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Abstract. For p ∈ [1,∞), we prove that simple, separable, monotracial UHF
Lp-operator algebras are not classifiable up to (complete) isomorphism using

countable structures, such as K-theoretic data, as invariants. The same as-
sertion holds even if one only considers UHF Lp-operator algebras of tensor
product type obtained from a diagonal system of similarities. For p = 2, it fol-
lows that separable nonselfadjoint UHF operator algebras are not classifiable
by countable structures up to (complete) isomorphism. Our results, which
answer a question of N. Christopher Phillips, rely on Borel complexity theory,
and particularly Hjorth’s theory of turbulence.

1. Introduction

Suppose that X is a standard Borel space and λ is a Borel probability measure
on X. For p ∈ [1,∞), we denote by Lp(λ) the Banach space of Borel-measurable
complex-valued functions on X (modulo null sets), endowed with the Lp-norm. Let
B(Lp(λ)) denote the Banach algebra of bounded linear operators on Lp(λ) endowed
with the operator norm. We will identify the Banach algebraMn(B(Lp(λ))) of n×n
matrices with entries in B(Lp(λ)), with the algebra B(Lp(λ)⊕n) of bounded linear
operators on the p-direct sum Lp(λ)⊕n of n copies of Lp(λ).

A (concrete) separable, unital Lp-operator algebra, is a separable, closed subal-
gebra of B(Lp(λ)) containing the identity operator. (Such a definition is consistent
with Definition 1.1 in [P2], in view of Proposition 1.25 in [P2].) In the following,
all Lp-operator algebras will be assumed to be separable and unital. Every unital
Lp-operator algebra A ⊆ B(Lp(λ)) is in particular a p-operator space in the sense
of Section 4 in [D], with matrix norms obtained by identifying Mn(A) with a sub-
algebra of Mn(B(Lp(λ))). Such algebras have been introduced and studied by N.
Christopher Phillips in [P1, P3, P4]. Many important classes of C*-algebras have
been shown to have Lp-analogs, including Cuntz algebras [P1], UHF algebras [P3],
AF algebras [PV], and more generally groupoid C*-algebras [GL].
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If A is a unital complex algebra, then an Lp-representation of A on a standard
Borel probability space (X,λ) is a unital algebra homomorphism ρ : A → B(Lp(λ)).
The closure inside B(Lp(λ)) of ρ(A) is an Lp-operator algebra, called the Lp-
operator algebra associated with ρ. It can be identified with the completion of A
with respect to the operator seminorm structure ‖[aij ]‖ρ = ‖[ρ(aij)]‖Mn(B(Lp(λ)))

for [aij ] ∈ Mn(A); see [BLM, 1.2.16]. If A and B are Lp-operator algebras, a unital
homomorphism ϕ : A → B is an algebra homomorphism such that ϕ(1) = 1. The
n-th amplification ϕ(n) : Mn(A) → Mn(B) is defined by [aij ] �→ [ϕ(aij)]. A unital

homomorphism ϕ is completely bounded if every amplification ϕ(n) is bounded and
its completely bounded norm

‖ϕ‖cb = sup
n∈N

∥∥∥ϕ(n)
∥∥∥

is finite.

Definition 1.1. Let A and B be unital Lp-operator algebras.

(1) A and B are said to be (completely) isomorphic if there is a (completely)
bounded unital isomorphism ϕ : A → B with (completely) bounded inverse
ϕ−1 : B → A.

(2) A and B are said to be (completely) commensurable if there are (completely)
bounded unital homomorphisms ϕ : A → B and ψ : B → A.

For d ∈ N, we denote by Md the unital algebra of d× d complex matrices, with
matrix units {ei,j}1≤i,j≤d. Let d = (dn)n∈N be a sequence in N, and let ρ = (ρn)n∈N

be a sequence of representations ρn : Mdn
→ B(Lp(Xn, λn)). Define Md to be the

algebraic infinite tensor product
⊗
n∈N

Mdn
. Let X =

∏
n∈N

Xn be the product Borel

space and λ =
⊗
n∈N

λn be the product measure. We naturally regard the algebraic

tensor product
⊗
n∈N

B(Lp(λn)) as a subalgebra of B(Lp(λ)). The correspondence

Md →
⊗
n∈N

B(Lp(λn)) ⊆ B(Lp(λ))

a1 ⊗ · · · ⊗ ak �→ ρ1(a1)⊗ · · · ⊗ ρk(ak),

extends to a unital homomorphism ρ : Md → B(Lp(λ)).

Definition 1.2 ([P1, Definition 3.9]). Let d = (dn)n∈N be a sequence of positive
integers, and let ρ = (ρn)n∈N be a sequence of unital homomorphisms ρn : Mdn

→
B(Lp(λn)). Let ρ : Md → B(Lp(λ)) be the unital homomorphism described above.
The UHF Lp-operator algebra A(d,ρ) associated with ρ is defined as the closure
of ρ(Md) inside of B(Lp(λ)).

A Banach algebra A is said to be a UHF Lp-operator algebra of tensor product
type d if there exists a sequence ρ such that A is isometrically isomorphic to A(d,ρ).

A special class of UHF Lp-operator algebras of tensor product type has been
introduced in [P3, Section 5]. For d ∈ N, denote by cd the normalized counting
measure on d = {0, 1, 2, . . . , d − 1}, and set �p(d) = Lp({0, . . . , d − 1}, cd). The
(canonical) spatial representation σd of Md on �p(d) is defined by setting

(
σd(a)ξ

)
(j) =

d−1∑
i=0

aijξ(i)
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for a ∈ Md, for ξ ∈ �p(d), and j = 0, . . . , d − 1; see [P1, Definition 7.1]. Observe
that the corresponding matrix norms on Md are obtained by identifying Md with
the algebra of bounded linear operators on �p(d).

Fix a real number α in [1,+∞), and an enumeration (wd,α,k)k∈N of all diagonal
d× d matrices with entries in [1, α] ∩Q. Let X be the disjoint union of countably
many copies of {0, 1, . . . , d− 1}, and let λd be the Borel probability measure on X
that agrees with 2−kcd on the k-th copy of {0, 1, . . . , d− 1}. We naturally identify
the algebraic direct sum

⊕
n∈N

B(�p(d)) with a subalgebra of B(Lp(λd)). The map

Md →
⊕
n∈N

B(�p(d)) ⊆ B(Lp(λd))

x �→
(
σd

(
wd,α,kxw

−1
d,α,k

))
k∈N

defines a representation ρα : Md → B(Lp(λd)). We denote the corresponding Ba-
nach algebra structure on Md by Mα

d .
For a sequence α = (αn)n∈N in [1,+∞), we will denote by ρα the sequence of

representations ραn : Mdn
→ B(Lp(λdn

)) described in the paragraph above. Follow-
ing the terminology in [P3, Section 3 and Section 5], we say that the corresponding
UHF Lp-operator algebras A(d,ρα) are obtained from a diagonal system of sim-
ilarities . When the type d = (dn)n∈N is clear from the context, we will simply
write Aα for A(d,ρα).

Definition 1.3. If A is a unital Banach algebra, a normalized trace on A is a
continuous linear functional τ : A → C with τ (1) = 1, satisfying τ (ab) = τ (ba) for
all a, b ∈ A. The algebra A is said to be monotracial if it has a unique normalized
trace.

Recall that a Banach algebra is said to be simple if it has no nontrivial closed
two-sided ideals.

Remark 1.4. It was shown in [P4, Theorem 3.19(3)] that UHF Lp-operator algebras
obtained from a diagonal system of similarities are always simple and monotracial.

Problem 5.15 of [P3] asks to provide invariants which classify, up to isomorphism,
some reasonable class of UHF Lp-operator algebras, such as those constructed using
diagonal similarities. The following is the main result of the present paper.

Theorem 1.5. The simple, separable, monotracial UHF Lp-operator algebras are
not classifiable by countable structures up to any of the following equivalence rela-
tions:

(1) complete isomorphism;
(2) isomorphism;
(3) complete commensurability;
(4) commensurability.

The same conclusions hold even if one only considers UHF Lp-operator algebras
of tensor product type d obtained from a diagonal system of similarities for a fixed
sequence d = (dn)n∈N of positive integers such that, for every distinct n,m ∈ N,
neither dn divides dm nor dm divides dn.

It follows from Theorem 1.5 that simple, separable, monotracial UHF Lp-operator
algebras are not classifiable by K-theoretic data, even after adding to the K-theory
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a countable collection of invariants consisting of countable structures. When p = 2,
Theorem 1.5 asserts that separable nonselfadjoint UHF operator algebras are not
classifiable by countable structures up to isomorphism. This conclusion is in stark
constrast with Glimm’s classification of UHF C*-algebras by their corresponding
supernatural number [G].

In fact, two UHF C*-algebras are ∗-isomorphic if and only if they are isomorphic
as Banach algebras (with not necessarily contractive isomorphism). For the non-
trivial implication, note that any Banach algebra isomorphism ϕ : A → B induces
an (order) isomorphism K0(ϕ) : K0(A) → K0(B), simply by functoriality of K0.
Now, by Glimm’s classification, if two UHF C*-algebras have isomorphicK0-groups,
then there exists a ∗-isomorphism between them.

The argument above really shows that two UHF C*-algebras are ∗-isomorphic
if and only if they are isomorphic as unital rings, because the K0-group of a C*-
algebra depends only on its ring structure. (Of course, this does not mean that any
ring isomorphism is automatically a ∗-isomorphism.)

For the convenience of the reader, we recall the definition of the K0-group of a
unital ring R. Recall that an element e ∈ R is said to be an idempotent if e2 = e.

Definition 1.6. Let R be a unital ring. Two idempotents e and f in R are said
to be similar if there exists an invertible element s ∈ R satisfying ses−1 = f .

Define the monoid of projections V (R) of R to be the set of equivalence classes
of idempotents in

⋃
n∈N

Mn(R), where we identify e with e ⊕ 0, with addition given

by direct sum. The K0-group K0(R) of R is the Grothendieck group of V (R). The
positive cone K0(R)+ of K0(R) is the image of V (R) in K0(R) under the canonical
Grothendieck map.

It is easy to see that K0 is a functor from the category of unital rings, with
unital homomorphisms, to the category of abelian groups with a positive cone,
with positive group homomorphisms which preserve a distinguished element (the
class of the unit).

As an easy example, the rank determines an isomorphism K0(Mn) ∼= Z, with
the class of the unit corresponding to n ∈ Z.

2. Borel complexity theory

In order to obtain our main result, we will work in the framework of Borel
complexity theory. In such a framework, a classification problem is regarded as an
equivalence relation E on a standard Borel space X. If F is another equivalence
relation on another standard Borel space Y , a Borel reduction from E to F is a
Borel function g : X → Y with the property that

xEx′ if and only if g(x)Fg(x′).

The map g can be seen as a classifying map for the objects of X up to E. The
requirement that g is Borel captures the fact that g is explicit and constructible
(and not, for example, obtained by using the Axiom of Choice). The relation E
is Borel reducible to F if there is a Borel reduction from E to F . This can be
interpreted as asserting that is it possible to explicitly classify the elements of X
up to E using F -classes as invariants.

The notion of Borel reducibility provides a way to compare the complexity of
classification problems in mathematics. Some distinguished equivalence relations
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are then used as benchmarks of complexity. The first such benchmark is the relation
=R of equality of real numbers. (One can replace R with any other Polish space.)
An equivalence relation is called smooth if it is Borel reducible to =R. Equivalently,
an equivalence relation is smooth if its classes can be explicitly parametrized by
the points of a Polish space. For instance, the above mentioned classification of
UHF C*-algebras due to Glimm [G] shows that the classification problem of UHF
C*-algebras is smooth. Smoothness is a very restrictive notion, and many natural
classification problems transcend such a benchmark. For instance, the relation of
isomorphism of rank 1 torsion-free abelian groups is not smooth; see [H3].

A more generous notion of classifiability is being classifiable by countable struc-
tures. Informally speaking, an equivalence relation E on a standard Borel space
X is classifiable by countable structures if it is possible to explicitly assign to the
elements of X complete invariants up to E that are countable structures, such as
countable (ordered) groups, countable (ordered) rings, et cetera. To formulate this
definition precisely, let L be a countable first-order language [M, Definition 1.1.1].
The class Mod(L) of L-structures supported by the set N of natural numbers can
be regarded as a Borel subset of

∏
n∈N

2N
n

. As such, Mod(L) inherits a Borel struc-

ture making it a standard Borel space. Let ∼=L be the relation of isomorphism of
elements of Mod(L).

Definition 2.1. An equivalence relation E on a standard Borel space is said to be
classifiable by countable structures, if there exists a countable first-order language
L such that E is Borel reducible to ∼=L.

The Elliott-Bratteli classification of AF C*-algebras [E,B] shows, in particular,
that AF C*-algebras are classifiable by countable structures up to ∗-isomorphism.
Any smooth equivalence relation is in particular classifiable by countable structures.

Many naturally occurring classification problems in mathematics, and partic-
ularly in functional analysis and operator algebras, have recently been shown to
transcend countable structures. This has been obtained for the relation of uni-
tary conjugacy of irreducible representations and automorphisms of non-type I
C*-algebras [H1,KLP1,F,L], conjugacy of ergodic measure-preserving transforma-
tions of the Lebesgue measure space [FW], conjugacy of automorphisms of Z-stable
C*-algebras and McDuff II1 factors [KLP2], unitary conjugacy of unitary and self-
adjoint operators [KS], and isomorphism of von Neumann factors [ST1,ST2]. The
main tool involved in these results is the theory of turbulence developed by Hjorth
in [H2].

Suppose that G � X is a continuous action of a Polish group G on a Polish
space X. The corresponding orbit equivalence relation EX

G is the relation on X
obtained by setting xEX

G x′ if and only if x and x′ belong to the same orbit. Hjorth’s
theory of turbulence provides a dynamical condition, called (generic) turbulence,
that ensures that a Polish group action G � X yields an orbit equivalence relation
EX

G that is not classifiable by countable structures. This provides, directly or
indirectly, useful criteria to prove that a given equivalence relation is not classifiable
by countable structures. A prototypical example of turbulent group action is the
action of �1 on RN by translation. A standard argument allows one to deduce the
following nonclassification criterion from turbulence of the action �1 � RN and
Hjorth’s turbulence theorem [H2, Theorem 3.18]; see, for example, [L, Lemma 3.2
and Criterion 3.3].
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Recall that a subspace of a topological space is meager if it is contained in the
union of countably many closed nowhere dense sets.

Criterion 2.2. Suppose that E is an equivalence relation on a standard Borel
space X. If there is a Borel map f : [0,+∞)N → X such that

(1) f(t)Ef(t′) whenever t, t′ ∈ [0,+∞)N satisfy t− t′ ∈ �1, and
(2) the preimage under f of any E-class is meager,

then E is not classifiable by countable structures.

We will apply this criterion to establish our main result.

3. Nonclassification

Fix a sequence d = (dn)n∈N of integers such that for every distinct n,m ∈ N,
neither dn divides dm nor dm divides dn. In particular, this holds if the numbers dn
are pairwise coprime. The same argument works if one only assumes that all but
finitely many values of d satisfy such an assumption. We endow [1,+∞)N with the
product topology, and regard it as the parametrizing space for UHF Lp-operator
algebras of type d obtained from a diagonal system of similarities, as described in
the previous section; see also [P3, Section 3 and Section 5]. We therefore regard
(complete) isomorphism and (complete) commensurability of UHF Lp-operator al-
gebras of type d, obtained from a diagonal system of similarities, as equivalence
relations on [1,+∞)N.

For α ∈ [1,+∞)N, we denote by Aα the corresponding UHF Lp-operator algebra;
see the comments before Definition 1.3. For α ∈ [1,+∞), the corresponding matrix
norms on Mα

d are denoted by ‖ · ‖α. In particular, when α = 1, one obtains the
matrix norms induced by the spatial representation σd of Md. The algebra Aα can

be seen as the Lp-operator tensor product
p⊗

n∈N

Mαn

dn
, as defined in [P4, Definition

1.9]. (Note that, unlike in [P4], we write the Hölder exponent p as a superscript in
the notation for tensor products.)

Lemma 3.1. Let α,α′ ∈ [1,+∞)N satisfy

L :=
∏
n∈N

αn

α′
n

< +∞.

Then the identity map on the algebraic tensor product Md =
⊗
n∈N

Mdn
extends to

a completely bounded unital homomorphism Aα → Aα′
, with ‖ϕ‖cb ≤ L. In other

words, the matrix norms ‖ · ‖α and ‖ · ‖α′ on the algebraic tensor product
⊗
n∈N

Mdn

satisfy

‖ · ‖α′ ≤ L‖ · ‖α.

Proof. For j ∈ N, set Lj = αj/α
′
j . Fix ε > 0. In order to prove our assertion, it is

enough to show that if k ∈ N and x is an element of Mk

(⊗
j∈N

Mdj

)
, then ‖x‖α′ ≤

(1 + ε)L‖x‖α. Let x ∈ Mk

(⊗
j∈N

Mdj

)
, and choose n,m ∈ N and Xi,j ∈ Mk(Mdi

)
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for 1 ≤ i ≤ n and 1 ≤ j ≤ m, satisfying

x =
m∑
j=1

X1,j ⊗ · · · ⊗Xn,j .

By definition of the matrix norms on Aα, for 1 ≤ i ≤ n there exists a diagonal
matrix wi ∈ Mdi

with entries in [1, αi] such that, if Wi ∈ Mk(Mdi
) is the diagonal

matrix with entries in Mdi
, and nonzero entries equal to wi (in other words, Wi =

1Mk
⊗ wi), then

‖x‖α ≤ (1 + ε)

∥∥∥∥∥∥
m∑
j=1

W1X1,jW
−1
1 ⊗ · · · ⊗WnXn,jX

−1
n

∥∥∥∥∥∥ .

For 1 ≤ i ≤ n, we denote the diagonal entries of wi ∈ Mdj
by ai,�, for � =

1, . . . , di. We will define two other diagonal matrices

w′
i = diag(a′i,1, . . . , a

′
i,di

) and ri = diag(ri,1, . . . , ri,di
)

in Mdi
, with entries in [1, α′

i] and [1, Li], respectively, as follows. For 1 ≤ � ≤ di,
we set

a′i,� =

{
ai,�, if ai,� < α′

i;
α′
i, if aj,� ≥ α′

i.

and

ri,� =

{
1, if ai,� < α′

i;
1
α′

i
ai,�, if ai,� ≥ α′

i.

Observe that ri,� belongs to [1, Li] (since ai,� ≤ αi ≤ Liα
′
i), and that a′i,� belongs

to [1, α′
i] for all 1 ≤ i ≤ n and 1 ≤ � ≤ di.

Define w′
i and ri to be the diagonal di × di matrices with diagonal entries a′i,�

and ri,� for 1 ≤ � ≤ di. Let W
′
i , Ri ∈ Mk(Mdi

) be the diagonal k× k matrices with
entries in Mdi

having diagonal entries equal to, respectively, w′
i and ri. (In other

words, W ′
i = 1Mk

⊗ w′
i and Ri = 1Mk

⊗ ri.)
Then Wi = RiW

′
i for all 1 ≤ i ≤ n. Additionally,

‖Ri‖ ≤ Li and
∥∥R−1

i

∥∥ ≤ 1.

Therefore,

‖x‖α ≤ (1 + ε)

∥∥∥∥∥∥
m∑
j=1

W1X1,jW
−1
1 ⊗ · · · ⊗WnXn,jW

−1
n

∥∥∥∥∥∥
= (1 + ε)

∥∥∥∥∥∥
m∑
j=1

R1W
′
1X1,jW

′−1
1 R−1

1 ⊗ · · · ⊗RnW
′
nXn,jW

′−1
n R−1

n

∥∥∥∥∥∥
≤ (1 + ε) ‖R1‖ ‖R2‖ · · · ‖Rn‖

∥∥∥∥∥∥
m∑
j=1

W ′
1X1,jW

′−1
1 ⊗ · · · ⊗W ′

nXn,jW
′−1
n

∥∥∥∥∥∥
≤ (1 + ε)L1 · · ·Ln

∥∥∥∥∥∥
m∑
j=1

W ′
1X1,jW

′−1
1 ⊗ · · · ⊗W ′

nXn,jW
′−1
n

∥∥∥∥∥∥
≤ (1 + ε)L ‖x‖α′ .

This concludes the proof. �
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Corollary 3.2. If α,α′ ∈ [1,+∞)N satisfy∏
n∈N

max

{
αn

α′
n

,
α′
n

αn

}
< +∞,

then Aα and Aα′
are completely isomorphic.

The following lemma can be proved in the same way as [P3, Lemma 5.11] with the
extra ingredient of [P3, Lemma 5.8]. As before, we denote by ⊗p the Lp-operator
tensor product; see [P4, Definition 1.9].

Lemma 3.3 (Phillips). Let L > 0 and let d ∈ N. Then there is a constant
R(L, d) > 0 such that the following holds. Whenever A is a unital Lp-operator
algebra, whenever α, α′ ∈ [1,+∞) satisfy

α′ ≥ R(L, d)α,

and ϕ : Mα
d → Mα′

d ⊗p A is a unital homomorphism with ‖ϕ‖ ≤ L, there exists a
unital homomorphism ψ : Mα

d → A with ‖ψ‖ ≤ L+ 1.

Our assumption on the values of d will be used for the first time in Lemma 3.5,
where it is shown that sufficiently different sequences yield noncommensurable UHF
Lp-operator algebras.

The K0-group of a Banach algebra A is defined as the K0-group of its underlying
ring structure; see Definition 1.6. The following easy lemma is standard, but we
include its proof here for the convenience of the reader.

Lemma 3.4. Let A be a unital ring and let d ∈ N. If there exists a unital ho-
momorphism Md → A, then the class of unit of A in K0(A) must be divisible by
d.

Proof. Let ϕ : Md → A be a unital homomorphism. For j = 1, . . . , d, denote
by ej ∈ Md the idempotent diag(0, . . . , 1, . . . , 0) (there is a 1 on the j-th entry).

Choose uj ∈ Mn invertible satisfying ujeju
−1
j = e1 (one can choose uj to be a

suitable permutation matrix).
Since ϕ is unital, we have

1A = ϕ(1Md
) =

d∑
j=1

ϕ(ej),

so by taking classes in K0 we get [1A] =
d∑

j=1

[ϕ(ej)]. Since ϕ is unital and uj

is invertible, ϕ(uj) is also invertible, and clearly ϕ(uj)ϕ(ej)ϕ(uj)
−1 = ϕ(e1) for

all j = 1, . . . , d. We deduce that [ϕ(ej)] = [ϕ(e1)], and thus [1A] = d[ϕ(e1)], as
desired. �

Recall the notation Mα
d and Aα from before Definition 1.3.

Lemma 3.5. Suppose that α,α′ ∈ [1,+∞)N satisfy α′
n ≥ R(n, dn)αn for infinitely

many n ∈ N. Then there is no continuous unital homomorphism ϕ : Aα → Aα′
.

Proof. Assume by contradiction that ϕ : Aα → Aα′
is a continuous unital homo-

morphism and set L = ‖ϕ‖. Choose n ∈ N such that n ≥ L and α′
n ≥ R(n, dn)αn.
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Set

A =

p⊗
m∈N,m �=n

M
α′

m

dm
.

Apply Lemma 3.3 to the unital homomorphism ϕ : Mαn

dn
→ M

α′
n

dn
⊗p A, to get a

unital homomorphism ψ : Mαn

dn
→ A with ‖ψ‖ ≤ L+ 1.

Using Lemma 3.4, we conclude that the class of the unit of A inK0(A) is divisible
by dn. On the other hand, the K-theory of A is easy to compute using that K-
theory for Banach algebras commutes with direct limits (with contractive maps).
We get

K0 (A) = Z

[
1

b
: b �= 0 divides dm for some m �= n

]
,

with the unit of A corresponding to 1 ∈ K0(A) ⊆ Q.
Since there is a prime appearing in the factorization of dn that does not divide

any dm, for m �= n, we deduce that the class of the unit of A in K0(A) cannot
be divisible by dn. This contradiction shows that there is no continuous unital
homomorphism ϕ : Aα → Aα′ �

We say that a set is comeager if its complement is meager. Observe that, by
definition, a nonmeager set intersects every comeager set. Recall that we regard
[1,+∞)N as the parametrizing space of the UHF Lp-operator algebras of tensor
product type d obtained from a diagonal system of similarities. Consistently, we
regard (complete) isomorphism and commensurability of such algebras as equiva-
lence relations on [1,+∞)N.

Proof of Theorem 1.5. By [P4, Theorem 3.19(3)], every UHF Lp-operator algebra
of tensor product type d obtained from a diagonal system of similarities is simple
and monotracial. Therefore, it is enough to prove the second assertion of Theo-
rem 1.5. For t ∈ [0,+∞)N, define exp(t) to be the sequence (exp(tn))n∈N of real
numbers in [1,∞). By Corollary 3.2, if t, t′ ∈ [0,+∞)N satisfy t−t′ ∈ �1, then

Aexp(t) and Aexp(t′) are completely isomorphic. We claim that for any nonmeager

subset C of [0,+∞)N, one can find t, t′ ∈ C such that Aexp(t) and Aexp(t′) are not
commensurable. This fact together with Corollary 3.2 will show that the Borel
function

[0,+∞)N → [1,+∞)N

t �→ exp(t)

satisfies the hypotheses of Criterion 2.2 for any of the equivalence relations E in
the statement of Theorem 1.5, yielding the desired conclusion.

Then let C be a nonmeager subset of [0,+∞)N, and fix t ∈ C. We want to find

t′ ∈ C such that Aexp(t) and Aexp(t′) are not commensurable. The set{
t′ ∈ [0,+∞)N : for all but finitely many n ∈ N, exp(t′n) ≤ R(n, dn) exp(tn)

}
=

⋃
k∈N

{
t′ ∈ [0,+∞)N : ∀n ≥ k, exp(t′n) ≤ R(n, dn) exp(tn)

}
is a countable union of closed nowhere dense sets, hence meager. Therefore, its
complement{

t′ ∈ [0,+∞)N : for infinitely many n ∈ N, exp(t′n) > R(n, dn) exp(tn)
}
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is comeager. In particular, since C is nonmeager, there is t′ ∈ C such that exp(t′n) ≥
R(n, dn) exp(tn) for infinitely many n ∈ N. By Lemma 3.3, there is no continuous

unital homomorphism from Aexp(t) to Aexp(t′). Therefore Aexp(t) and Aexp(t′) are
not commensurable. This concludes the proof of the above claim. �
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