
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 144, Number 5, May 2016, Pages 2121–2131
http://dx.doi.org/10.1090/proc/12860

Article electronically published on September 11, 2015

INVERSE ITERATION FOR p-GROUND STATES

RYAN HYND AND ERIK LINDGREN

(Communicated by Jeremy Tyson)

Abstract. We adapt the inverse iteration method for symmetric matrices to
some nonlinear PDE eigenvalue problems. In particular, for p ∈ (1,∞) and

a given domain Ω ⊂ R
n, we analyze a scheme that allows us to approximate

the smallest value the ratio
∫
Ω |Dψ|pdx/

∫
Ω |ψ|pdx can assume for functions

ψ that vanish on ∂Ω. The scheme in question also provides a natural way to
approximate minimizing ψ. Our analysis also extends in the limit as p → ∞
and thereby fashions a new approximation method for ground states of the
infinity Laplacian.

1. Introduction

In this paper, we will use a generalization of the inverse iteration method for
symmetric matrices to estimate solutions of some nonlinear PDE eigenvalue prob-
lems. The first problem we consider is as follows. For p ∈ (1,∞) and a bounded
domain Ω ⊂ R

n, we define

(1.1) λp := inf

{∫
Ω
|Dψ|pdx∫

Ω
|ψ|pdx : ψ ∈ W 1,p

0 (Ω), ψ �≡ 0

}
.

Here W 1,p
0 (Ω) is the closure of the smooth, compactly supported functions φ :

Ω → R in the norm
(∫

Ω
|Dφ|pdx

)1/p
; we refer readers to the sources [4, 11] for

information on Sobolev spaces and their applications to PDE. It is evident that
1/λp is the smallest constant C for which the Poincaré inequality∫

Ω

|ψ|pdx ≤ C

∫
Ω

|Dψ|pdx, ψ ∈ W 1,p
0 (Ω),

holds.
The constant λp is also a type of eigenvalue. Indeed, minimizers in (1.1) are

called p-ground states and satisfy the PDE{
−Δpu = λp|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
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Here, the operator Δpψ := div(|Dψ|p−2Dψ) is known as the p-Laplacian. It has
been established that p-ground states exist and that any two are multiples of one
another; see [10, 13]. Consequently, λp is said to be simple.

We will use the following iteration scheme to approximate λp and p-ground states.
Let u0 ∈ Lp(Ω), and consider the family of PDE

(1.2)

{
−Δpuk = |uk−1|p−2uk−1, x ∈ Ω,

uk = 0, x ∈ ∂Ω,

for k ∈ N. It can be verified without too much difficulty that for a given u0, there
is a unique weak solution sequence (uk)k∈N ⊂ W 1,p

0 (Ω) of (1.2). That is, there is a

unique sequence (uk)k∈N ⊂ W 1,p
0 (Ω) such that∫

Ω

|Duk|p−2Duk ·Dφdx =

∫
Ω

|uk−1|p−2uk−1φdx

for each φ ∈ W 1,p
0 (Ω) and k ∈ N. In fact, once uk−1 ∈ Lp(Ω) is known, uk can be

obtained by minimizing the functional

W 1,p
0 (Ω) 	 v 
→

∫
Ω

(
1

p
|Dv|p − |uk−1|p−2uk−1v

)
dx.

As this functional is strictly convex and coercive, the existence of a unique minimizer
follows from the “direct method” of the calculus of variations.

The following theorem details how the scheme (1.2) is related to λp and p-ground
states.

Theorem 1.1. Assume u0 ∈ Lp(Ω) and define

μp := λ
1

p−1
p .

Then the limit

ψ := lim
k→∞

μk
puk

exists in W 1,p
0 (Ω). If ψ �≡ 0, then ψ is a p-ground state and

(1.3) λp = lim
k→∞

∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

.

See inequality (2.4) below for a condition on u0 that guarantees ψ �≡ 0.
The iteration scheme (1.2) was introduced by R. Biezuner, G. Ercole, and E. Mar-

tins in [1] who conjectured the limit

(1.4) λp = lim
k→∞

(∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

)1−1/p

.

We prove this limit holds under the hypotheses of Theorem 1.1; see Corollary 2.3.
We also show that the sequences(∫

Ω
|Duk|pdx∫

Ω
|uk|pdx

)
k∈N

and

(∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

)
k∈N

are nonincreasing, which we regard as special features of the the iteration (1.2).
See Proposition 2.4 below.
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Next, we derive an iteration scheme in the limit as p → ∞. Our motivation was
the seminal work of P. Juutinen, P. Lindqvist, and J. Manfredi [8], where it was

proven that limp→∞ λ
1/p
p exists and equals

λ∞ := inf

{ |Dψ|L∞(Ω)

|ψ|L∞(Ω)
: ψ ∈ W 1,∞

0 (Ω), ψ �≡ 0

}

= (sup{r : Br(x) ⊂ Ω for some x ∈ Ω})−1
.

Here W 1,∞
0 (Ω) is the space of Lipschitz continuous functions ψ : Ω → R that satisfy

ψ|∂Ω = 0. Furthermore, these authors also showed that there is a sequence (upj
)j∈N

of p-ground states that converge uniformly to a viscosity solution w ∈ W 1,∞
0 (Ω) of

the PDE

(1.5) 0 =

⎧⎪⎨
⎪⎩
min{−Δ∞w, |Dw| − λ∞w}, w > 0,

−Δ∞w, w = 0,

max{−Δ∞w,−|Dw| − λ∞w}, w < 0.

Here Δ∞ψ := D2ψDψ · Dψ is the infinity Laplacian, and nontrivial solutions of
(1.5) that are positive within Ω are called ∞-ground states.

By passing to the limit as p → ∞ in (1.2), we are able to conclude the subsequent
result. The novelty in the theorem below is that (1.6) presents a new mechanism
for generating ∞-ground states. However, we remark that a similar approximation
scheme has been used by P. Juutinen in connection with (1.5); the interested reader
may compare the theorem below to Lemma 6.12 of [6].

Theorem 1.2. Assume u0 ∈ C(Ω) and denote (uk,p)k∈N as the solution sequence
of (1.2).

(i) There is a sequence (pj)j∈N increasing to ∞ and (vk)k∈N ⊂ W 1,∞
0 (Ω) such

that uk,pj
→ vk uniformly on Ω as j → ∞ for each k ∈ N. Moreover, vk is a

viscosity solution of the PDE

(1.6) 0 =

⎧⎪⎨
⎪⎩
min{−Δ∞vk, |Dvk| − vk−1}, vk−1 > 0,

−Δ∞vk, vk−1 = 0,

max{−Δ∞vk,−|Dvk| − vk−1}, vk−1 < 0,

for each k ∈ N. (Here v0 := u0.)
(ii) The limit L := limk→∞ λk

∞|Dvk|L∞(Ω) exists. If L > 0,

λ∞ = lim
k→∞

|Dvk|L∞(Ω)

|vk|L∞(Ω)
,

and any uniformly convergent subsequence of (λk
∞vk)k∈N converges to a solution of

(1.5).

Remark 1.3. It turns out that if u0 ≥ 0 and L > 0, then any uniformly convergent
subsequence of (λk

∞vk)k∈N converges to an ∞-ground state.

We would especially like to thank Richard Tapia. After learning about our pre-
vious work [5] which employed a doubly nonlinear flow to approximate λp and
p-ground states, Professor Tapia suggested that it may be possible to use inverse
iteration to obtain similar results. As noted above, the authors R. Biezuner, G. Er-
cole, and E. Martins were the first to make this observation in [1]. Nevertheless, we



2124 RYAN HYND AND ERIK LINDGREN

believe this paper adds significantly to [1] and makes clear the connection between
inverse iteration and p-ground states.

2. Convergence of the scheme

Before proving Theorem 1.1, we will first make an observation which illumi-
nates how μp enters the statement of the theorem. In particular, we will find

that (μk
puk)k∈N is bounded in W 1,p

0 (Ω) and
(
μk
p|Duk|Lp(Ω)

)
k∈N

is a nonincreasing

sequence of real numbers.

Lemma 2.1. For each k ∈ N,

μp
p

∫
Ω

|Duk+1|pdx ≤
∫
Ω

|Duk|pdx.

Proof. Assume
∫
Ω
|Duk+1|pdx �= 0. We employ Hölder’s inequality and the Poincaré

inequality to find∫
Ω

|Duk+1|pdx =

∫
Ω

|Duk+1|p−2Duk+1Duk+1dx

=

∫
Ω

|uk|p−2ukuk+1dx

≤
(∫

Ω

|uk|pdx
)1−1/p (∫

Ω

|uk+1|pdx
)1/p

(2.1)

≤
(

1

λp

∫
Ω

|Duk|pdx
)1−1/p (

1

λp

∫
Ω

|Duk+1|pdx
)1/p

=
1

λp

(∫
Ω

|Duk|pdx
)1−1/p (∫

Ω

|Duk+1|pdx
)1/p

.

Consequently, ∫
Ω

|Duk+1|pdx ≤ 1

λ
p/(p−1)
p

∫
Ω

|Duk|pdx,

which proves the claim. �
Remark 2.2. A minor variation in the proof of Lemma 2.1 gives the estimate

(2.2)

∫
Ω

|Duk|pdx ≤ 1

μp

∫
Ω

|uk−1|pdx

for each k ∈ N. This estimate will be employed in the proof of Theorem 1.2.

Also note that the proof of Lemma 2.1 amounts to multiplying the PDE−Δpuk+1

= |uk|p−2uk by uk+1 and integrating by parts. If we instead multiply by this equa-

tion by the W 1,p
0 (Ω) functions u+

k+1 := max{uk+1, 0} and u−
k+1 := max{−uk+1, 0}

and integrate by parts, we arrive at the inequalities

(2.3) μp
p

∫
Ω

|Du±
k+1|pdx ≤

∫
Ω

|Du±
k |pdx

for each k ∈ N. As a result,
(
μk
p|Du±

k |Lp(Ω)

)
k∈N

are nonincreasing sequences.

Proof of Theorem 1.1. Set ψk := μk
puk (k ∈ N) and

S := lim
k→∞

∫
Ω

|Dψk|pdx.
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Observe that the limit defining S exists by Lemma 2.1. If S = 0, the assertion
follows. Let us now assume otherwise.

Notice that (ψk)k∈N satisfies the sequence of PDE{
−Δpψk = λp|ψk−1|p−2ψk−1, x ∈ Ω,

ψk = 0, x ∈ ∂Ω.

By Lemma 2.1 and Rellich-Kondrachov compactness, there is ψ ∈ W 1,p
0 (Ω) and a

subsequence (ψkj
)j∈N so that ψkj

→ ψ in Lp(Ω) and Dψkj
⇀ Dψ in Lp(Ω;Rn), as

j → ∞. Also note∫
Ω

|Dψkj
|pdx =

∫
Ω

|Dψkj
|p−2Dψkj

·Dψkj
dx = λp

∫
Ω

|ψkj−1|p−2ψkj−1ψkj
dx.

Since ψkj
→ ψ in Lp(Ω),

lim sup
j→∞

∫
Ω

|Dψkj
|pdx = λp

∫
Ω

|ψ|pdx ≤
∫
Ω

|Dψ|pdx,

and the weak convergence Dψkj
⇀ Dψ in Lp(Ω;Rn) gives

lim inf
j→∞

∫
Ω

|Dψkj
|pdx ≥

∫
Ω

|Dψ|pdx.

Thus, ψkj
→ ψ in W 1,p

0 (Ω), S =
∫
Ω
|Dψ|pdx and∫

Ω

|Dψ|pdx = λp

∫
Ω

|ψ|pdx.

As S > 0, ψ �≡ 0 and thus ψ is a p-ground state. Without loss of generality,
let us assume ψ is positive in Ω. In this case, ψ−

kj
→ 0 in Lp(Ω). We use Dψ−

k =

−Dψkχ{ψk<0} to compute∫
Ω

|Dψ−
kj
|pdx = −

∫
Ω

|Dψkj
|p−2Dψkj

·Dψ−
kj
dx

= −
∫
Ω

|ψkj−1|p−2ψkj−1ψ
−
kj
dx

≤ λp

∫
Ω

|ψ−
kj−1|p−2ψ−

kj−1ψ
−
kj
dx.

Consequently, ψ−
kj

→ 0 in W 1,p
0 (Ω). By the inequality (2.3) for (u−

k )k∈N, the limit

limk→∞
∫
Ω
|Dψ−

k |pdx exists, which must equal 0 as a subsequence tends to 0. In

particular, ψ−
k → 0 in W 1,p

0 (Ω).

Since ψk = ψ+
k − ψ−

k , every convergent subsequence of (ψk)k∈N in W 1,p
0 (Ω) is

then necessarily nonnegative. Moreover, as S is the same for any subsequential
limit, the simplicity of λp implies that ψk → ψ in W 1,p

0 (Ω) as k → ∞. It also
follows that

lim
k→∞

∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

= lim
k→∞

∫
Ω
|Dψk|pdx∫

Ω
|ψk|pdx

=

∫
Ω
|Dψ|pdx∫

Ω
|ψ|pdx = λp.

�

Corollary 2.3. Assume limk→∞ μk
p|Duk|Lp(Ω) �≡ 0; then the limit (1.4) holds.
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Proof. Set ψk := μk
puk. By the previous assertion, (ψk)k∈N converges to a p-ground

state in W 1,p
0 (Ω). As a result,

lim
k→∞

∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

= μp
p lim
k→∞

∫
Ω
|ψk−1|pdx∫
Ω
|ψk|pdx

= λp/(p−1)
p .

�

Observe that if u0 is a p-ground state, then (μ−k
p u0)k∈N is a “separation of

variables” solution of (1.2). This is a trivial case of Theorem 1.1. Also note that
ψ := limk→∞ μk

puk could vanish identically; for instance, this occurs when p = 2
and u0 is an eigenfunction of the Dirichlet Laplacian corresponding to an eigenvalue
different than λ2.

Similarly, if

(2.4) u0 ≥ w

for a positive p-ground state w, then−Δpu1 ≥ −Δp(μ
−1
p w). As u0|∂Ω = μ−1

p w|∂Ω =

0, u1 ≥ μ−1
p w. It follows from induction on k ∈ N that uk ≥ μ−k

p w. Therefore, we
would have ψ �≡ 0. This same conclusion can be made with the help of a version
of Hopf’s Lemma (as described in [12]), provided we assume u0 ≥ 0, u0 �≡ 0 and
additional regularity of ∂Ω. These details are left to the reader.

We finish this section by establishing some fundamental properties of the itera-
tion scheme (1.2). The monotonicity statement (2.5) below suggests the iteration
scheme improves the Rayleigh quotient

∫
Ω
|Dψ|pdx/

∫
Ω
|ψ|pdx at each step. Like-

wise, the subsequent inequality (2.6) gives more insight on the limit (1.4).

Proposition 2.4. Assume u0 �≡ 0. Then uk �≡ 0 for each k ∈ N,

(2.5)

∫
Ω
|Duk+1|pdx∫

Ω
|uk+1|pdx

≤
∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

,

and

(2.6)

∫
Ω
|uk|pdx∫

Ω
|uk+1|pdx

≤
∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

for each k ∈ N.

Proof. If u0 �≡ 0, then u1 �≡ 0 or (1.2) could not hold when k = 1. By induction,
we may conclude uk �≡ 0 for each k ∈ N.

Now fix k ∈ N and observe∫
Ω

|uk|pdx =

∫
Ω

(|uk|p−2uk)ukdx

=

∫
Ω

|Duk+1|p−2Duk+1 ·Dukdx

≤
(∫

Ω

|Duk+1|pdx
)1−1/p (∫

Ω

|Duk|pdx
)1/p

.(2.7)
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Combining the bound (2.1) with (2.7) gives∫
Ω
|Duk+1|pdx∫

Ω
|uk+1|pdx

≤
(∫

Ω
|uk|pdx

)1−1/p (∫
Ω
|uk+1|pdx

)1/p∫
Ω
|uk+1|pdx

=

∫
Ω
|uk|pdx(∫

Ω
|uk+1|pdx

)1−1/p (∫
Ω
|uk|pdx

)1/p
≤

(∫
Ω
|Duk+1|pdx

)1−1/p (∫
Ω
|Duk|pdx

)1/p
(∫

Ω
|uk+1|pdx

)1−1/p (∫
Ω
|uk|pdx

)1/p
=

(∫
Ω
|Duk+1|pdx∫

Ω
|uk+1|pdx

)1−1/p (∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

)1/p

,

which verifies (2.5).
As for (2.6), we employ (2.7), (2.5) and (2.1) to find∫

Ω
|uk|pdx∫

Ω
|uk+1|pdx

≤
(∫

Ω
|Duk+1|pdx

)1−1/p (∫
Ω
|Duk|pdx

)1/p∫
Ω
|uk+1|pdx

≤
[∫

Ω

|uk+1|pdx
∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

]1−1/p (∫
Ω
|Duk|pdx

)1/p∫
Ω
|uk+1|pdx

=

∫
Ω
|Duk|pdx(∫

Ω
|uk+1|pdx

)1/p (∫
Ω
|uk|pdx

)1−1/p

≤
(∫

Ω
|uk|pdx

)1/p (∫
Ω
|uk−1|pdx

)1−1/p

(∫
Ω
|uk+1|pdx

)1/p (∫
Ω
|uk|pdx

)1−1/p

=

( ∫
Ω
|uk|pdx∫

Ω
|uk+1|pdx

)1/p (∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

)1−1/p

. �

Remark 2.5. If u0 �≡ 0, the sequences(∫
Ω
|Duk|pdx∫

Ω
|uk|pdx

)
k∈N

and

(∫
Ω
|uk−1|pdx∫
Ω
|uk|pdx

)
k∈N

are bounded below by λp and λ
p/(p−1)
p , respectively; see Proposition 2.8 of [1]. In

view of the monotonicity in (2.5) and (2.6), both of these sequences are convergent.
However, the limits (1.3) and (1.4) may not hold if limk→∞ μk

puk ≡ 0. For example,
these limits fail if p = 2 and u0 is an eigenfunction of the Dirichlet Laplacian that
corresponds to an eigenvalue not equal to λ2.

3. The large p limit

This section is dedicated to a proof of Theorem 1.2, which characterizes the large
p limit of the solutions of the iteration scheme (1.2). We begin with a technical

observation regarding weak solution sequences (uk)k∈N ⊂ W 1,p
0 (Ω) of (1.2) when

u0 ∈ C(Ω).

Lemma 3.1. Suppose u0 ∈ C(Ω), and let (uk)k∈N ⊂ W 1,p
0 (Ω) denote the associated

solution sequence of (1.2). Then for each k ∈ N, there is αk ∈ (0, 1) such that

uk ∈ C1,αk

loc (Ω) ∩ L∞(Ω).
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Proof. It suffices to verify the claim for k = 1; the case k ≥ 2 then follows from
induction. Recall that (1.2) implies u1 ∈ W 1,p

0 (Ω) is a weak solution of the solution
of {

−Δpu1 = |u0|p−2u0, x ∈ Ω,

u1 = 0, x ∈ ∂Ω.

We will use a weak comparison principle argument to bound u1 from above and
then from below. The regularity theory developed by E. DiBenedetto in [3] would

then imply the existence of an α1 ∈ (0, 1) such that u1 ∈ C1,α1

loc (Ω).

To this end, we fix any y /∈ Ω and define

w(x) :=
1

qn
1

p−1

|x− y|q, x ∈ Ω.

Here q = p/(p − 1) is the Hölder exponent dual to p. Direct computation has
Δpw(x) = 1 for each x ∈ Ω. It is also routine to verify that

v := |u0|L∞(Ω)

(
|w|L∞(Ω) − w

)
satisfies

−Δpv ≥ |u0|p−2u0, x ∈ Ω.

Since v|∂Ω ≥ 0 = u1|∂Ω, a standard weak comparison argument implies u1 ≤ v in
Ω. In particular,

u1 ≤ |w|L∞(Ω)|u0|L∞(Ω), x ∈ Ω.

We can argue similarly to bound u from below and derive

u1 ≥ −|w|L∞(Ω)|u0|L∞(Ω), x ∈ Ω.

�

We have just established that the solution sequence (uk)k∈N of the inverse it-
eration scheme is continuous, provided that u0 is continuous. Virtually the same
argument given by P. Juutinen, P. Lindqvist and J. Manfredi in the proof of Theo-
rem 2.5 of [9] implies that each uk is additionally a viscosity solution of (1.2). That
is, each solution sequence (uk)k∈N ⊂ C(Ω) of (1.2) with p ≥ 2 has the following
property. For each k ∈ N,

−Δpφ(x0) ≤ |uk−1(x0)|p−2uk−1(x0)

whenever φ ∈ C2(Ω) and uk − φ has a local maximum at x0 ∈ Ω, and

−Δpφ(x0) ≥ |uk−1(x0)|p−2uk−1(x0)

whenever φ ∈ C2(Ω) and uk−φ has a local minimum at x0 ∈ Ω. We refer interested
readers to the “User’s guide to viscosity solutions” [2] for more information on
viscosity solutions of elliptic PDE, and we now proceed to prove Theorem 1.2.

Proof of Theorem 1.2 part (i). Employing Lemma 2.1 and inequality (2.2) for k = 1
gives

|Duk,p|Lp(Ω) ≤
1

μk−1
p

|Du1,p|Lp(Ω) ≤
1

μ
k−1+1/p
p

|u0|Lp(Ω) ≤
|Ω|1/p

μ
k−1+1/p
p

|u0|L∞(Ω).
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Assume p0 > n. For p > p0, we can use the above inequality with Hölder’s inequal-
ity to get

|Duk,p|Lp0 (Ω) ≤ |Ω|
1
p0

− 1
p |Duk,p|Lp(Ω) ≤

|Ω|1/p0

μ
k−1+1/p
p

|u0|L∞(Ω).

By Morrey’s inequality and the limit limp→∞ μp = λ∞,

(uk,p)p>p0
⊂ C1−n/p0(Ω)

is bounded for each k ∈ N. Therefore, the Arzelà-Ascoli Theorem and a standard
diagonalization argument implies there is a sequence (vk)k∈N ⊂ C1−n/p0(Ω) and a
sequence of positive numbers (pj)j∈N that are increasing and unbounded such that

vk = lim
j→∞

uk,pj

in C1−n/p0(Ω) for each k ∈ N.
Now let p > r, and employ Hölder’s inequality with (2.2) to get(

1

|Ω|

∫
Ω

|Duk,p|rdx
)1/r

≤
(

1

|Ω|

∫
Ω

|Duk,p|pdx
)1/p

≤
(

1

|Ω|
1

μp

∫
Ω

|uk−1,p|pdx
)1/p

≤ 1

μ
1/p
p

|uk−1,p|L∞(Ω).

The sequence (uk,pj
)j≥jr is then bounded in W 1,r

0 (Ω) for some jr ∈ N large enough
and thus (uk,pj

)j∈N converges to vk weakly. Therefore, we can substitute p = pj
above and send j → ∞ to arrive at(

1

|Ω|

∫
Ω

|Dvk|rdx
)1/r

≤ |vk−1|L∞(Ω)

for each k ∈ N. And after sending r → ∞,

(3.1) |Dvk|L∞(Ω) ≤ |vk−1|L∞(Ω).

In particular, we have verified that (vk)k∈N ⊂ W 1,∞
0 (Ω).

It is now relatively standard to verify that for each k ∈ N, vk is a viscosity
solution of the PDE (1.6):

0 =

⎧⎪⎨
⎪⎩
min{−Δ∞vk, |Dvk| − vk−1}, vk−1 > 0,

−Δ∞vk, vk−1 = 0,

max{−Δ∞vk,−|Dvk| − vk−1}, vk−1 < 0.

The required argument can be adapted from the proofs of Theorem 3.11 in [6],
Theorem 1.21 in [8], or Section 4 of [7]. �

Proof of Theorem 1.2 part (ii). In view of (3.1),

|Dvk|L∞(Ω) ≤ |vk−1|L∞(Ω) ≤
1

λ∞
|Dvk−1|L∞(Ω).

Therefore, the sequence (λk
∞|Dvk|L∞(Ω))k∈N is nonincreasing, and the limit

L := lim
k→∞

λk
∞|Dvk|L∞(Ω)
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exists. The inequality (3.1) also implies

|vk|L∞(Ω) ≤
1

λ∞
|Dvk|L∞(Ω) ≤

1

λ∞
|vk−1|L∞(Ω).

Consequently, (λk
∞|vk|L∞(Ω))k∈N is nonincreasing and the limit

M := lim
k→∞

λk
∞|vk|L∞(Ω)

exists, as well.
Observe λk

∞|Dvk|L∞(Ω) ≤ λ∞
(
λk−1
∞ |vk−1|L∞(Ω)

)
so that

L ≤ λ∞M.

Moreover, λk
∞|vk|L∞(Ω) ≤ 1

λ∞
λk
∞|Dvk|L∞(Ω), which implies

λ∞M ≤ L.

Thus, λ∞M = L, and when this quantity is nonzero,

λ∞ = lim
k→∞

|Dvk|L∞(Ω)

|vk|L∞(Ω)
.

Finally, note that the sequence (wk)k∈N := (λk
∞vk)k∈N ⊂ W 1,∞

0 (Ω) satisfies the
iteration scheme

0 =

⎧⎪⎨
⎪⎩
min{−Δ∞wk, |Dwk| − λ∞wk−1}, wk−1 > 0,

−Δ∞wk, wk−1 = 0,

max{−Δ∞wk,−|Dwk| − λ∞wk−1}, wk−1 < 0,

in the sense of viscosity solutions. Therefore, if a subsequence of (λk
∞vk)k∈N con-

verges uniformly on Ω, the stability of viscosity solutions implies that the limit
function is necessarily a solution of (1.5). �
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