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ON THE NUMBER OF FINITE p/q-SURGERIES
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(Communicated by Martin Scharlemann)

Abstract. We study finite, non-cyclic knot surgeries, that is, surgeries which
give manifolds of finite but not cyclic fundamental group. These manifolds are
known to be knot surgeries except for the dihedral manifolds. We show that,
for a fixed p, there are finitely many dihedral manifolds that are p/q-surgery,
and we place a bound on which manifolds they may be. In the process, we
calculate a recursive relationship among the Heegaard Floer d-invariants of
dihedral manifolds with a given first homology and calculate a bound on which
d-invariants would occur if such a manifold were surgery on a knot in S3.

1. Introduction

A fundamental question of low-dimensional topology is which manifolds may
be constructed by surgery on a knot in S3. By Seifert’s classification of Seifert
fibered spaces and Perelman’s geometrization, the manifolds of finite fundamental
group fall into five types, the lens spaces, the icosahedrals, the octahedrals, the
tetrahedrals, and the dihedrals [Sei33,MT07]. All icosahedrals, octahedrals, and
tetrahedrals are known to be surgeries on a torus knot (see Proposition 1). The
question of which lens spaces are surgeries on a non-trivial knot in S3 is part of the
Berge Conjecture and has been solved recently by J. Greene using an application of
Heegaard Floer theory [Gre13]. We also use Heegaard Floer theory to show that,
for a fixed surgery coefficient, only finitely many dihedral manifolds may be surgery.

Modeled on Seifert, we shall use the notation(
e0; (α1, ω1), (α2, ω2), (α3, ω3)

)
to represent the Seifert fibered space given by taking the S1 bundle over S2 with
euler number e0 and then performing −αi/ωi Dehn surgeries on three regular fibers.
These descriptions are not unique; for example,

(
e0; (α1, ω1)

)
=

(
e0 + 1; (α1, ω1 −

α1)
)
. Reversing orientation reverses the signs on all the Seifert invariants.

By Perelman [MT07], all manifolds with finite fundamental group are Seifert
fibered, which Seifert classified.

Theorem ([Sei33]). Excluding lens spaces, the closed, oriented Seifert fibered spaces
Y with finite fundamental group are

(1) Icosahedral with H1(Y ) = Zm and (m, 30) = 1.
(2) Octahedral with H1(Y ) = Z2m and (m, 6) = 1.
(3) Tetrahedral with H1(Y ) = Z3m and (m, 2) = 1.
(4) Dihedral with H1(Y ) = Z4m or Z2 × Z2m.
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Further, the first three kinds are uniquely determined (up to orientation) by
m, but each choice of m corresponds to infinitely many dihedral manifolds with
H1(Y ) = Z4m and infinitely many with Z2 × Z2m.

The dihedral manifolds with non-cyclic first homology may not, of course, be
knot surgeries. Many of the others, however, are known to be surgeries as a result
of Moser’s work on torus knots [Mos71]. An explicit calculation shows (see, e.g.,
[Doi15, Corollary 8]):

Proposition 1. Every icosahedral, octahedral, and tetrahedral manifold is surgery
on a torus knot. Of each infinite family of dihedral manifolds with first homology
Z4m, only finitely many are surgeries on torus knots, and they are(
− 1; (2, 1), (2, 1), (n,m)

)
where n divides 2m+ 1 or 2m− 1.

In addition to these torus knot surgeries, some finite surgeries arise from iterated
torus knots, which Bleiler and Hodgson explicitly listed [BH96, Theorem 7] based
on Gordon’s classification of satellite knots (all of the resulting manifolds are also
surgeries on torus knots) [Gor83, Theorem 7.5], and Boyer and Zhang proved that
no other satellite knots have finite surgeries [BZ96, Corollary 1.4].

The hyperbolic case is more complicated. For example, there are a variety of
examples of finite, non-cyclic surgeries on hyperbolic knots. Fintushel and Stern
mentioned the (−2, 3, 7) pretzel knot, on which −17-surgery is finite [FS80, K2 in
Section 4], and Bleiler and Hodgson found the 22- and 23-surgeries on the (−2, 3, 9)
pretzel knot [BH96], although all three resulting manifolds are also surgery on torus
knots. Mattman et al. showed that there are no other finite, non-cyclic surgeries
on pretzel knots [Mat02, Theorem 1.2], [FIK+09, Theorem 1]. There are other
restrictions on which hyperbolic knots have finite surgeries, too. Boyer and Zhang
showed that any hyperbolic knot has at most five finite or cyclic surgeries, with at
most one half-integral and the others integral [BZ01, Theorems 1.1, 1.2]. Li and
Ni showed that any such half-integral surgery is also half-integral surgery on an
iterated torus knot with the same knot Floer homology [LN].

In [Doi15], we showed that many dihedral manifolds cannot be realized as surgery
on any knot in S3. In particular, finite, non-cyclic surgeries on hyperbolic knots
must have surgery coefficient |p| ≥ 7. We classified the elliptic manifolds Y with
|H1(Y )| ≤ 32 which are surgery on a knot in S3, and we conjectured that, for a
fixed order of first homology, there are at most finitely many [Doi15, Conjecture 17].

Theorem 2. Of the [potentially infinite] family of manifolds with finite fundamen-
tal group and a given first homology, only finitely many are surgery on a knot in
S3.

For a fixed order of homology, there are only finitely many lens, tetrahedral,
octahedral, and icosahedral manifolds. To prove the result, we use the Heegaard
Floer d-invariants to obstruct all but finitely many dihedral manifolds with fixed
order of homology from being surgery on a knot in S3. First, we calculate the
Heegaard Floer d-invariants for the dihedral manifolds Y with homology Z4m by
applying an algorithm of Némethi [Ném05] to the known Seifert invariants. This
calculation may be of independent interest, given the recent applications of Hee-
gaard Floer theory to other questions in low-dimensional topology and knot theory.
The d-invariants for the manifolds in question obey a recursive relationship.
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Theorem 3. Fix an integer m > 0. Consider the family of dihedral manifolds

Yn = (−1; (2, 1), (2, 1), (n,m))

with n > 2m. There is an ordering of Spinc(Yn) = {σ0
n, σ

1
n, · · · , σ4m−1

n } so that

d(Yn+m, σi
n+m) =

{
d(Yn, σ

i
n)− 1

4 if 0 ≤ i < 2m,
d(Yn, σ

i
n) if 2m ≤ i < 4m.

Similarly, there is an ordering on Spinc(Y−n) = {σ0
−n, σ

1
−n, · · · , σ4m−1

−n } for all n
so that

d(Y−(n+m), σ
i
−(n+m)) =

{
d(Y−n, σ

i
−n) +

1
4 if 0 ≤ i < 2m,

d(Y−n, σ
i
−n) if 2m ≤ i < 4m.

In particular, for a fixed natural number N , there are only finitely many Yn with
|d(Yn, σ)| ≤ N for all σ. This theorem is actually independent of the parity of n;
however, when searching for manifolds which are surgery on a knot in S3, we may
ignore even n because H1(Yn) is not cyclic.

We then use the fact that dihedral manifolds are L-spaces, rational homology

spheres with Heegaard Floer homologies as simple as possible, e.g., ĤF (Y, σ) ∼=
ĤF (S3) [OS05, Proposition 2.3]. Any positive p/q-surgery on a knot K which
produces an L-space obeys three rules: K is fibered [Ni07, Corollary 1.3]; p/q ≥
2g(K)−1 [OS11, Corollary 1.4]; and the d-invariants of the resulting manifold may
be calculated from the Alexander polynomial and the d-invariants of L(p, q) [OS03a,
Proposition 4.8], which are themselves given by a recursive formula [OS11, Theorem
1.2]. In particular, for a given order of the first homology, it is possible to place a
bound on the d-invariants:

Theorem 4. For a fixed m > 0 and for any K so that S3
4m(K) is an L-space, the

d-invariants are bounded:
|d(S3

4m(K), σ)| ≤ 4m

for all σ ∈ Spinc(S3
4m(K)). In fact, −4m ≤ d(S3

4m(K), σ) ≤ m.

2. The d-invariants of Yn

We begin with a calculation of the recursive relationship of the d-invariants for
dihedral manifolds. For a fixed m, the dihedral manifolds {Yn} are often described
with the Seifert invariants (−1; (2, 1), (2, 1), (n,m)) with gcd(n,m) = 1. First ho-
mology is Z4m for odd n and Z2m × Z2 for even n. The techniques below require
a negative definite intersection form, so, if n > 0, we will reverse orientation and
massage the Seifert invariants below so that Y−n bounds a negative definite four-
manifold:

−Yn =
(
− 2; (2, 1), (2, 1), (n, n−m)

)
.

Observe that the Seifert invariants for −Yn are equal to those for Y−n.
Recall the Heegaard Floer d-invariants or correction terms assigned to a ra-

tional homology sphere and choice of spin-c structure. The value d(Y, σ) is the
minimal grading of an element in HF+(Y, σ) coming from HF∞(Y, σ). Two stan-
dard methods to calculate the d-invariants are that of Ozsváth and Szabó, based on
a plumbing diagram [OS03b], and Némethi, based on graded roots, although, for
elliptic manifolds, it can be written in terms of the Seifert invariants alone [Ném05].

For the course of this paper, we use the standard identification of the spin-
c structures of the lens space S3

p/q(U) with Zp based on a Heegaard diagram as
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in [OS03a, Proposition 4.8]; for a more general surgery S3
p/q(K), we also use the

extension of this identification of the spin-c structures with Zp based on a surgery
cobordism as in [OS11, Theorem 1.2]. Recall that d(Y, σ) = −d(−Y, σ), and the
d-invariants for a lens space admit a Z2-action that preserves the spin structure
and is compatible with the chosen identification, that is, if s is a spin structure,
then d(L(p, q), s+ i) = d(L(p, q), s− i) [OS03a].

Proof of Theorem 3. We will assign a numbering to the spin-c structures for Yn

and show (for n > 2m) that

d(−Yn+m, σi
n+m)− d(−Yn, σ

i
n) =

{
1
4 if 0 ≤ i < 2m,
0 if 2m ≤ i < 4m.

Némethi [Ném05, Section 11.13] demonstrates one method for calculating d(Y, σ)
for Seifert fibered spaces with negative definite plumbing diagrams (all terms will
be defined below):

(1) d(Y, σ) =
K2 + s

4
− 2χ(σ)− 2min

i≥0
τ (i).

1. Assign variables to the Seifert invariants
(
e0; (α1, ω1), (α2, ω2), (α3, ω3)

)
where

0 < ωi < αi. Choose ω′
i such that 0 < ω′

i < αi and ωiω
′
i ≡ 1 mod αi. That is, for

Yn,

e0 = −2,
α1 = 2, ω1 = 1, ω′

1 = 1,
α2 = 2, ω2 = 1, ω′

2 = 1,
α3 = n, ω3 = n−m, ω′

3 ≡ −m−1 mod n.

Consider also the values e = e0 +
∑3

l=1
ωl

αl
, and ε = (2− 3 +

∑3
l=1

1
αl
)/e. Then

e = −m

n
, ε = − 1

m
.

Similarly, substituting n+m for n, it is possible to see that −Yn+m has the same
invariants with the exception of

e = − m
n+m ,

α3 = n+m, ω3 = n, ω′
3 ≡ −m−1 mod (n+m).

2. K2 + s is defined

K2 + s = ε2e+ e+ 5− 12
3∑

l=1

s(ωl, αl)

where s(ωl, αl) is a Dedekind sum. Therefore, by Proposition 5, K2 + s differs for
−Yn+m and −Yn by

(K2 + s)n+m − (K2 + s)n

= − 1

m(n+m)
− m

n+m
+

1

mn
+

m

n

− 12
(
s(n, n+m)− s(n−m,n)

)
= 1.
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3. Each σi
n ∈ Spinc(−Yn) corresponds to one of the 4m distinct integral vectors

(a0, a1, a2, a3) which satisfy

(2)

⎧⎪⎨⎪⎩
0 ≤ a0; 0 ≤ al < αl, l = 1, 2, 3,

s(i) = 1 + a0 + ie0 +
3∑

l=1

⌊
iωl + al

αl

⌋
≤ 0 ∀i > 0.

See Proposition 6 for the solutions in the case of −Yn if n > 2m:

(0, 0, 0, a3) for a3 = 0, 1, . . . , 2m− 1,

(0, 0, 1, a3) for a3 = 0, 1, . . . ,m− 1,

(0, 1, 0, a3) for a3 = 0, 1, . . . ,m− 1.

4. Then each (a0, a1, a2, a3) corresponds to a spin-c structure σ and gives

−χ(σ) =

3∑
l=0

al
2

+
εã

2
+

ã2

2e
−

3∑
l=1

al∑
i=1

{
iω′

l

αl

}
if ã = a0 +

∑3
l=1

al

αl
and {x} is the fractional part of x.

Fix (0, 0, 0, a3) considered as a solution for (2) for both −Yn+m and −Yn. First,(
ã
)
n
=

a3
n

and (ã)n+m =
a3

n+m
.

Next, compare −χ(σn+m) for −Yn+m and χ(σn) for −Yn using Proposition 7

− 2
(
χ(σn+m)− χ(σn)

)
=

a23 + a3
n(n+m)

− 2

a3∑
i=1

{
i(ω′

3)n+m

n+m

}
+ 2

a3∑
i=1

{
i(ω′

3)n
n

}

=
a23 + a3
n(n+m)

− 2

a3∑
i=1

i

n(n+m)
= 0.

Finally, the solutions (0, 1, 0, a3) and (0, 0, 1, a3) give(
ã
)
n
=

a3
n

+
1

2
and (ã)n+m =

a3
n+m

+
1

2
,

so that

−2
(
χ(σn+m)− χ(σn)

)
=

a23 + a3
n(n+m)

− 1

4
− 2

a3∑
i=1

i

n(n+m)
= −1

4
.

5. Proposition 8 shows that min τ (i) = 0.
6. Finally, applying the results of paragraphs 2, 4, and 5 above to equation (1)
implies

d(−Yn+m, σn+m) = d(−Yn, σn) +
1

4
for σn+m and σn the spin-c structures that correspond to (0, 0, 0, a3), and

d(−Yn+m, σn+m) = d(−Yn, σn)

for σn+m and σn corresponding to (0, 0, 1, a3) or (0, 1, 0, a3). Reversing orientation
and making a reasonable choice of ordering on spin-c structures gives the theorem
statement. �
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Calculations suggest that the above result holds for m < n < 2m as well, al-
though the (a0, a1, a2, a3) from paragraph 3 are different for some spin-c structures,
and the corresponding calculations involving χ(σ) are problematic. See Conjec-
ture 10.

We prove assorted results required in the previous proof.

Proposition 5. If gcd(m,n) = 1,

−12
(
s(n, n+m)− s(n−m,n)

)
= 3− n+m

n
− n

n+m
− 1

n(n+m)
.

Proof. Note that s(n + m,n) = s(m,n) and s(n − m,n) = s(−m,n) = −s(m,n).
The result now follows from the Dedekind sum reciprocity formula:

s(a, b) + s(b, a) =
1

12

(
a

b
+

b

a
+

1

ab

)
− 1

4
.

�
Proposition 6. Consider{

0 ≤ a0; 0 ≤ a1 < 2; 0 ≤ a2 < 2; 0 ≤ a3 < n;

s(i) = 1 + a0 − 2i+
⌊
i+a1

2

⌋
+
⌊
i+a2

2

⌋
+
⌊
i(n−m)+a3

n

⌋
≤ 0 ∀i > 0.

If n > 2m, the integral solutions are

(0, 0, 0, a3) for a3 = 0, 1, . . . , 2m− 1,

(0, 0, 1, a3) for a3 = 0, 1, . . . ,m− 1,

(0, 1, 0, a3) for a3 = 0, 1, . . . ,m− 1.

Proof. Check that (0, 0, 0, 2m − 1) satisfies s(i) ≤ 0 if i > 0: observe that s(1) =
s(2) = 0, and s(i+ 2)− s(i) ≤ 0. Then

s(i+ 2)− s(i)

= 1− 2(i+ 2) + 2

⌊
i+ 2

2

⌋
+

⌊
(i+ 2)(n−m) + 2m− 1

n

⌋
− 1 + 2i− 2

⌊
i

2

⌋
−
⌊
i(n−m) + 2m− 1

n

⌋
= −2 +

⌊
(i+ 2)(n−m) + 2m− 1

n

⌋
−
⌊
i(n−m) + 2m− 1

n

⌋
≤ −2 +

⌈
2(n−m)

n

⌉
≤ 0.

Similarly, (0, 0, 1,m − 1) and (0, 1, 0,m − 1) are solutions, as s(1) = 0 and
s(i + 1) − s(i) ≤ 0. If (a0, a1, a2, a3) is a solution, then so is (a0 − 1, a1, a2, a3), if
a0 > 0; (a0, a1 − 1, a2, a3), if a1 > 0; etc. This produces 4m integral solutions, and
Némethi’s algorithm says that there are exactly |H1(Yn)| = 4m solutions. It is also
easy to verify directly that (0, 0, 0, 2m), (0, 0, 1,m), (0, 1, 0,m), and (1, 0, 0, 0) are
not solutions. �
Proposition 7. Fix 0 < m < n. For any i with 0 < i < n+m, if there are integers
0 < x < n+m and 0 < y < n such that

xm ≡ −1 mod (n+m),

ym ≡ −1 mod n,
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then {
ix

n+m

}
−
{
iy

n

}
=

i

n(n+m)
.

Proof. Given y, there is a 0 < k < m such that ym = nk−1. Note that (y+k)m =
(n+m)k − 1, and y + k < n+m, so x = y + k. Therefore,

ix

n+m
=

ixn

n(n+m)
=

iyn+ ikn

n(n+m)
=

iyn+ iym+ i

n(n+m)
,

iy

n
=

iyn+ iym

n(n+m)

so ix
n+m − iy

n = i
n(n+m) .

Recall that {a} − {b} = {a− b} as long as {b} ≤ {a}. In this case, note that{
iy

n

}
≤

{
iy

n
+

i

n(n+m)

}
iff {

iy

n

}
≤

{
1− i

n(n+m)

}
,

which is true since the left hand side is a multiple of 1
n , and the right hand side is{

1− i

n(n+m)

}
≥

{
1− n+m

n(n+m)

}
=

{
1− 1

n

}
.

Finally, 0 < i < n+m, so
{

i
n(n+m)

}
= i

n(n+m) . �

Proposition 8.

min
i≥0

τ (i) = τ (0) = 0.

Proof. The τ (i) are defined by setting τ (0) = 0 and

τ (i+ 1)− τ (i) = 1 + a0 − ie0 +

3∑
l=1

⌊
−iωl + al

αl

⌋
when i ≥ 0. For (a0, a1, a2, a3) = (0, 0, 0, a3) where 0 ≤ a3 < 2m,

τ (i+ 1)− τ (i) = 1 + 2i+ 2

⌊
− i

2

⌋
+

⌊
−i(n−m) + a3

n

⌋
≥ i+

⌊
− i(n−m)

n

⌋
+

⌊a3
n

⌋
≥

⌊a3
n

⌋
= 0 ∀i ≥ 0.

For (0, 1, 0, a3) or (0, 0, 1, a3) with 0 ≤ a3 < m,

τ (i+ 1)− τ (i) = 1 + 2i+

⌊
− i

2

⌋
+

⌊
− i+ 1

2

⌋
+

⌊
−i(n−m) + a3

n

⌋
≥ i+

⌊
− i(n−m)

n

⌋
+

⌊a3
n

⌋
≥

⌊a3
n

⌋
= 0 ∀i ≥ 0,

which means τ (i) is increasing and

min
i≥0

τ (i) = τ (0) = 0.

�
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3. The d-invariants obstruct surgery

Theorem 3 provides a recursive formula for d(Yn, σ). In particular, it shows that,
for half of the possible σ, d(Yn, σ) → −∞ as n → ∞. However, L-spaces like the
Yn can only be knot surgeries under certain circumstances. We prove Theorem 4,
which shows that the d(Yn, σ) are, in fact, bounded if Yn is surgery on a knot.

Proof of Theorem 4. Say S3
4m(K) is a dihedral manifold. Then it is an L-space

[OS05, Proposition 2.3].
Assume 0 < q < p. By [OS11, Corollary 1.4], if K admits a positive L-space

surgery, then S3
p/q(K) is an L-space iff p

q ≥ 2g(K)− 1. In this case, p/q = 4m, so

g(K) ≤ 2m.

Recall that we chose as assignment of the spin-c structures to Zp as in [OS11,
Theorem 1.2].

Then [OS11, Theorem 1.2] gives a formula for the d-invariants of a surgery,
d(S3

p/q(K), i) = d(S3
p/q(U), i)− 2

∑∞
j=1 ja|�i/q�|+j for |i| ≤ p/2 where the aj are the

coefficients of the symmetrized Alexander polynomial. Therefore,

(3) d(S3
4m(K), i) = d(S3

4m(U), i)− 2
∞∑
j=1

ja|i|+j

with i chosen so −2m < i ≤ 2m. Additionally, [OS03a, Proposition 4.8] gives

a formula for the lens space: d(S3
p/q(U), i) = −

(
pq−(2i+1−p−q)2

4pq

)
− d(S3

q/r(U), j)

where r ≡ p (mod q), j ≡ i (mod q), and i and j are chosen so 0 ≤ i < p, 0 ≤ j < q.
Since d(S3) = 0,

(4) d(S3
4m(U), i) = −4m− (2i− 4m)2

16m
= −1

4
+

(i− 2m)2

4m

where 0 ≤ i < 4m. By equation (4), d(S3
4m(U), i) = d(S3

4m(U), 4m − i); be-
cause −i ≡ 4m − i (mod 4m), equation (3) therefore shows d(S3

4m(K),−i) =
d(S3

4m(K), i). We will now consider only 0 ≤ i ≤ p
2 = 2m.

By the second derivative test, the minimum occurs at i = 2m and the maximum
at i = 0 (recall we need only calculate 0 ≤ i ≤ 2m):

−1

4
≤ d(L4m,1, i) ≤ m− 1

4
.

By Proposition 9 below, for |i| ≤ g(K),

0 ≤
∞∑
j=1

ja|i|+j ≤ g(K)− 1 ≤ 2m− 1.

Finally,

−4m+
7

4
≤ d(S3

4m(K), i) ≤ m− 1

4
.

�

For the proof above, we only need to bound
∑∞

j=1 ja|i|+j by a rational function

of m like g(K) ≤ 2m, but the following may be of independent interest since it
appears to be sharpest possible.
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Proposition 9. Let K be a knot with genus g = g(K) and normalized Alexander
polynomial

ΔK(T ) = a0 +

g∑
j=1

aj(T
j + T−j)

which admits an L-space surgery. If |i| < g(K)− 1,

(5) 0 ≤
∞∑
j=1

ja|i|+j ≤ g(K)− |i| − 1.

If |i| = g(K)− 1, then the sum is 1; if |i| = g(K), then 0.

Proof. If K has L-space surgeries, then the non-zero ai are alternating +1s and
−1s [OS05, Corollary 1.3] where the highest non-zero term is ag = +1 (since K is
fibered [Ni07, Corollary 1.3]) and the second highest term is ag−1 = −1 [HW].

Consider any sequence {aj}nj=0 whose non-zero terms are alternating +1s and

−1s. Let the subsequence of non-zero terms be {aji}ki=1. If the top term ajk = +1,
and k is even, then aj2i = +1 and aj2i−1

= −1, so

n∑
j=1

jaj =
k∑

i=1

jiaji =

k/2∑
i=1

(j2i − j2i−1) ≥ 0.

If ajk = +1 and k is odd, aj2i+1
= +1 and aj2i = −1, so

n∑
j=1

jaj =
k∑

i=1

jiaji = j1 +

(k−1)/2∑
i=1

(j2i+1 − j2i) ≥ 0.

Similarly, if the top term an is −1 instead of +1, then
n∑

j=1

jaj ≤ 0.

Therefore, if ak = +1,

k∑
i=1

jiaji = jkajk +

k−1∑
i=1

jiaji ≤ jk.

If jk > 1 and the second highest term is ajk−1 = −1, then

k∑
i=1

jiaji = jk − (jk − 1) +

k−2∑
i=1

jiaji ≤ jk − 1.

Finally, if {aj}gj=0 are the coefficients of the symmetrized Alexander polynomial

ΔK(T ), then {a|i|+j}g−|i|
j=0 is a sequence whose non-zero terms are alternating +1s

and −1s and whose top terms (if they exist) are a|i|+(g−|i|) = +1 and a|i|+(g−|i|−1) =
−1. If g − |i| ≥ 2,

∞∑
j=1

ja|i|+j =

g−|i|∑
j=1

ja|i|+j ≤ g − |i| − 1.

A direct calculation also shows the sum is 1 if g − |i| = 1 and 0 if g − |i| = 0. �

Finally, we derive Theorem 2 from Theorems 3 and 4.
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Proof of Theorem 2. Recall that the finite surgeries on non-hyperbolic knots are
classified. Seifert classified the dihedral manifolds with |H1(Y )| = 4m as Yn =(
− 1; (2, 1), (2, 1), (n,m)

)
. If Yn is S3

4m/q(K) and K is hyperbolic, then q = 1

(Boyer and Zhang showed finite exceptional surgeries are integral or half-integral
[BZ01, Theorems 1.1, 1.2]).

For a fixed m, the d-invariants may be arbitrarily large: Theorem 3 shows

∃σn ∈ Spinc(Yn) s.t. lim
n→∞

∣∣d(Yn, σn)
∣∣ = ∞.

However, if Yn is a surgery, its d-invariants are bounded by m: if Yn = S3
4m(K),

Theorem 4 shows

∀σ ∈ Spinc(Yn), |d(Yn, σ)| ≤ 4m.

�

4. Conjectures

Calculations indicate that the condition that n > 2m in Theorem 3 is unnec-
essary. The condition n > 2m appears in the proof only in paragraph 3 (using
Proposition 6) where some spin-c structures correspond to vectors (0, 0, 0, a3) with
a3 < 2m− 1. For example, if m < n < 2m, then a3 < n, and there are additional
solutions (1, 0, 0, a3) for a3 < 2m− n. The proof carries through exactly as before
for all cases except the (1, 0, 0, a3), where the calculations χ(σn+m) − χ(σn) are
challenging.

Conjecture 10. Theorem 3 is true for all n.

The above observations indicate also that no two manifolds in the family {Yn}
for a fixed n (mod m) share the same set of d-invariants. In fact, additional cal-
culations suggest that the same is true even for n < 0. Since the d-invariants are
spin-c homology cobordism invariants by [OS03a, Theorem 1.2], it seems that the
d-invariants may be useful in classifying the homology cobordism classes of elliptic
manifolds, as studied in, e.g., [FS87].

Conjecture 11. No distinct dihedral manifolds are rational homology cobordant.

Additionally, calculations indicate (see [Doi15, Corollary 5]) that the bound in
Theorem 2 could be stated more explicitly. Improving these bounds would require
an explicit calculation of the d-invariants in Theorem 3 rather than a recursive
relation. It may also require a better bound for Theorem 4, perhaps coming from
a better understanding of the Alexander polynomials of L-space knots and so a
better version of Proposition 9.

Conjecture 12. Of the infinite family of dihedral manifolds

Yn =
(
− 1; (2, 1), (2, 1), (n,m)

)
,

the only ones which are surgery on a hyperbolic knot have odd |n| ≤ 2m+ 1.
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Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics
Institute, Cambridge, MA, 2007. MR2334563 (2008d:57020)
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