical module ωR, of dimension d ≥ 3, type t(R) ≤ 2 and infinite residue
field. Let I be an R-ideal with I = m and J a minimal reduction of I. Assume that
e3 = 0. Then

(a) G is Cohen-Macaulay;

(b) G(m) is Cohen-Macaulay, except in the case t(R) = λ(I2/Jm) = μ(m)−d =
2 and λ(m2/Jm) = 1. In this latter situation, though, depthG(m) ≥ d− 1.

Proof. Assume t(R) = 1. From Theorem 3.3 it follows that G is Cohen-Macaulay

(see also [7, Theorem 3]). Now λ(m2/Jm) = λ(m2/JI) ≤ λ(I2/JI) ≤ 1 by Propo-
sition 3.1. If m2 = Jm, then G(m) is Cohen-Macaulay (see [18, Theorems 1 and 2]).
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If λ(m2/Jm) = λ(I2/Jm) = 1, then m2 = I2 and hence by Theorem 3.3 we have
that for all n ≥ 1

mn+1 = I
n+1 ⊆ In+1 = Jn−1I2 = Jn−1m2 ⊆ mn+1.

Thus G = G(m) and so G(m) is Cohen-Macaulay as well (see also [20, Proposition 3.3
and Theorem 3.4]).

Assume now t(R) = 2. By Proposition 3.1 we have λ(I2/JI) ≤ t(R) = 2 and,

by Theorem 3.3, G is Cohen-Macaulay whenever I2 �= JI. Assume I2 = JI. By
Proposition 3.2 one has

λ(I/J) ≤ e1 ≤ λ(I/J) + 1.

If e1 = λ(I/J), then G is Cohen-Macaulay by [7, Theorem 2(1)]. If e1 = λ(I/J)+1,
then the same conclusion follows from Proposition 3.4.

Now we are going to study G(m). As before λ(m2/Jm) ≤ λ(I2/JI) ≤ 2. If
m2 = Jm, clearly G(m) is Cohen-Macaulay (see [18, Theorems 1 and 2]).

If λ(m2/Jm) = 2, then m2 = I2. Since In+1 = Jn−1I2 again by Theorem 3.3 we
have that mn = In for all n, as shown above. In particular G = G(m) and G(m) is
Cohen-Macaulay as well.

Finally, if λ(m2/Jm) = 1 and μ(m) − d < t(R) = 2, then by [22, Theorem 3.1]
G(m) is Cohen-Macaulay. Thus we are left to consider the case when μ(m)− d = 2

and 1 = λ(m2/Jm) < λ(I2/JI). Otherwise, as before, mn = In for all n, thus
G = G(m) and G(m) is Cohen-Macaulay as well. By [16, Theorem 2.1] we can only
conclude that depthG(m) ≥ d− 1. �

We conclude our paper by showing that G(m) fails to be Cohen-Macaulay in the
exceptional case described in Theorem 3.6(b).

Example 3.7. Consider first the one-dimensional Cohen-Macaulay local ring S of
type 2 and multiplicity 4 given by the semigroup ring k[[t4, t5, t11]], which can be
easily seen to be isomorphic to k[[X,Y, Z]]/(Z2 − X3Y 2, Y 3 − XZ,X4 − Y Z). It
was shown by J. Sally in [18] that the associated graded ring G(m) is not Cohen-
Macaulay. Notice now that mn = (t4n)k[[t]]∩R for all n ≥ 1 and that the conductor

of R is given by t8. Thus, m2 = m2 + (t11) whereas mn = mn for all n ≥ 3. This
shows that the associated graded ring G of the normal filtration of m and G(m) have
the same Hilbert polynomial. In particular, e0 = e0 and e1 = e1.

Consider now the ring R obtained by adjoining two indeterminates U and V .
Thus R ∼= k[[x, y, z, U, V ]], where x, y, and z denote the images of X,Y , and Z,
respectively, modulo the ideal (Z2 −X3Y 2, Y 3 −XZ,X4 − Y Z). Let n denote the
maximal (x, y, z, U, V ) of R and observe that J = (x, U, V ) is a minimal reduction
of n. In addition to the n-adic and the integral closure filtrations, N = {nn} and
F = {nn}, respectively, we also consider the following filtration G defined by

G0 = R, G1 = n, G2 = (n2, z), and Gn = Jn−2G2

for all n ≥ 3. Observe that G2 ∩ J = JG1 so that the associated graded ring of
the filtration G is Cohen-Macaulay by the Valabrega-Valla criterion. Moreover, the
Rees algebra R(G) of the filtration G is also Cohen-Macaulay since the reduction
number of the filtration is two and it is strictly smaller than the dimension of R.



NORMAL HILBERT COEFFICIENTS 1929

We now claim that the filtration G is actually the normal filtration F. In fact,
it is easy to observe that

Gn = n
n + z · (U, V )n−2

for n ≥ 3. Thus, going modulo U and V , we obtain the equalities Gn ·S = mn = mn

in the one-dimensional ring S. This gives us that e0 = e0(G) = e0 and e1 = e1(G) =
e1. Since we have the inclusion of the Rees algebra R(G) ⊂ R with R(G) Cohen-
Macaulay and e1(G) = e1, by [14, Theorem 2.2] we conclude that the filtration G

is the normal filtration. In particular G is Cohen-Macaulay.
Finally, by [4, Proposition 4.6] (see also [1, Proposition 1.9] for a simpler proof),

we obtain that e3 = 0, as G is Cohen-Macaulay and the reduction number of the
normal filtration is two. However G(m) is not Cohen-Macaulay.
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