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Abstract. Given a Boolean algebra A, we construct another Boolean algebra
B with no uncountable well-ordered chains such that the Banach space of real-
valued continuous functions C(KA) embeds isometrically into C(KB), where
KA and KB are the Stone spaces of A and B, respectively. As a consequence
we obtain the following: If there exists an isometrically universal Banach space
for the class of Banach spaces of a given uncountable density κ, then there is
another such space which is induced by a Boolean algebra which is not universal
for Boolean algebras of cardinality κ. Such a phenomenon cannot happen on
the level of separable Banach spaces and countable Boolean algebras. This
is related to the open question of whether the existence of an isometrically
universal Banach space and of a universal Boolean algebra are equivalent on
the nonseparable level (both are true on the separable level).

1. Introduction

If A is a Boolean algebra, we denote by KA the Stone space of A; that is, a com-
pact Hausdorff totally disconnected space such that A is isomorphic to the algebra
of all clopen subsets of KA (see [14]). C(K) denotes the Banach space of real-valued
continuous functions on a compact Hausdorff space K with the supremum norm.

Given an infinite cardinal κ, let Bκ denote the class of Banach spaces of density
at most κ, Cκ denote the class of compact spaces of weight at most κ and Aκ

denote the class of Boolean algebras of cardinality at most κ. We say that X ∈ Bκ

is isometrically universal for Bκ if for every Y ∈ Bκ there is a linear isometry
T : Y → X onto its range. We say that K ∈ Cκ is universal for Cκ if for every
L ∈ Cκ there is a continuous surjection φ : K → L and we say that A ∈ Aκ is
universal for Aκ if for every B ∈ Aκ there is a Boolean isomorphism h : B → A
onto its range.

Classical functorial arguments involving the dual ball of a Banach space imply
(see, e.g., the introduction to [2] or [15]) that for any infinite cardinal κ the first
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two statements below are equivalent (by the Stone duality) and that they imply
the third one:

• There is a universal Boolean algebra for Aκ.
• There is a universal compact Hausdorff space for Cκ.
• There is an isometrically universal Banach space for Bκ.

By classical results (e.g., the Banach-Mazur Theorem) the three statements are
true for κ = ω (for a survey on related topics see [15]). Moreover, by the results
of I. I. Parovichenko [16] and A. S. Esenin-Volpin [10], GCH implies that all the
above statements are true for any infinite cardinal κ. Concerning the failure of the
above statements for uncountable cardinals, since classical objects like ℘(N)/F in
and �∞/c0 fall into the case where κ = 2ω, this is the case which has been mostly
addressed in the literature ([2, 3, 7]) and seems to us to be the most interesting.
Also, it can be noted (e.g., in [3, 7]) that the cases of cardinals which are fixed on
the scale of alephs, like ω1, are easier to deal with because they can be consistently
made strictly smaller than 2ω.

The consistency of the failure of the statements for κ = 2ω has been proved
by A. Dow and K. P. Hart for Boolean algebras and compact spaces (see [7]) and
by S. Shelah and A. Usvyatsov for isometric embeddings (see [17]). Actually, one
can even prove the nonexistence of a universal Banach space in B2ω for isomorphic
embeddings (see [2,3]). Whether the equivalence of all the three statements above
for κ = 2ω can be proved without additional assumptions is the main question that
motivates our research in this paper. The reader may look at the discussions in [2],
[3], [15] and Conjectures 2 and 3 in [9] for a wider view of this and similar questions.

Not knowing how to attack the problem itself, an intermediate question is
whether an isometrically universal Banach space of the form C(KA) must be in-
duced by a universal Boolean algebra A, as it is known that the existence of an
isometrically universal Banach space implies the existence of one of the form C(KA)
(Fact 1.1. of [2]). This is the case on the countable level: one can see that if C(KA)
is separable and isometrically universal1 for separable Banach spaces, then KA can-
not be scattered and so A must contain an infinite free algebra, meaning that A is
a universal algebra among countable algebras and KA is a universal compact space
among metrizable compact spaces. The main purpose of this paper is to prove that
the situation is different on the uncountable level:

Theorem 1.1. For any uncountable κ, if there exists an isometrically universal
Banach space for Bκ, then there is also such a space of the form C(KA) for some
Boolean algebra A where A does not contain well-ordered uncountable chains. In
particular, A is not a universal Boolean algebra for Aκ nor is KA universal for Cκ.

Proof. Suppose that X is an isometrically universal Banach space for Bκ. By the
above discussion, by isometrically embedding X into C(BX∗) and taking a totally
disconnected continuous preimage of BX∗ , we may assume that X is of the form
C(KA) for some Boolean algebra A. Then, Proposition 3.5 produces a Boolean
algebra B of the same cardinality κ such that C(KA) isometrically embeds into
C(KB) and hence C(KB) is also isometrically universal for the same class of Banach
spaces Bκ. However, still by Proposition 3.5, the Boolean algebra generated by a
well-ordered chain of type ω1 cannot be embedded into B. By the Stone duality,

1Actually, C(KA) being isomorphically universal suffices.
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KB cannot be continuously mapped onto [0, ω1] with the order topology. Therefore,
KB is not universal for Aκ and KB is not universal for Cκ. �

In the literature there are some results assuming the axiom OCA and concerning
similar behaviour of the Boolean algebra ℘(N)/F in and the Banach space �∞/c0 ≡
C(K℘(N)/Fin). However, there is at present no known example showing that �∞/c0
is not isometrically universal under OCA while there are many examples showing
that ℘(N)/F in is not universal ([5, 6, 18]). For example, A. Dow and K. P. Hart
have proved in [6] that OCA implies that the measure algebra M does not embed
into ℘(N)/F in, while it is well known that C(KM ) ≡ L∞ isometrically embeds into
C(K℘(N)/Fin) ≡ �∞/c0 (see, e.g., p. 304 of [1]). Moreover, while the algebra of
clopen subsets of the closure of a cozero set in N

∗ does not embed into ℘(N)/F in
under OCA (see [18]), it is still open if the corresponding Banach space �∞(�∞/c0)
can be embedded under OCA into �∞/c0 (cf. [4, 8]).

Our paper contains basically one construction: given a Boolean algebra A, we
construct another Boolean algebra B such that C(KA) embeds isometrically into
C(KB) but B does not contain uncountable well-ordered chains (Proposition 3.5).
Thus, when A does contain uncountable well-ordered chains as, for example, in the
cases of Boolean algebras of the clopen subsets of [0, ω1] or N

∗, we cannot have a
Boolean embedding of A into B. B is the algebra of clopen sets of some (standard)
totally disconnected preimage of the dual ball BC(K)∗ of C(KA) with the weak∗

topology. In Section 2 we show that if it had an uncountable well-ordered chain of
clopen sets we would have a chain of some sets in the ball BC(K)∗ and this cannot
occur as is shown in Section 3.

It would be interesting to know if objects other than uncountable well-ordered
chains can be used in the above argument. Or conversely, for which Boolean al-
gebras A, the existence of an isometric embedding C(KA) into C(KB) implies the
existence of a Boolean embedding of A into B. By Theorem 12.30 (ii) of [11] these
cannot be uncountable antichains, i.e., the algebra A = FinCofin(κ) for any κ
has the above property for any algebra B. Also, if A has an independent family
of cardinality κ and C(KA) isometrically embeds into C(KB), by the Holsztyński
Theorem ([12]) we have a closed set F ⊆ KB which maps onto {0, 1}κ. This map
can be always extended to a totally disconnected superspace and in particular KB

maps onto {0, 1}κ, and so B contains an independent family of cardinality κ. But
we do not know if an isometric embedding of C(K℘(N)) ≡ �∞ into C(KB) implies
the existence of an isomorphic copy of ℘(N) in B.

Terminology should be standard; concerning the Banach spaces we follow [11]
and for Boolean algebras we follow [14]. f [X], f−1[X] denote the image and
the preimage of X under f , respectively. f |X denotes the restriction of f to X,
{0, 1}<N =

⋃
n∈N

{0, 1}n.

2. Chains in totally disconnected preimages

Lemma 2.1. Let K and L be compact spaces and ψ : K → L be a surjective
continuous mapping. Suppose U ⊆ K is clopen. For every x ∈ U , if ψ−1[{ψ(x)}] ⊆
U , then ψ(x) ∈ int(ψ[U ]). Hence,

ψ[{x ∈ U : ψ−1[{ψ(x)}] ⊆ U}] ⊆ int(ψ[U ]).
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Proof. Note that given x ∈ U , if ψ−1[{ψ(x)}] ⊆ U , then ψ(x) �∈ ψ[K \ U ]. But
L = ψ[U ] ∪ ψ[K \ U ], and so L \ ψ[K \ U ] is an open set included in ψ[U ], so
ψ(x) ∈ int(ψ[U ]). �

The previous lemma will be applied to a restriction of the function φI defined
as follows. Let φ : {0, 1}N → [0, 1] be given by

φ(x) =

∞∑
n=1

x(n)

2n
.

Given any set of indices I, we consider φI : ({0, 1}N)I → [0, 1]I which is defined
coordinatewise by

φI(x)(i) = φ(x(i))

for x ∈ ({0, 1}N)I and i ∈ I. Since φI is defined coordinatewise, we immediately
obtain the following:

Lemma 2.2. Suppose x, x′, x′′ ∈ ({0, 1}N)I are such that φI(x) = φI(x
′) and that

for each i ∈ I either x′′(i) = x(i) or x′′(i) = x′(i). Then φI(x
′′) = φI(x) = φI(x

′).

We will consider the standard basis of clopen sets of {0, 1}N, i.e., the sets of the
form

[s] = {x ∈ {0, 1}N : s ⊆ x}
for s ∈ {0, 1}<N. By the definition of the product topology, the sets of the form

U(i, [s]) = {x ∈ ({0, 1}N)I : x(i) ∈ [s]}
for i ∈ I and s ∈ {0, 1}<N form a topological subbasis for ({0, 1}N)I which consists
of clopen sets. Note that

(∗) φ[[s]] =
[ ∑
1≤n≤|s|

x(n)

2n
,

∑
1≤n≤|s|

x(n)

2n
+

1

2|s|

]

for any s ∈ {0, 1}<N. Hence, φ sends the standard basic clopen sets onto closed
subintervals of [0, 1], in particular onto convex sets.

Definition 2.3. For a subspace X of ({0, 1}N)I , n ∈ N and a subset J ⊆ I we will
say that Y ⊆ X n-depends on J ⊆ I in X if and only if whenever x, y ∈ X and
x(i)|n = y(i)|n for each i ∈ J , then

x ∈ Y ⇔ y ∈ Y.

It is immediate that U(i, [s]) n-depends on {i} in ({0, 1}N)I where n = |s| and so,
U(i, [s]) ∩ L n-depends on {i} in any L ⊆ ({0, 1}N)I . Since clopen sets of compact
Hausdorff spaces are Boolean combinations of finitely many sets from any clopen
subbasis, it follows that any clopen subset of any closed L ⊆ ({0, 1}N)I n-depends
on J ⊆ I in L, for n being any natural number larger than |s| for all s which appear
in the finite Boolean combination of sets of the form U(i, [s]) and J is the set of
all i which appear in such a Boolean combination. We are now ready for the main
result of this section.

Proposition 2.4. Let I be a set and let K be a closed convex subspace of [0, 1]I such
that no closed convex subspace F of K has an uncountable well-ordered chain of
open (in F ) sets (Vα)α<ω1

satisfying V α ⊆ Vβ for α < β < ω1. Then L = φI
−1[K]

has no uncountable well-ordered chain of clopen sets (Uα)α<ω1
.



ISOMETRICALLY UNIVERSAL 2033

Proof. Suppose that (Uα ∩ L)α∈ω1
is a sequence of clopen subsets of L where the

Uα’s are clopen subsets of ({0, 1}N)I . As we noticed, it follows that each Uα ∩ L
nα-depends on some finite set Jα ⊆ I in ({0, 1}N)I , for some nα. Using the Δ-
system lemma (see [13]) and the fact that {0, 1}<N and N are countable, we may
assume that (Jα)α<ω1

is a Δ-system with root Δ and each Uα n-depends on Jα in
({0, 1}N)I for a fixed n ∈ N and all α < ω1.

For each f ∈ ({0, 1}n)Δ, consider

U(f) =
⋂
i∈Δ

U(i, [f(i)]).

({0, 1}N)I is the disjoint union of the family of clopen sets {U(f) : f ∈ ({0, 1}n)Δ}.
It follows that there is f0 ∈ ({0, 1}n)Δ such that (Uα ∩ L ∩ U(f0))α<ω1

forms an
uncountable sequence. By going to a subsequence we may assume that all elements
Uα ∩ L ∩ U(f0) are distinct. Consider L′ = L ∩ U(f0), F = φI [L

′] and ψ = φI |L′

from L′ onto F and put

Vα = intF (ψ[Uα ∩ L′]).

Note that F = φI [φ
−1
I [K] ∩ U(f0)] = φI [U(f0)] ∩K, which is convex as the inter-

section of two convex sets. Secondly, note that Uα ∩L′ n-depends on Jα \Δ in L′,
for each α < ω1. Indeed, whenever x, y ∈ L′, we have that x(i)|n = f0(i) = y(i)|n
for all i ∈ Δ and so, whenever we have additionally that x(i)|n = y(i)|n for all
i ∈ Jα \Δ, we may use the fact that Uα n-depends on Jα in ({0, 1}N)I .

By the hypothesis on convex sets in K applied to F , there are α < β < ω1 such
that Vα �⊆ Vβ. Aiming at a contradiction, let us assume that (Uα ∩ L)α<ω1

is a
well-ordered chain and hence, Uα ∩L′ ⊆ Uβ ∩L′. Then, since ψ[Uα ∩L′] is a closed

set, Vα ⊆ ψ[Uα ∩ L′] and we conclude that there is

y ∈ ψ[Uα ∩ L′] \ intF (ψ[Uβ ∩ L′]) ⊆ ψ[Uβ ∩ L′] \ intF (ψ[Uβ ∩ L′]).

Let x ∈ Uα ∩ L′ be such that ψ(x) = y. Lemma 2.1 gives that ψ−1[{y}] �⊆ Uβ ∩ L′

and so there is x′ ∈ L′ such that x′ �∈ Uβ ∩L′ but ψ(x′) = y. Now we will combine
x and x′ following Lemma 2.2 and will obtain a contradiction with the hypothesis
that Uα ∩ L′ ⊆ Uβ ∩ L′. Define

x′′(ξ) =

{
x′(ξ) if ξ �∈ Jβ \Δ,
x(ξ) otherwise.

By Lemma 2.2 the point x′′ is in L. Note that x′′ ∈ U(f0) as x′′|Δ = x|Δ i.e.,
x′′ ∈ L ∩ U(f0) = L′. Also, x′′|Jα = x|Jα and so x′′ ∈ Uα since Uα ∩ L′ n-depends
on Jα in L′ and x ∈ Uα. On the other hand, x′′|(Jβ \Δ) = x′|(Jβ \Δ), so x′′ �∈ Uβ as
Uβ ∩L′ n-depends on Jβ \Δ in L′ and x′ /∈ Uβ . This shows that Uα∩L′ �⊆ Uβ ∩L′,
contradicting our hypothesis. Hence, (Uα ∩L)α<ω1

is not a well-ordered chain and
this completes the proof of the proposition. �

3. Well-ordered chains in the dual ball

Proposition 3.1. If F is any closed convex subspace of the dual unit ball of a
Banach space endowed with the weak∗ topology, then F does not have an uncountable
well-ordered chain of open sets (Vα)α<ω1

such that Vα ⊆ Vβ for any α < β < ω1.

Proof. Let X be a Banach space, BX∗ its dual unit ball endowed with the weak∗

topology and F a closed convex subspace of BX∗ . Suppose (Vα)α∈ω1
is a well-

ordered chain of open sets of F such that Vα ⊆ Vβ for any α < β < ω1. Put
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V =
⋃

α∈ω1
Vα. Since F is a closed subspace of BX∗ and BX∗ is weakly∗ compact,

then F \ V is a nonempty closed set of F . It is as well a weakly closed set, since
the weak topology is finer than the weak∗ topology. It cannot be a weakly open
set in F , because F is convex, and since X endowed with the weak topology is a

topological vector space, F is weakly connected. Then, there is x ∈ BX∗ \ V w∩V w
.

Now, by Kaplansky’s Theorem (e.g., 4.49 of [11]), every Banach space has count-
able tightness in its weak topology. So, there is a countable set D ⊆ V such that
x ∈ D

w
. Since D is countable, there is γ ∈ ω1 such that D ⊆ Vγ , which implies

that x ∈ V
w

γ ⊆ V
w∗

γ ⊆ Vγ+1 ⊆ V , contradicting the fact that x ∈ F \ V w
. �

The hypothesis of F being convex is crucial, as any compact Hausdorff space
K can be homeomorphically embedded in the dual ball of C(K) with the weak∗

topology by associating the Dirac δx to each x ∈ K. In the context of the above
result it is also worthy to mention the following:

Proposition 3.2. Note that if X is a Banach space of density κ, then there is a
well-ordered increasing chain (Uξ)ξ<κ of open sets in the dual unit ball BX∗ of X
with the weak∗ topology.

Proof. Using the Hahn-Banach Theorem, construct by transfinite induction a se-
quence (xξ, x

∗
ξ)ξ<κ ⊆ X ×BX∗ such that x∗

ξ(xη) = 0 for η < ξ < κ and x∗
ξ(xξ) = 1

for ξ < κ. Then

Uξ =
⋃
η<ξ

{x∗ ∈ BX∗ : x∗(xη) �= 0}

is as required. �

Lemma 3.3. Given a Banach space X and a dense subset D of its unit ball,
the natural restriction mapping f : BX∗ → [−1, 1]D defined by f(x∗) = x∗|D is a
homeomorphism onto its image with respect to the weak∗ and the product topologies,
with the property that F ⊆ BX∗ is convex if and only if f(F ) is convex.

Proof. The preimages of standard basic open sets in the product are weakly∗ open,
so that f is continuous. As two distinct functionals must differ on an element of the
unit ball we see that f is a homeomorphism onto its image. Φ : X∗ → R

D given by
Φ(x∗)(d) = x∗(d) is linear and one-to-one and hence its inverse is linear and one-
to-one. Both mappings preserve convexity. The lemma follows as f = Φ|BX∗ . �

Proposition 3.4. The dual unit ball of every Banach space endowed with the weak∗

topology has a continuous preimage which is compact, totally disconnected of same
weight and with no uncountable well-ordered chain of clopen sets.

Proof. Let X be a Banach space of density κ. Let D ⊆ X be a dense subset of the
unit ball of cardinality κ. Let f : BX∗ → [−1, 1]D be defined by f(x∗) = x∗|BX

as in Lemma 3.3, let g be the linear order-preserving homeomorphism from [−1, 1]
onto [0, 1] and let gD : [−1, 1]D → [0, 1]D be defined coordinatewise by gD(x)(d) =
g(x(d)) for any d ∈ D and x ∈ [−1, 1]D. Clearly gD is a homeomorphism such that
F ⊆ [−1, 1]D is convex if and only if gD[F ] is convex. Then, h = g ◦ f : BX∗ →
[0, 1]D is a homeomorphism onto its image such that F ⊆ BX∗ is convex if and only
if h[F ] is convex.
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Let K = h[BX∗ ] ⊆ [0, 1]D. If F is a convex subset of K, then h−1[F ] is a convex
subset of BX∗ and Proposition 3.1 guarantees that it contains no uncountable well-

ordered chain of open sets (Vα)α<ω1
such that V

F

α ⊆ Vβ for α < β < ω1. Since h is
a homeomorphism onto K, we get that F has no such chain of open sets either.

Finally, since K satisfies the hypotheses of Proposition 2.4, we get that L =
(φD)−1[K] has no uncountable well-ordered chain of clopen sets. Since the weight
of K cannot be bigger than D, this concludes the proof. �

Proposition 3.5. Suppose that A is a Boolean algebra. There is a Boolean algebra
B of same cardinality as A but without uncountable well-ordered chains such that
the Banach space C(KB) contains an isometric copy of C(KA).

Proof. Let X = C(KA) and by Proposition 3.4, the dual unit ball BX∗ has a
continuous preimage L which is compact, totally disconnected, of the same weight
as BC(KA)∗ and with no uncountable well-ordered chain of clopen sets. Hence,
B = Clop(L) is a Boolean algebra of the same cardinality as A which has no
uncountable well-ordered chains and, therefore, has no isomorphic copy of A. But
KB is homeomorphic to L, so that C(KB) is isometric to C(L), which contains
an isometric copy of C(BX∗), which in turn contains an isometric copy of X =
C(KA). �
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[12] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous function,
Studia Math. 26 (1966), 133–136. MR0193491 (33 #1711)

[13] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
2003. The third millennium edition, revised and expanded. MR1940513 (2004g:03071)

[14] Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co.,
Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet. MR991565 (90k:06002)

http://www.ams.org/mathscinet-getitem?mr=0397380
http://www.ams.org/mathscinet-getitem?mr=0397380
http://www.ams.org/mathscinet-getitem?mr=2956234
http://www.ams.org/mathscinet-getitem?mr=3008874
http://www.ams.org/mathscinet-getitem?mr=3180586
http://www.ams.org/mathscinet-getitem?mr=1679586
http://www.ams.org/mathscinet-getitem?mr=1679586
http://www.ams.org/mathscinet-getitem?mr=1752102
http://www.ams.org/mathscinet-getitem?mr=1752102
http://www.ams.org/mathscinet-getitem?mr=1707489
http://www.ams.org/mathscinet-getitem?mr=1707489
http://www.ams.org/mathscinet-getitem?mr=3214408
http://www.ams.org/mathscinet-getitem?mr=0031534
http://www.ams.org/mathscinet-getitem?mr=0031534
http://www.ams.org/mathscinet-getitem?mr=1831176
http://www.ams.org/mathscinet-getitem?mr=1831176
http://www.ams.org/mathscinet-getitem?mr=0193491
http://www.ams.org/mathscinet-getitem?mr=0193491
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=991565
http://www.ams.org/mathscinet-getitem?mr=991565


2036 CHRISTINA BRECH AND PIOTR KOSZMIDER

[15] P. Koszmider, Universal objects and associations between classes of Banach spaces and
classes of compact spaces. pp. 93–115. In Selected Topics in Combinatorial Analysis, eds., M.
Kurilic, S. Todorcevic, Sbornik Radova, 17(25). Matematicki Institut SANU, Beograd, 2015.
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