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CHROMATIC COMPLETION

TOBIAS BARTHEL

(Communicated by Michael A. Mandell)

Abstract. We study the limit of the chromatic tower for arbitrary spectra,
obtaining a generalization of the chromatic convergence theorem of Hopkins
and Ravenel. Moreover, we prove that in general this limit does not coincide
with harmonic localization, thereby answering a question of Ravenel’s.

1. Introduction

1.1. Background and motivation. The suspension spectrum functor Σ∞
+ : Top →

Sp exhibits the category Sp of spectra as the stabilization of the category of topo-
logical spaces, with right adjoint given by Ω∞ : Sp → Top. The full subcategory of
connective spectra admits then an equivalent description as the category of algebras
for the corresponding monad Q = Ω∞Σ∞

+ .
Formally, suspension spectra are coalgebras for the comonad Σ∞

+ Ω∞. However,
these seem to be difficult to describe intrinsically to the category of spectra. In [14],
Kuhn proves that the Snaith splitting is characteristic for retracts of suspension
spectra, a result which subsequently has been refined by Klein [12], but not much
is known beyond that.

Theorem 1.1 (Kuhn). A connected spectrum X is a retract of a suspension spec-
trum if and only if there is an equivalence

Σ∞
+ Ω∞X �

∨
n≥0

DnX,

where Dn denotes the n-th extended power functor on Sp.

Here we approach this problem from the point of view of chromatic homotopy
theory. Informally speaking, suspension spectra often have properties similar to
finite spectra. For example, Bousfield [2] (see also [23]) shows that the notion of
type generalizes to suspension spectra up to a discrepancy at height 0.

As another example, Hopkins and Ravenel [8] prove that suspension spectra are
harmonic, i.e., local with respect to the wedge of all Morava K-theories, extending
the analogous result for finite spectra established earlier by Ravenel [19]. Harmonic
localization L∞ in turn is closely related to the functor C that sends a spectrum X
to the limit of its chromatic tower

· · · �� LnX �� Ln−1
�� · · · �� L0X,

where Ln denotes Bousfield localization with respect to height n Johnson–Wilson
theory E(n). Viewing this construction as being a chromatic analogue of p-adic
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completion M �→ limn(M ⊗Z/pn), Salch coined the term chromatic completion for
C. The chromatic convergence theorem then says that finite spectra are chromati-
cally complete.

Theorem 1.2 (Hopkins–Ravenel). If X is a finite spectrum, then the limit of the
chromatic tower · · · → LnX → · · ·L0X is equivalent to X.

In light of the above, this motivates the question as to whether all suspension
spectra are chromatically complete, which would be a consequence of an affirmative
answer to the following question raised by Ravenel in [19, Section 5].

Question 1.3. Does harmonic localization coincide with chromatic completion?

1.2. Results and outline. Our first goal in this paper is to give a general crite-
rion for when a subcategory of Sp contains all suspension spectra. Using methods
developed by Johnson and Wilson reviewed and extended in Section 2, we then
prove our generalization of the chromatic convergence theorem; see Theorem 3.8.

Theorem. If X is a connective spectrum with finite projective BP -dimension, then
X is chromatically complete.

Furthermore, we study the relation between harmonic localization and chromatic
completion in the context of idempotent approximations, showing in Proposition
5.1 that L∞ is the closest idempotent monad equipped with a monad map to C.
Finally, we construct an explicit spectrum W such that L∞W is not chromatically
complete, thereby answering Ravenel’s Question 1.3; see Theorem 5.7.

Theorem. Harmonic localization and chromatic completion do not coincide.

The motivating question of whether suspension spectra are chromatically com-
plete remains open.

Remark 1.4. Work in progress of Salch provides different techniques for checking
whether a given spectrum is chromatically complete.

1.3. Notation and terminology. Fix a prime p. Let Ln be Bousfield localization
at the Johnson–Wilson theory E(n) with acyclification functor Cn, and denote by
Lf
n the corresponding finite localization; see for example [17]. Harmonic localization

L∞ is defined as Bousfield localization at the wedge of all Morava K-theories K(n)
on the category of (always) p-local spectra Sp, viewed as an idempotent monad in
the natural way. A spectrum X is called harmonic if the unit map X → L∞X is
an equivalence, and dissonant if L∞X is contractible.

Moreover, let C : Sp → Sp be chromatic completion, i.e., the endofunctor given
by X �→ limnLnX. The functor C inherits a monad structure from the tower of
monads · · · → Ln → Ln−1 → · · · → L0 and we say thatX is chromatically complete
if the natural map X → CX is an equivalence.

2. Projective dimension and Johnson–Wilson spaces

We start by reviewing those aspects of Johnson–Wilson theory that will be used
later, and extend one of their key results to infinite complexes in Corollary 2.8.
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2.1. Projective dimension. Recall that the Brown-Peterson spectrum BP has
coefficients π∗BP = Z(p)[v1, v2, . . .] with deg(vn) = 2(pn − 1); by a theorem of
Basterra and Mandell [1], BP admits the structure of an E4-ring spectrum. In
this section, we introduce the definition and some basic facts about projective BP -
dimension.

Definition 2.1. If M is a BP∗-module or a (BP∗, BP∗BP )-comodule, then the
minimal length m ∈ N ∪ {∞} of a resolution of M by projective BP∗-modules
is called its projective (or homological) dimension, denoted by projdimBP∗M =
m. The projective BP -dimension of a spectrum X is defined as the projective
dimension of BP∗(X).

Remark 2.2. Implicitly, we will always work with graded modules, and our notion
of projective dimension will always be with respect to BP∗. By a result of Conner
and Smith [5], graded projective BP∗-modules are free.

Example 2.3. Johnson and Wilson [11] prove that the projective dimension of the
suspension spectrum of (BZ/p)n is precisely n.

IfX is a finite spectrum, thenBP∗(X) is in fact a coherentBP∗-module. This ob-
servation led Landweber to study the abelian category BP of BP∗BP -comodules
that are coherent as BP∗-modules. In [15, Cor. 7], he showed:

Proposition 2.4 (Landweber). For M a finitely generated BP∗BP -comodule, the
following conditions are equivalent:

(1) M ∈ BP, i.e., M is coherent.
(2) projdimBP∗(M) < ∞.
(3) There exists an n such that M is vn torsion-free.

However, we will be mainly interested in infinite spectra, so we need the more
general techniques developed by Johnson and Wilson following Conner and Smith.
We end this section by mentioning natural examples of spaces with infinite projec-
tive dimension. If p = 2, there is a (2-local) fiber sequence

K(Z, 3) → BU〈6〉 → BSU.

Since the second and third term have torsion-free Z(p)-homology, their projective
dimension is 0. In contrast, there is the following surprising result of [10].

Theorem 2.5 (Johnson–Wilson). The projective dimension of Eilenberg-Mac Lane
spaces is infinite in the following cases:

(1) projdimBP∗(BP∗K(Z,m)) = ∞ if and only if m ≥ 3.

(2) projdimBP∗(BP∗K(Z/pk,m)) = ∞ if and only if m ≥ 2 and k ≥ 1.

In particular, K(Z, 3) has infinite projective dimension, and the methods of
Section 3 do not apply.

2.2. Truncated Brown–Peterson spectra and torsion. Using [6] or the mani-
folds with singularities approach of Baas and Sullivan, one constructs the truncated
Brown–Peterson spectrum BP 〈n〉 as a BP -module with coefficient ring
Z(p)[v1, . . . , vn] for every n ∈ N ∪ {∞}. By definition, we set BP 〈−1〉 = HFp.

Example 2.6. For example, BP 〈0〉 = HZ(p) and BP 〈1〉 is a summand of connec-
tive K-theory localized at p.
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As shown by Johnson and Wilson [9], the theories BP 〈n〉 are convenient to
track torsion in the BP -homology of spaces. To this end, they observe that for any
spectrum X, there exists a natural tower of BP∗-modules

BP∗(X) ��

ρ(n,∞)

��

. . . �� BP 〈n+ 1〉∗(X) �� BP 〈n〉∗(X) ��

Δn+1��� � � � � �
· · · �� BP 〈−1〉∗(X)

BP 〈n+ 1〉∗(X)

vn+1

��

where the indicated triangles are exact sequences. The main result of [9] is:

Theorem 2.7 (Johnson–Wilson). For X a finite complex, the following are equiv-
alent:

(1) projdimBP∗BP∗(X) ≤ n+ 1.
(2) ρ(n,∞) : BP∗X → BP 〈n〉∗X is surjective.

(3) BP∗(X)⊗BP∗ BP 〈n〉∗
∼−→ BP 〈n〉∗(X).

(4) TorBP∗
1 (BP∗(X), BP 〈n〉∗) = 0.

If X is a connective CW spectrum with H∗(X,Z(p)) of finite type, (1) above is
equivalent to:

(5) BP 〈n+ 1〉∗(X) is vn+1 torsion-free.

Let X be a connective spectrum with projdimBP∗(BP∗X) = n. Under the
extra assumption that H∗(X,Z(p)) is of finite type, it follows from the above that
BP 〈m〉∗(X) is vm torsion-free for all m ≥ n. However, the only place in the
argument given there that claims to use the finite type hypothesis is [9, Prop.
3.10], stating that the Z(p)-homology of a connected spectrum is free if and only if
so is BP∗(X). Since the Atiyah–Hirzebruch spectral sequence exists and converges
for such X (see, for example, [13, Cor. 4.2.6]), the proof works equally well without
the finite type assumption and we conclude:

Corollary 2.8. If X is a connective spectrum with projdimBP∗(BP∗X) = n, then
BP∗(X) is vm torsion-free for m > n.

Proof. This follows from the previous discussion and [9, Cor. 3.5]. �

2.3. Johnson–Wilson spaces. The spaces appearing in the Ω-spectrum of trun-
cated Brown–Peterson spectra will play an important role in our study of suspension
spectra. They were investigated thoroughly in Wilson’s thesis [21,22], the main re-
sults of which we summarize here as far as they are needed below.

Definition 2.9. The Johnson–Wilson space BP 〈n〉k is defined as the k-th space
in the Ω-spectrum of BP 〈n〉, i.e.,

BP 〈n〉k = Ω∞−kBP 〈n〉.

Example 2.10. It follows from Example 2.6 that BP 〈0〉k is just the Eilenberg–
MacLane space K(Z(p), k). If p = 2, one can show that BP 〈1〉4 = BSU and
BP 〈1〉6 � BU〈6〉; see [18].
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In order to state Wilson’s splitting theorem [22], we introduce the auxiliary
function

f(n) = 2

n∑
i=0

pi = 2
pn+1 − 1

p− 1
.

Theorem 2.11 (Wilson). If k ≤ f(n), BPk � BP 〈n〉k ×
∏

j>nBP 〈j〉k+2(pj−1),

and for k > f(n−1), this decomposition is as irreducibles, i.e., it cannot be decom-
posed further. Furthermore, if k < f(n), this is as H-spaces.

This splitting has a number of interesting consequences. In [21], Wilson computes
the Z(p)-(co)homology of BPk for k ≤ f(n), which can be used to deduce the
(co)homology of the Johnson–Wilson spaces BP 〈n〉k in the range k ≤ f(n).

Theorem 2.12 (Wilson). If k ≤ f(n), then the Z(p)-(co)homology of the connected
part of BP 〈n〉k has no torsion and is a polynomial algebra for k < f(n) even and
an exterior algebra for k odd.

3. Suspension spectra and generalized chromatic convergence

3.1. A criterion. The following result is an abstraction of the argument used in
[8] showing that suspension spectra are harmonic.

Theorem 3.1. Let C be a thick subcategory of Sp and let C0 be a subcategory of
Top such that Σ∞

+ C0 ⊆ C and C0 is closed under retracts. Suppose that

(1) C0 is closed under weak infinite products of spaces,
(2) C0 contains the Johnson-Wilson spaces BP 〈n〉k for all n and f(n − 1) <

k ≤ f(n), and
(3) C is closed under sequential homotopy limits,

then C contains all suspension spectra.

Remark 3.2. The purpose of the auxiliary category C0 is that condition (2) is easier
to check for a restrictive collection of spaces. For example, in [8], C is the category
of harmonic spectra and C0 the category of spaces with torsion-free Z(p)-homology.

In order to prove this theorem, we need two lemmata that are of independent
interest. We inductively define full subcategories Ci ⊆ Top for all i ∈ N by letting
C0 be a full subcategory of Top satisfying (1) and (2) of the theorem and declaring
F to be in Ci if there exists a fiber sequence F → E → B with E,B ∈ Ci−1 and B
simply connected. We also set C∞ =

⋃
i Ci; this yields an ascending filtration

C0 ⊆ C1 ⊆ . . . ⊆ C∞ ⊆ Top.

Lemma 3.3. For every m ≥ 2, the Eilenberg–MacLane space K(A,m) ∈ C∞.

Proof. By assumption, C0 contains BP 〈n〉k for all n and f(n−1) < k ≤ f(n). First
note that the self map vn : Σ

2(pn−1)BP 〈n〉 → BP 〈n〉 induces fiber sequences
BP 〈n− 1〉i → BP 〈n〉i+1+2(pn−1) → BP 〈n〉i+1

for all i. It follows easily that, for any i ≥ 0, BP 〈n〉i+f(n) ∈ Ci. In particular,
K(Z,m) � BP 〈0〉m ∈ Cm for all m ≥ 2. Since ModZ has global dimension 1, this
implies K(A,m) ∈ C∞ for all abelian groups A and m ≥ 2. �
Lemma 3.4. If F → E → B is a fiber sequence of spaces with E,B ∈ Ci−1, B
simply connected and suppose Σ∞

+ Ci−1 ⊆ C, then Σ∞
+ F ∈ C.
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Proof. This is proven as in [8, Lemma 17], using the geometric construction of the
Eilenberg-Moore spectral sequence. Indeed, the equivalence F � Tot(E × B×•)
lifts to a presentation

Σ∞
+ F � limjFj ,

where the spectra Fj fit into cofiber sequences Fj+1 → Fj → Ci with Σj−1Ci a
retract of Σ∞

+ (E×B×j) and F1 = Σ∞
+ E. Since Ci−1 is closed under finite products

of spaces by (1), E×B×j ∈ Ci−1 and thus Fj ∈ C for all j by induction, using that
C is closed under retracts. Hence Σ∞

+ F ∈ C by (3). �
Proof of Theorem 3.1. Since Σ∞

+ C0 ⊆ C, Lemma 3.4 implies inductively that Σ∞
+ C∞

⊆ C. Since C is closed under suspensions, we can assume without loss of generality
that X is simply connected. In this case, X has a convergent Postnikov tower
and Lemma 3.3 together with the closure of C under sequential limits shows that
Σ∞

+ X ∈ C. �
3.2. Generalized chromatic convergence. The aim of this section is to prove
a generalization of the chromatic convergence theorem of Hopkins and Ravenel. To
this end, let BP be the fiber of the unit map S0 → BP and recall that a map
f : X → Y is said to be n-phantom if Hom(F, f) = 0 for all finite spectra F of
dimension less than n+ 1.

Definition 3.5. A spectrum X is called BP -convergent if for all i ≥ 0 there exists

some s(i) such that BP
s(i) ∧X → X is i-phantom.

In other words, if X is BP -convergent, then Es,s+i
∞ (X) = 0 for s ≥ s(i) in the

Adams–Novikov spectral sequence for X, i.e., there exists a vanishing curve (at
E∞) determined by the function s(i). It follows that every non-zero element in
πiX has Adams–Novikov filtration less than s(i) + 1.

As a formal consequence of the proof of the smash product theorem, Ravenel
and Hopkins [20, 8.6] obtain:

Lemma 3.6. If X is connective, then X, LiX, and thus CiX are BP -convergent
for all i ≥ 0.

The next result connects the projective dimension of a spectrum X to the
Adams–Novikov filtration of CmX.

Lemma 3.7. If X is a connective spectrum with projective dimension at most n,
then the natural map Cm+1X → CmX is BP -acyclic for all m ≥ n.

Proof. Let X be a connective spectrum with projdimBP∗ (BP∗X) = n. By Corol-
lary 2.8, BP∗(X) is vm torsion-free for every m > n. Following Ravenel, we set
NmBP = ΣmCm−1BP with coefficients π∗NmBP = BP∗/(p

∞, . . . , v∞m−1), and
MmBP ∧X is obtained from NmBP ∧X by inverting vm. Fix m > n and consider
the commutative diagram

NmBP ∧X
fm ��

�
��

MmBP ∧X ��

�
��

Nm+1BP ∧X ��

�
��

ΣNmBP ∧X

�
��

ΣmBP ∧ Cm−1X �� ΣmBP ∧MmX �� Σm+1BP ∧ CmX �� Σm+1BP ∧ Cm−1X

of cofiber sequences, where the upper row realizes the chromatic resolution as in
[20, Ch. 8]. By construction, fm is injective in homotopy if and only if BP∗(X) is
vm torsion-free, thus the natural map CmX → Cm−1X is BP -acyclic. �
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We are ready to put the pieces together to generalize Theorem 1.2 to connective
spectra of finite projective dimension.

Theorem 3.8. If X is a connective spectrum with finite projective dimension, then
X is chromatically complete.

Proof. If X is connective with projective dimension n ∈ N and m ≥ n, then the
map Cm+kX → CmX has Adams–Novikov filtration at least k for all k ≥ 0 by
Lemma 3.7. Therefore, Lemma 3.6 implies that πiCm+s(i)X → πiCmX is zero for
any i, so that the tower

. . . → CjX → Cj−1X → . . . → C0X

is pro-trivial in homotopy. This gives the claim. �

Corollary 3.9. All connective spectra with free homology are chromatically com-
plete. In particular, this applies to the Johnson–Wilson spaces BP 〈n〉k for any n
and k ≤ f(n).

Proof. By the proof of Corollary 2.8, for a connective spectrum X, H∗(X,Z(p))
torsion-free over Z(p) implies that BP∗(X) is torsion-free over BP∗, thus the proof of
Lemma 3.7 shows that X is chromatically complete. The claim about the Johnson–
Wilson spaces BP 〈n〉k now follows immediately from Theorem 2.12. �

4. Idempotent approximation

We briefly recall the basic properties of idempotent monads and their algebras,
and introduce the theory of idempotent approximation of Casacuberta and Frei.

4.1. Idempotent monads and their algebras. In order to state the main the-
orem, we need some terminology that will also be used in the next section.

Definition 4.1. A monad L = (L, μ, η) on a category C is called idempotent if it
satisfies any of the following equivalent conditions:

(1) μ : L2 → L is a natural equivalence.
(2) For every c ∈ AlgL, the action map Lc → c is an equivalence.
(3) The forgetful functor AlgL → C is fully faithful.

Lemma 4.2. Let L be an idempotent monad on a category C ; then for any c ∈ C
the following conditions are equivalent:

(1) c admits an L-algebra structure.
(2) The unit map c → Lc is an equivalence.

Let M be an arbitrary monad on a locally presentable category C and denote
by AlgidemM the full subcategory of AlgM on those algebras c for which the unit map

induces an equivalence c
∼−→ Mc . Motivated by Theorem 3.1, we are interested in

conditions on M such that the category AlgidemM is closed under (sequential) limits.

Note that for some well-known examples the category AlgidemM either coincides
with AlgM or is trivial, e.g., if M is the free monoid monad on the category of

sets. In these cases, AlgidemM is trivially closed under all limits. However, the next

example shows that, in general, AlgidemM cannot be expected to be closed under
limits, not even sequential limits or infinite products.
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Example 4.3. If we let M = β be the ultrafilter (Stone-Čech) monad on the

category of sets, then AlgidemM is precisely the category of finite sets, which is not
closed under inverse limits.

By Lemma 4.2, every idempotent monad M has the property that AlgidemM =
AlgM and hence is closed under limits. It is therefore natural to ask if chromatic
completion is idempotent, given that it is the limit of idempotent monads; an affir-
mative answer would imply that all suspension spectra are chromatically complete.

Note that the category Monads(C ) of monads on C can be identified with the
category of monoids in the functor category Fun(C ,C ) with monoidal structure
given by composition of functors, and is thus closed under limits computed in the
functor category. However, the subcategory of idempotent monads does not have
this property as the following example demonstrates.

Example 4.4. Let R be a non-noetherian commutative ring, and I a non-finitely
generated ideal in R. Clearly, I-adic completion on the category of all R-modules
is a monad, which is constructed as the limit of the idempotent and exact monads
R/Im⊗−. Yekutieli shows in [24] that in the case of a polynomial ring R = k[x1, . . .]
in countably infinitely many variables and I the maximal ideal corresponding to 0,
I-adic completion is not idempotent.

This motivates the study of idempotent approximations to monads.

4.2. Idempotent approximations to monads.

Definition 4.5. An idempotent approximation to a monad M on C is an idem-
potent monad M̂ on C together with a map of monads M̂ → M which is terminal
among all maps from idempotent monads to M .

Casacuberta and Frei [4] give a convenient characterization of idempotent ap-
proximations, without any conditions on the underlying category C . Moreover,
their perspective allows us to easily deduce some basic properties of idempotent
approximations.

Theorem 4.6 (Casacuberta–Frei). Let (M, η, μ) be a monad on a category C . If

(M̂, η̂, v̂) is an idempotent monad on C that inverts the same class of morphisms in

C as M , then M̂ is the idempotent approximation to M . In particular, it satisfies
the following properties:

(1) There exists a unique morphism of monads λ : M̂ → M , which is terminal
among morphisms from idempotent monads to M . Furthermore, if C is
complete and well powered, λ is a monomorphism.

(2) Both Mη̂ and η̂M are isomorphisms.
(3) For any X ∈ C , the following are equivalent:

(a) ηX is an M̂ -equivalence.
(b) ηMX is an isomorphism.
(c) λX is an isomorphism.

Remark 4.7. Idempotent approximation was studied previously by Fakir [7]. His
main existence theorem says that if C is complete and well powered, then the
idempotent approximation to any monad on C exists. This construction provides a
right adjoint to the natural inclusion of idempotent monads on C into Monads(C ).
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5. Harmonic localization and chromatic completion

Using the notion of idempotent approximation, we study the relation between
harmonic localization and chromatic completion and deduce a new equivalent for-
mulation of the telescope conjecture. We then construct a harmonic spectrum which
is not chromatically complete.

Proposition 5.1. Harmonic localization is the idempotent approximation to chro-
matic completion, L∞ = Ĉ.

Proof. Since L∞ is a localization functor and thus idempotent, using Theorem 4.6
it suffices to show that the class S (L∞) of harmonic equivalences coincides with
the class S (C) of C-equivalences. Because ker(L∞) ⊆ ker(C), we clearly have
S (L∞) ⊆ S (C).

Conversely, let f : X → Y be a C-equivalence. First note that, for any spectrum
Z and n ≥ 0, the natural composite Z → CZ → LnZ → LK(n)Z exhibits K(n)∗(Z)
as a (natural) retract of K(n)∗(CZ). Since K(n)∗(Cf) is an isomorphism for any
n ≥ 0 and the retract of an isomorphism is an isomorphism, the claim follows. �

Replacing Ln by Lf
n, the analogous statement for finite harmonic localization

and finite chromatic completion is proven in exactly the same way, so that we get:

Proposition 5.2. Finite harmonic localization Lf
∞ is the idempotent approxima-

tion to finite chromatic completion Ĉf .

The abstract properties of idempotent approximations imply a useful criterion
for checking when a harmonic spectrum is chromatically complete. Let λ : L∞ → C

be the natural (and unique) monad map. The next definition uses part (3) of
Theorem 4.6, and is motivated by the terminology of [3, I.5].

Definition 5.3. A spectrum X is called C-good if any of the following equivalent
conditions hold:

(a) The map ηX : X → CX is a harmonic equivalence.
(b) The map ηCX : CX → C2X is an equivalence.
(c) The map λX : L∞X → CX is an equivalence.

Moreover, we denote the cofiber of the natural map ηX of (1) by AX.

Corollary 5.4. A harmonic spectrum X is C-good if and only if it is chromati-
cally complete. In particular, L∞X is chromatically complete if and only if AX is
dissonant.

Proof. The first part is an immediate consequence of the previous lemma. To see
the second claim, note that L∞X is chromatically complete if and only if L∞X →
CL∞X � CX � L∞CX is an equivalence, which in turn is equivalent to L∞AX =
0, hence the claim. �

As another consequence of the theorem, we deduce a new equivalent formulation
of the telescope conjecture. This uses the well-known orthogonality relations for
the telescopes Tel(n) of finite type n spectra; see [16, p.105].

Lemma 5.5. In the category of spectra, we have the following relations among
Bousfield classes, with δm,n being the Kronecker delta:

(1) 〈Tel(n)〉 ≥ 〈K(n)〉 for all n ∈ N.
(2) 〈Tel(m)〉 ∧ 〈Tel(n)〉 = δm,n〈Tel(m)〉 for all n,m ∈ N.
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Corollary 5.6. The telescope conjecture holds for all heights m if and only if the
natural map Cf → C is an equivalence.

Proof. The only if direction is obvious. For the converse, assume that Cf ∼−→ C.
By Proposition 5.1, the natural map Lf

∞ → L∞ is also an equivalence, hence
〈
∨

n≥0 Tel(n)〉 = 〈
∨

n≥0 K(n)〉. Smashing both sides with Tel(m) and using the
orthogonality relations from Lemma 5.5, we get

〈Tel(m)〉 = 〈Tel(m) ∧
∨
n≥0

Tel(n)〉 = 〈Tel(m) ∧
∨
n≥0

K(n)〉 = 〈K(m)〉

for all m, i.e., the telescope conjecture at height m. �

5.1. A counterexample. We give an example of a harmonic spectrum that is not
chromatically complete, thereby answering Ravenel’s Question 1.3 in the negative.

Theorem 5.7. L∞
∨

i≥0 Σ
i+1CiBP is harmonic, but not chromatically complete.

Proof. To simplify notation, recall that Ni+1BP = Σi+1CiBP . We claim that

(5.8) C

∨
i

NiBP �
∏
i

NiBP.

Since

π∗
∨
i

NiBP ∼=
⊕
i

BP∗/(p
∞, . . . , v∞i−1), π∗

∏
i

NiBP ∼=
∏
i

BP∗/(p
∞, . . . , v∞i−1)

it then follows that π∗AX contains non-torsion elements and thus is not dissonant.
Therefore, L∞

∨
i NiBP is not chromatically complete by Corollary 5.4.

In order to prove (5.8), consider the cofiber sequence∨
i

NiBP −→ Ln

∨
i

NiBP −→ ΣCn

∨
i

NiBP,

which gives rise to an inverse system of short exact sequences

...

��

...

��

...

��

0 ��
⊕

i≤n π∗NiBP ��

��

⊕
i≤n π∗LnNiBP ��

��

⊕
i≤n π∗−1NnBP ��

��

0

0 ��
⊕

i≤n−1 π∗NiBP ��

��

⊕
i≤n−1 π∗Ln−1NiBP ��

��

⊕
i≤n−1 π∗−1Nn−1BP ��

��

0

...
...

...

using LnCi = 0 and CnCi = Cn for i ≤ n to simplify the terms. Clearly the left
vertical arrows are surjective, so we get lim1

n(
⊕

i≤n π∗NiBP ) = 0. Since the natural
map π∗NnBP → π∗Nn−1BP is zero, the right vertical maps are zero, hence

limn

⊕
i≤n

π∗−1NnBP = 0 = lim1
n

⊕
i≤n

π∗−1NnBP.
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It follows by the long exact sequence for inverse limits that

limnπ∗Ln

∨
i

NiBP ∼= limn

⊕
i≤n

π∗LnNiBP ∼= limn

⊕
i≤n

π∗NiBP ∼=
∏
i

π∗NiBP

and similarly

lim1
nπ∗Ln

∨
i

NiBP ∼= lim1
n

⊕
i≤n

π∗NiBP = 0.

Therefore, the Milnor sequence shows that

π∗C
∨
i

NiBP ∼= limnπ∗Ln

∨
i

NiBP ∼= π∗
∏
i

NiBP

verifying (5.8). �

Corollary 5.9. Chromatic completion is not idempotent.

Proof. Immediate from Proposition 5.1 and Theorem 5.7. �

We still do not know whether all suspension spectra are chromatically complete
but, based on this example, suspect that there are counterexamples. Moreover, we
believe that the collection of chromatically complete spectra is not closed under
infinite products.
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