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RESTRICTED COHOMOLOGY

OF MODULAR WITT ALGEBRAS

TYLER J. EVANS, ALICE FIALOWSKI, AND MICHAEL PENKAVA

(Communicated by Kailash C. Misra)

Abstract. In this paper we compute the restricted 0, 1-, and 2-dimensional
cohomology groups with trivial coefficients of the modular Witt algebras W for
any prime p > 3, and give explicit description of all one-dimensional restricted
central extensions of W .

1. Introduction

Let p > 3 be a prime, K be an algebraically closed field of characteristic p and
A = K[x]/(xp−1). The Lie algebra W = Der(A) is called the modular Witt algebra.
It has a basis ei = xi+1∂ where i = −1, 0, . . . , p− 2 and ∂ = d/dx. The Lie bracket
in W satisfies [ei, ej ] = (j − i)ei+j where i+ j is computed modulo p.

In characteristic zero, the analogous Lie algebra of derivations of the algebra
C[t, t−1] is also called the Witt algebra. Fuchs and Gelfand have shown that
Der(C[t, t−1]) has, up to equivalence, exactly one non-trivial one-dimensional cen-
tral extension (the Virasoro algebra) [5]. Block has shown in characteristic p > 5
that the modular Witt algebra also has, again up to equivalence, exactly one non-
trivial one-dimensional central extension as an ordinary (i.e. non-restricted) Lie
algebra [1].

Since W is a Lie algebra of derivations of an algebra over K, it has the canonical
structure of a restricted Lie algebra. It is therefore natural to ask how many one-
dimensional restricted central extensions W has. To answer this question, one needs
to compute the restricted cohomology group H2(W ) = H2(W,K). In this paper we
will use the (partial) complex given in [3] to carry out this computation. We will give
a complete computation of the restricted cohomology groups Hq(W ) = Hq(W,K)
for q = 0, 1 and 2. We will show that if p > 3, W has p + 1 non-equivalent non-
trivial one-dimensional restricted central extensions. Moreover, when considered
only as ordinary Lie algebra extensions, p of these extensions are trivial, and one
is equivalent to the central extension of W in [1].

The structure of the paper is as follows. In section 2, we review the definitions
of restricted Lie algebras, the (partial) cochain complex for restricted Lie alge-
bra cohomology for the case of trivial coefficients, and establish the notation used
throughout the paper. In section 3, we review the correspondence between one-
dimensional central extensions and cohomology for both ordinary and restricted
Lie algebras and state our main theorem on restricted central extensions of W .
Section 4 gives explicit representative cocycles for the ordinary cohomology group
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H2
cl(W ), and section 5 contains the computations of the restricted cohomology

groups Hq(W ) for q ≤ 2. Section 5 concludes with the proof of the main theorem
and explicit descriptions of all one-dimensional restricted central extensions of W .

The authors are grateful to the referee for helpful suggestions.

2. Definitions and notation

Restricted Lie algebras (also called Lie p-algebras) were first introduced by Ja-
cobson [8,9]. Recall that a modular Lie algebra g is called restricted if it is endowed
with an additional unary operation g �→ g[p] that satisfies for all g, h ∈ g and all
λ ∈ K

(λg)[p] = λpg[p];

ad(g[p]) = (ad g)p;

(g + h)[p] = g[p] + h[p] +

p−1∑
i=1

si(g, h);

where si(g, h) is the coefficient of λi−1 in (ad(λg + h))p−1(h).
Restricted Lie algebras naturally arise in positive characteristic as derivation

algebras of any algebra, or as the Lie algebra of algebraic groups with the operations
[a, b] = ab− ba and a[p] = ap [7, 10]. In particular, in the Witt algebra W we have
g[p] = gp. Whereas the operation g �→ g[p] is not linear in general, it is completely

determined by its values on a basis. In W we have e
[p]
0 = e0, e

[p]
i = 0 for i �= 0, and

moreover, g[p] = γ(g)g where γ(g) ∈ K is a constant ([2, Theorem 1(a)]). Since W
is simple, this restricted structure is unique.

The classification of one-dimensional restricted central extensions of W below
is carried out through the calculation of the restricted cohomology H2(W ) with
coefficients in K taken as a trivial W module. We limit our description of the
restricted cochain spaces and coboundary operators to the case of trivial coefficients
and refer the reader to [3] for the general description. For details on ordinary
Lie algebra cohomology see [4]. Let Cq(W ) denote restricted cochains of degree q
(0 ≤ q ≤ 3) and Cq

cl(W ) = Hom(∧qW,K) the space of ordinary Lie algebra cochains.
We use similar notation for the coboundary operators. We will denote multiple Lie
bracket products as [g1, g2, g3, . . . , gj ] = [[. . . [[g1, g2], g3], . . . , ]gj ]. In particular, we

take these products from the right so that the equality ad(g[p])(h) = (ad g)p(h) is
written

[h, g[p]] = [h, g, . . . , g︸ ︷︷ ︸
p

].

Let us give an explicit description of the (partial) complex

C0(W )
δ0−→ C1(W )

δ1−→ C2(W )
δ2−→ C3(W ).

For q ≤ 1, we set Cq(W ) = Cq
cl(W ) = Hom(∧qW,K) and δ0 = δ0cl. If ϕ ∈ C2

cl(W )
and ω : W → K, then we say ω has the ∗-property with respect to ϕ, if for all
g, h ∈ W and λ ∈ K, we have ω(λg) = λpω(g) and

(1) ω(g + h) = ω(g) + ω(h) +
∑

gi=g or h
g1=g,g2=h

1

#(g)
ϕ([g1, g2, . . . , gp−1] ∧ gp).
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Here #(g) is the number of factors gi equal to g. We remark that ω has the
∗-property with respect to the zero map precisely when ω is a p-semilinear map on
W , that is, ω(g + h) = ω(g) + ω(h) and ω(λg) = λpω(g) for all g, h ∈ W and all
λ ∈ K. Moreover, given ϕ, we can assign the values of ω arbitrarily on a basis for
W and use (1) to define ω : W → K that has the ∗-property with respect to ϕ. Our
space of 2-cochains is

C2(W ) = {(ϕ, ω) | ϕ : Λ2W → K, ω : W → K has the ∗ -property w.r.t. ϕ},
and

dimK C2(W ) =
p(p+ 1)

2
.

A linear map ψ : W → K induces a map ind1ψ : W → K by the formula

ind1ψ(g) = ψ(g[p]),

and this map has the ∗-property with respect to δ1clψ ([3, Lemma 4]). The cobound-
ary operator δ1 : C1(W ) → C2(W ) is given by

δ1ψ = (δ1clψ, ind
1ψ).

If α : Λ3W → K is a skew-symmetric multilinear map on W and β : W×W → K,
we say that β has the ∗∗-property with respect to α, if the following conditions
hold:

(i) β(g, h) is linear with respect to g;
(ii) β(g, λh) = λpβ(g, h) for all λ ∈ K;
(iii)

β(g, h1 + h2) = β(g, h1) + β(g, h2)

−
∑

l1,...,lp=1or2
l1=1,l2=2

1

#{ii = 1}α(g ∧ [hl1 , · · · , hlp−1
] ∧ hlp).(2)

Again we remark that β has the ∗∗-property with respect to the zero map precisely
when β is linear in the first variable and p-semilinear in the second variable. We
can use (2) to define β for a given α and values of β on a basis for W . Our space
of 3-cochains is

C3(W ) = {(α, β) | α ∈ C3
cl(W ), β : W ×W → K has the ∗∗-property w.r.t. α}

and

dimK C3(W ) =
p(p+ 1)(p+ 2)

6
.

An element (ϕ, ω) ∈ C2(W ) induces a map ind2(ϕ, ω) : W×W → K by the formula

ind2(ϕ, ω)(g, h) = ϕ(g, h[p])− ϕ([g, h, · · · , h︸ ︷︷ ︸
p−1

] ∧ h),

and this map has the ∗∗-property with respect to δ2clϕ ([3, Lemma 5]).
The coboundary operator δ2 : C2(W ) → C3(W ) is given by the formula

δ2(ϕ, ω) = (δ2clϕ, ind
2(ϕ, ω)).

We write ei = e∗i (dual basis vector), ei,j = ei ∧ ej , ei,j = e∗i,j and er,s,t =
er ∧ es ∧ et where −1 ≤ i < j ≤ p− 2 and −1 ≤ r < s < t ≤ p− 2.
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The ordinary cochain spaces C1
cl(W ), C2

cl(W ) and C3
cl(W ) admit a natural grad-

ing:

(C1
cl)k(W ) = span{ek};

(C2
cl)k(W ) = span{ei,j | i+ j = k (mod p)};

(C3
cl)k(W ) = span{er,s,t | r + s+ t = k (mod p)};

where k = −1, . . . , p− 2. Moreover, we have

dimK(C
1
cl)k(W ) = 1;

dimK(C
2
cl)k(W ) =

p− 1

2
;

dimK(C
3
cl)k(W ) =

(p− 1)(p− 2)

6
.

The coboundary operators δ1cl and δ2cl preserve this grading, and we denote by (δ1cl)k
and (δ2cl)k the restrictions of δ1cl and δ2cl to (C1

cl)k(W ) and (C2
cl)k(W ), respectively.

3. Restricted central extensions

As stated in the Introduction, the main result of this paper is the classification
of one-dimensional restricted central extensions of W . We now state the main
theorem.

Theorem 3.1. If p > 3, then H2(W ) is (p + 1)-dimensional. Moreover, there is
a p-dimensional subspace of H2(W ) for which each corresponding one-dimensional
restricted central extension is trivial when considered as an ordinary Lie algebra
extension.

Theorem 3.1 implies that exactly one of the p+1 non-trivial classes of restricted
one-dimensional central extensions remains non-trivial when considered only as a
Lie algebra extension. For p > 5, this is the central extension described first by
Block in [1]. Our method here is different, and also gives the result for p = 5.

Remark. If p = 3, the algebra W is isomorphic to the Lie algebra sl2(K). In this
case H2(W ) is three-dimensional so that W has just three non-equivalent one-
dimensional restricted central extensions. Of course each of these extensions is
trivial when considered as an ordinary Lie algebra extension.

Given a one-dimensional restricted central extension E of W , construct an ele-
ment (ϕ, ω) ∈ C2(W ) by choosing a K-linear splitting map σ : W → E and defining
for all g, h ∈ W

ϕ(g, h) = [σ(g), σ(h)] = σ([g, h]);

ω(g) = σ(g)[p] − σ(g[p]).
(3)

The element (ϕ, ω) ∈ C2(W ) is a cocycle, and the cohomology class of (ϕ, ω) does
not depend on the choice of the splitting map, but only on the equivalence class of
the extension ([3, Corollary 4]).

Conversely, given a cocycle (ϕ, ω) ∈ C2(W ), define a restricted Lie algebra struc-
ture on E = W ⊕Kc by declaring for all g, h ∈ W and all α, β ∈ K

[g + αc, h+ βc] = [g, h] + ϕ(g, h)c;

(g + αc)[p] = g[p] + ω(g)c.
(4)
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The equivalence class of the resulting one-dimensional restricted central extension
depends only on the cohomology class of (ϕ, ω) ([3, Corollary 4]).

The map (ϕ, ω) �→ ϕ induces a well-defined map H2(W ) → H2
cl(W ) so that every

one-dimensional restricted central extension of W is also a one-dimensional central
extension as an ordinary Lie algebra, and equivalent one-dimensional restricted
central extensions give equivalent one-dimensional ordinary central extensions.

Remark. It is known that modular Lie algebras do not always admit a Levi de-
composition (a decomposition into the semidirect product of the radical and a
semisimple algebra) [6,11]. Our computations below give examples of modular Lie
algebras and restricted Lie algebras that are not Levi decomposable. If E is a
Levi decomposable one-dimensional restricted central extension of W , then K is
the radical of E and there is a restricted Lie algebra homomorphism splitting map
σ : W → E. In this case ϕ and ω in (3) are identically zero. If E is Levi decompos-
able only as an ordinary Lie algebra, then σ is only a Lie algebra homomorphism.
In this case ϕ = 0 but ω �= 0. Theorem 3.1 implies that there is a p-dimensional
subspace of H2(W ) that classifies the one-dimensional restricted central extensions
of W that are Levi decomposable as ordinary Lie algebras, but not as restricted
Lie algebras. Elements in the complement to this subspace correspond to a one-
dimensional central extension that is not Levi decomposable as an ordinary nor
restricted Lie algebra.

4. Ordinary Lie algebra cohomology of W

We sketch a new method for computing H2
cl(W ) by giving explicit descriptions of

the cocycles. There are more results on the cohomology of W , for example [13,14],
but we will not use them in this paper. In the case of trivial coefficients, we have
H0

cl(W ) = K and H1
cl(W ) = 0 .

Since the cochain spaces are graded and the coboundary maps are graded maps,
we can compute H2

cl(W ) by computing the cohomology in each graded component.
An element ϕ ∈ (C2

cl)k(W ) has the form

ϕ =
∑

i+j=k (mod p)

ai,je
i,j

where ai,j ∈ K. The proof of the following lemma is a routine computation.

Lemma 4.1. For −1 ≤ k ≤ p− 2,

δ1cl(e
k) =

∑
−1≤i<j≤p−2
i+j=k (mod p)

(j − i)ei,j .

Lemma 4.2. If −1 ≤ k ≤ p− 2 and k �= 0, then dimK(ker(δ
2
cl)k) = 1.

Proof. Let ϕ =
∑

ai,je
i,j ∈ (C2

cl)k(W ). For −1 ≤ i < j ≤ p− 2, i+ j = k (mod p)
and i �= 0, we have

(δ2cl)kϕ(e0,i,j) = kai,j − (j − i)a0,k.

If k �= 0 and ϕ is a cocycle, then all coefficients ai,j are determined by a0,k so that
dimK(ker(δ

2
cl)k) ≤ 1. The rank of (δ1cl)k is 1 so we must have dimK(ker(δ

2
cl)k) = 1

as claimed. �

Lemma 4.3. dimK(ker(δ
2
cl)0) = 2.
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Proof. Let

ϕ = a−1,1e−1,1 +

(p−1)/2∑
i=2

ai,p−ie
i,p−i ∈ C2

0

be a cochain. If ϕ is a cocycle, then for 3 ≤ j ≤ (p− 1)/2 we must have

δ20ϕ(e−1,j,p−j+1) = (j + 1)aj−1,p+j−1 + (p− j + 2)aj,p−j + (2j − 1)a−1,1 = 0.

Shifting the index with n = j + 2, we have for 1 ≤ n ≤ (p− 5)/2,

(5) nan+2,p−n−2 = (n+ 3)an+1,p−n−1 + (2n+ 3)a−1,1.

This shows recursively that an+2,p−n−2 is determined by a−1,1 and a2,p−2, and
therefore dimK(ker δ

2
0) ≤ 2. If we set a−1,1 = 1 and a2,p−2 = 0, then (5) reduces to

nan+2,p−n−2 = (n+ 3)an+1,p−n−1 + (2n+ 3).

This recursion equation has the solution

an+2,p−n−2 =
1

3
n(n+ 2)(n+ 4),

and therefore

ϕ1,0 =

(p−1)/2∑
n=1

n(n2 − 4)

3
en,p−n.(6)

Now, for any basis vector ei,j,p−i−j ∈ (∧3W )0, we have by definition

δ2clϕ1,0(ei,j,p−i−j) = ϕ1,0((j − i)ei+j,p−i−j − (p− 2i− j)ep−j,j + (p− i− 2j)ep−i,i).

This together with (6) shows ϕ1,0 is a cocycle. If we set a−1,1 = 2 and a2,p−2 = p−4,
then (5) reduces to the recursion equation

nan+2,p−n−2 = (n+ 3)an+1,p−n−1 + (4n+ 6),

which has the solution

an+2,p−n−2 = −2(n+ 2).

So by Lemma 4.1 we have

ϕ2,p−4 =

(p−1)/2∑
n=1

−2nen,p−n = δ1(e0)

showing ϕ2,p−4 is also a cocycle. Clearly ϕ2,p−4 is not a multiple of ϕ1,0 because
p− 4 �= 0, which means dimK(ker δ

2
0) ≥ 2. �

Theorem 4.4. dimK(H
2
cl(W )) = 1 and the cocycle ϕ1,0 in Lemma 4.3 generates

H2
cl(W ).

Proof. Lemma 4.2 shows that (H2
cl)k(W ) = 0 if k �= 0 and Lemma 4.3 shows

that (H2
cl)0(W ) is one dimensional with ϕ1,0 spanning the non-zero cohomology

class. �
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5. Restricted Lie algebra cohomology of W

Since δ0 = δ0cl and the restricted coboundary operator δ1 is also injective, we
have H0(W ) = K and H1(W ) = 0.

Lemma 5.1. If (ϕ, ω) ∈ C2(W ), then ind2(ϕ, ω) = 0 and hence (ϕ, ω) ∈ ker δ2 if
and only if ϕ ∈ ker δ2cl.

Proof. It suffices to show that for all g, h ∈ W ,

g ∧ h[p] − [g, h, · · · , h] ∧ h = 0,

where, in this proof, the bracket [g, h, . . . , h] always means p− 1 factors of h.
For g, h ∈ W , we have

g ∧ h[p] = g ∧ γ(h)h = γ(h)(g ∧ h).

The algebra W is of rank one so there is a non-empty Zariski open subset U ⊂ W
such if y ∈ U , x ∈ W and [x, y] = 0, then x ∈ Ky. Moreover,

[[g, h, . . . , h], h] = [g, h[p]] = [g, γ(h)h] = [γ(h)g, h]

so that
[[g, h, . . . , h]− γ(h)g, h] = 0.

This shows that there is a scalar γ′(g, h) ∈ K with

[g, h, . . . , h]− γ(h)g = γ′(g, h)h,

at least for h ∈ U . However, the mapping g �→ [g, h, . . . , h]− γ(h)g is algebraic, so

[g, h, . . . , h] = γ(h)g + γ′(g, h)h

for all h ∈ W and hence

[g, h, . . . , h] ∧ h = γ(h)(g ∧ h) + γ′(g, h)(h ∧ h) = γ(h)(g ∧ h)

proving the lemma. �
If ϕ1,0 ∈ C2

cl(W ) is the cocycle from Lemma 4.3 and ω : W → K is any map with
the ∗-property with respect to ϕ1,0, Lemma 5.1 implies that (ϕ1,0, ω) ∈ C2(W ) is
a restricted cocycle. For −1 ≤ i ≤ p− 2, let ωi : W → K be defined by

ωi(α−1e−1 + · · ·+ αp−2ep−2) = αp
i .

Lemma 5.2. For −1 ≤ i ≤ p − 2, the map ωi has the ∗-property with respect to
0 and (0, ωi) ∈ C2(W ) is a cocycle. Moreover, if ω : W → K is any map with
the ∗-property with respect to ϕ1,0, the cohomology classes represented by the (0, ωi)
and (ϕ1,0, ω) comprise a linearly independent subset in H2(W ).

Proof. If −1 ≤ i ≤ p − 2, an easy computation shows that ωi is p-semilinear
and hence has the ∗-property with respect to 0. Therefore (0, ωi) ∈ C2(W ) and
δ2(0, ωi) = (0, 0) by Lemma 5.1. If αi, β ∈ K and∑

αi(0, ωi) + β(ϕ1,0, ω) =
(
βϕ1,0,

∑
αiωi + βω

)
= (0, 0),

then β = 0, and evaluating at (0, ej) shows αj = 0. Therefore

B = {(0, ω−1), . . . , (0, ωp−2), (ϕ1,0, ω)}
is a linearly independent set in C2(W ). Moreover, if∑

αi(0, ωi) + β(ϕ1,0, ω) =
(
βϕ1,0,

∑
αiωi + βω

)
= δ1ψ = (δ1clψ, ind

1ψ)
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for some ψ ∈ C1(W ), then β = 0, otherwise ϕ1,0 ∈ im δ1cl. Therefore δ1clψ = 0 so
that ψ = 0 and hence αi = 0 showing B is linearly independent in H2(W ). �

Proof of Theorem 3.1. For i = −1, . . . , p − 2, let ϕi = δ1cl(e
i) and let ϕp−1 = ϕ1,0

so that {ϕ−1, . . . , ϕp−2, ϕp−1} is a basis for ker(δ2cl) by Lemmas 4.2 and 4.3. For
each i, choose a map ξi : W → K that has the ∗-property with respect to ϕi so by
Lemmas 5.1 and 5.2

{(ϕ−1, ξ−1), . . . , (ϕp−1, ξp−1), (0, ω1), . . . , (0, ωp)}

is a linearly independent subset of ker δ2. If (ϕ, ω) ∈ ker δ2, then ϕ ∈ ker δ2cl, so
there are scalars αi (−1 ≤ i ≤ p − 1) such that ϕ =

∑
αiϕi. If ξ =

∑
αiξi, then∑

αi(ϕi, ξi) = (ϕ, ξ). We have (0, ω − ξ) ∈ C2(W ) which means there are scalars
βj (1 ≤ j ≤ p) such that ω − ξ =

∑
βjωj . Therefore

(ϕ, ω) = (ϕ, ξ) +
∑

βj(0, ωj) =
∑

αi(ϕi, ξi) +
∑

βj(0, ωj).

This shows

{(ϕ−1, ξ−1), . . . , (ϕp−1, ξp−1), (0, ω1), . . . , (0, ωp)}

is a basis for ker δ2 and hence dimK ker δ2 = 2p + 1. We have already seen that
dimK im δ1 = p so dimK H2(W ) = p + 1, and from Lemma 5.2 it follows that
the cohomology classes represented by (ϕp−1, ξp−1), (0, ω1), . . . , (0, ωp) form a basis
for H2(W ). Finally, the subspace spanned by the cohomology classes of (0, ωi)
is clearly p-dimensional, and the ordinary (non-restricted) one-dimensional central
extensions of W corresponding to these cohomology classes are trivial as ordinary
Lie algebra extensions. �

We conclude this section with explicit descriptions of the p+ 1 one-dimensional
restricted central extensions of W . For −1 ≤ i ≤ p − 2, let Ei denote the one-
dimensional restricted central extension of W determined by the cohomology class
of the cocycle (0, ωi). Then Ei = W ⊕ Kc as a K-vector space, and using (4) we
have for all −1 ≤ j, k ≤ p− 2,

[ej , ek] = (k − j)ej+k;

[ej , c] = 0;

e
[p]
j = δ0,je0 + δi,jc;

c[p] = 0,

where δ denotes Kronecker’s delta-function.
Let us denote by ϕ the cocycle ϕ1,0 given in (6) and define ω : W → K to

have the ∗-property with respect to ϕ using (1) and declaring ω(ej) = 0 for all
−1 ≤ j ≤ p− 2. Note that ω �= 0, but ω(0) = 0 by (1). Now, for −1 ≤ j, k ≤ p− 2,
(6) gives

ϕ(ej,k) =
j(j2 − 4)

3
δ0,j+k.
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Therefore, if E = W ⊕ Kc denotes the one-dimensional central extension of W
determined by the cocycle (ϕ, ω), we have for all −1 ≤ j, k ≤ p− 2,

[ej , ek] = (k − j)ej+k +
j(j2 − 4)

3
δ0,j+kc;

[ej , c] = 0;

e
[p]
j = δ0,je0;

c[p] = 0.

The Lie bracket in the extension E is similar to the bracket in the (characteristic
zero) Virasoro algebra ([12], Def. 5.2) insofar as the coefficients in both correspond-
ing cocycles are given by cubic polynomials of the same form. For this reason, it is
natural to refer to the extension E as the (restricted) modular Virasoro algebra.
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