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THE KADEC-PE�LCZYŃSKI THEOREM IN Lp, 1 ≤ p < 2

I. BERKES AND R. TICHY

(Communicated by Thomas Schlumprecht)

Abstract. By a classical result of Kadec and Pe�lczyński (1962), every nor-
malized weakly null sequence in Lp, p > 2, contains a subsequence equivalent
to the unit vector basis of �2 or to the unit vector basis of �p. In this paper

we investigate the case 1 ≤ p < 2 and show that a necessary and sufficient
condition for the first alternative in the Kadec-Pe�lczyński theorem is that the
limit random measure μ of the sequence satisfies

∫
R
x2dμ(x) ∈ Lp/2.

1. Introduction

Call two sequences (xn) and (yn) in a Banach space (B, ‖ · ‖) equivalent if there
exists a constant K > 0 such that

K−1
∥∥ n∑

i=1

aixi

∥∥ ≤
∥∥ n∑

i=1

aiyi
∥∥ ≤ K

∥∥ n∑
i=1

aixi

∥∥
for every n ≥ 1 and every (a1, . . . , an) ∈ R

n. By a classical theorem of Kadec and
Pe�lczyński [11], any normalized weakly null sequence (xn) in Lp(0, 1), p > 2, has
a subsequence equivalent to the unit vector basis of �2 or to the unit vector basis
of �p. In the case when {|xn|p, n ≥ 1} is uniformly integrable, the first alternative
holds, while if the functions (xn) have disjoint support, the second alternative holds
trivially. The general case follows via a subsequence splitting argument as in [11].

The purpose of the present paper is to investigate the case 1 ≤ p < 2 and to give
a necessary and sufficient condition for the first alternative in the Kadec-Pe�lczyński
theorem. To formulate our result, we use probabilistic terminology. Let 1 ≤ p < 2
and let (Xn) be a sequence of random variables defined on a probability space
(Ω,F , P ); assume that {|Xn|p, n ≥ 1} is uniformly integrable andXn → 0 weakly in
Lp. (This is meant as limn→∞ E(XnY ) = 0 for all Y ∈ Lq where 1/p+1/q = 1. To
avoid confusion with weak convergence of probability measures and distributions,

the latter will be called convergence in distribution and denoted by
D−→.) Using the

terminology of [5], we call a sequence (Xn) of random variables determining if it has
a limit distribution relative to any set A in the probability space with P (A) > 0,
i.e., for any A ⊂ Ω with P (A) > 0 there exists a distribution function FA such that

lim
n→∞

P (Xn ≤ t | A) = FA(t)
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for all continuity points t of FA. Here P (·|A) denotes conditional probability given
A. (This concept is the same as that of stable convergence, introduced in [15].)
Since {|Xn|p, n ≥ 1} is uniformly integrable, the sequence (Xn) is tight and thus
by an extension of the Helly-Bray theorem (see e.g. [5]), it contains a determining
subsequence. Hence in the sequel we can assume, without loss of generality, that
the sequence (Xn) itself is determining. As is shown in [1], [5], for any determin-
ing sequence (Xn) there exists a random measure μ (i.e. a measurable map from
(Ω,F , P ) to (M, π), where M is the set of probability measures on R and π is
the Prohorov distance; see Section 3) such that for any A with P (A) > 0 and any
continuity point t of FA we have

(1.1) FA(t) = EA(μ(−∞, t]),

where EA denotes conditional expectation given A. We call μ the limit random
measure of (Xn). We will prove the following result.

Theorem 1.1. Let 1 ≤ p < 2 and let (Xn) be a determining sequence of random
variables such that ‖Xn‖p = 1 (n = 1, 2, . . .), {|Xn|p, n ≥ 1} is uniformly integrable
and Xn → 0 weakly in Lp. Let μ be the limit random measure of (Xn). Then there
exists a subsequence (Xnk

) equivalent to the unit vector basis of �2 if and only if

(1.2)

∫ ∞

−∞
x2dμ(x) ∈ Lp/2.

By assuming the uniform integrability of |Xn|p, we exclude “spike” situations
leading to a subsequence equivalent to the unit vector basis of �p as in the Kadec-
Pelczyński theorem. It is easily seen that (1.2) (and in fact

∫∞
−∞ x2dμ(x) < ∞

a.s.) imply that for any δ > 0 there exists a set A ⊂ Ω with P (A) ≥ 1 − δ and a
subsequence (Xnk

) such that

sup
k≥1

∫
A

|Xnk
|2dP < ∞.

Thus the first alternative in the Kadec-Pe�lczyński theorem ‘almost’ implies bounded
L2 norms.

Call a sequence (Xn) of random variables in Lp almost symmetric if for any ε > 0
there exists a K = K(ε) such that for any k ≥ 1, any indices j1 > j2 > . . . > jk ≥
K, any permutation (σ(j1), . . . , σ(jk)) of (j1, . . . , jk) and any (a1, . . . , ak) ∈ R

k we
have

(1− ε)‖
k∑

i=1

aiXji‖p ≤ ‖
k∑

i=1

aiXσ(ji)‖p ≤ (1 + ε)‖
k∑

i=1

aiXji‖p .

Once in Theorem 1.1 we found a subsequence (Xnk
) equivalent to the unit vector

basis of �2, a result of Guerre [9] implies the existence of a further subsequence
(Xmk

) of (Xnk
) which is almost symmetric. Note that this conclusion also follows

from the proof of Theorem 1.1. Guerre and Raynaud [10] also showed that for any
1 ≤ p < q < 2 there exists a sequence (Xn) in Lp, equivalent to the unit vector
basis of �q, but not having an almost symmetric subsequence. No characterization
for the existence of almost symmetric subsequences of (Xn) in terms of the limit
random measure of (Xn) or related quantities is known.
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2. Some lemmas

The necessity of the proof of Theorem 1.1 depends on a general structure theo-
rem for lacunary sequences proved in [3] (see Theorem 2 of [3] and the definition
preceding it); for the convenience of the reader we state it here as a lemma.

Lemma 2.1. Let (Xn) be a determining sequence of r.v.’s and (εn) a positive
numerical sequence tending to 0. Then, if the underlying probability space is rich
enough, there exists a subsequence (Xmk

) and a sequence (Yk) of discrete r.v.’s such
that

(2.1) P
(
|Xmk

− Yk| ≥ εk
)
≤ εk, k = 1, 2, . . . ,

and for each k > 1 the atoms of the σ-field σ{Y1, . . . , Yk−1} can be divided into two
classes Γ1 and Γ2 such that

(i)
∑

B∈Γ1
P (B) ≤ εk;

(ii) For any B ∈ Γ2 there exist PB-independent r.v.’s {Z(B)
j , j = k, k + 1, . . . }

defined on B with common distribution function FB such that

(2.2) PB

(
|Yj − Z

(B)
j | ≥ εk

)
≤ εk, j = k, k + 1, . . . .

Here FB denotes the limit distribution of (Xn) relative to B and PB denotes con-
ditional probability given B.

Note that, instead of relation (2.1), in Theorem 2 of [3] the conclusion is∑∞
k=1 |Xmk

− Yk| < ∞ a.s., but after a further thinning, (2.1) will also hold. The
phrase “the underlying probability space is rich enough” is meant in Lemma 2.1
in the sense that on the underlying space there exists a sequence of independent
r.v.’s, uniformly distributed over (0, 1) and also independent of the sequence (Xn).
Clearly, this condition can be guaranteed by a suitable enlargement of the proba-
bility space not changing the distribution of (Xn) and μ and thus this assumption
can be assumed without loss of generality.

Lemma 2.1 means that every tight sequence of r.v.’s has a subsequence which
can be closely approximated by an exchangeable sequence having a very simple
structure, namely which is i.i.d. on each set of a suitable partition of the probability
space. This fact is an “effective” form of the general subsequence principle of Aldous
[1] (for a related result see Berkes and Rosenthal [5]) and reduces the studied
problem to the i.i.d. case which will be handled by the classical concentration
technique of Lévy [12], as improved by Esseen [7].

Lemma 2.2. Let X1, X2, . . . , Xn be i.i.d. random variables with distribution func-
tion F and put Sn = X1 + · · ·+Xn. Then for any t > 0 we have

(2.3) P

(∣∣∣∣Sn

∣∣∣∣ ≤ t

)
≤ A

t√
n

[ ∫
|x|<t

x2dF (x)− 2

( ∫
|x|<t

xdF (x)

)2]−1/2

provided the difference on the right-hand side is positive and
∫
|x|<t

dF (x) ≥ 1/2.

Here A is an absolute constant.

Proof. Let F ∗ denote the distribution function obtained from F by symmetriza-
tion. The left-hand side of (2.3) is clearly bounded by QSn

(2t), where QSn
(λ) =

supx P (x ≤ Sn ≤ x + λ) is the concentration function of Sn. By a well-known
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concentration function inequality of Esseen (see [7], formula (3.3)) we have

QSn
(λ) ≤ An−1/2

(
λ−2

∫
|x|<λ

x2dF ∗(x) +

∫
|x|≥λ

dF ∗(x)

)−1/2

≤ Aλn−1/2

(∫
|x|<λ

x2dF ∗(x)

)−1/2

(2.4)

for any λ > 0, where A is an absolute constant. Thus the left-hand side of (2.3)
is bounded by the last expression in (2.4) with λ = 2t and thus to prove (2.3) it
suffices to show that

∫
|x|<t

dF (x) ≥ 1/2 implies

(2.5)

∫
|x|<2t

x2dF ∗(x) ≥
∫

|x|<t

x2dF (x)− 2

( ∫
|x|<t

xdF (x)

)2

.

Let ξ and η be independent r.v.’s with distribution function F and set

C = {|ξ − η| < 2t}, D = {|ξ| < t, |η| < t}.
Then ∫

|x|<2t

x2dF ∗(x) =

∫
C

(ξ − η)2dP ≥
∫
D

(ξ − η)2dP

= 2

∫
|ξ|<t

ξ2dP · P (|η| < t)− 2

( ∫
|ξ|<t

ξdP

)2

≥
∫

|ξ|<t

ξ2dP − 2

( ∫
|ξ|<t

ξdP

)2

since P (|η| < t) ≥ 1/2. Thus (2.5) is valid.

Lemma 2.3. Let (Xn) be a determining sequence of r.v.’s with limit random dis-
tribution function F•. Then for any set A ⊂ Ω with P (A) > 0 we have

(2.6) EA

( +∞∫
−∞

x2dF•(x)

)
=

+∞∫
−∞

x2dFA(x)

in the sense that if one side is finite, then the other side is also finite and the two
sides are equal. The statement remains valid if in (2.6) we replace the intervals of
integration by (−t, t), provided t and −t are continuity points of FΩ.

We used here the notation F• to distinguish it from the ordinary limit distribu-
tion function of (Xn).

Proof. Assume that t and −t are continuity points of FΩ. As observed in [5, p. 482],
t and −t are continuity points of F• with probability 1 (and hence also for FA for
any A ⊂ Ω with P (A) > 0) and thus almost surely∫
|x|<t

x2dF•(x) = −
[
x2(1− F•(x) + F•(−x))

]t
−t

+

∫
|x|<t

(1−F•(x)+F•(−x))2xdx

as it is seen by splitting the integral on the left-hand side into subintegrals over
(−t, 0) and (0, t) (the integral over {0} clearly equals 0) and using integration by
parts. The same formula holds with F• replaced by FA. Integrating the last relation
over A ⊂ Ω and using (1.1) and Fubini’s theorem, we get the validity of (2.6) over
(−t, t). Letting t → ∞ we get (2.6) over (−∞,∞).
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For the following lemma (which is the key tool for the proof of the sufficiency
part of Theorem 1.1) we need some definitions. Given probability measures νn, ν

on the Borel sets of a separable metric space (S, d) we say that νn
D−→ ν if

(2.7)

∫
S

f(x)νn(dx) −→
∫
S

f(x)ν(dx) as n → ∞

for every bounded, real valued continuous function f on S. (For equivalent defini-
tions and properties of this convergence see [4]). (2.7) is clearly equivalent to

(2.8) Ef(Zn) −→ Ef(Z)

where Zn, Z are r.v.’s valued in (S, d) (i.e., measurable maps from some probability
space to (S, d)) with distribution νn, ν. A class G of real valued functions on S is
called locally equicontinuous if for every ε > 0 and x ∈ S there is a δ = δ(ε, x) > 0
such that y ∈ S, d(x, y) ≤ δ imply |f(x)− f(y)| ≤ ε for every f ∈ G.

Lemma 2.4 (Ranga Rao [14]). Let (S, d) be a separable metric space and ν, νn

(n = 1, 2, . . .) probability measures on the Borel sets of (S, d) such that νn
D−→ ν.

Let G be a class of real valued functions on (S, d) such that
(a) G is locally equicontinuous.
(b) There exists a continuous function g ≥ 0 on S such that |f(x)| ≤ g(x) for

all f ∈ G and x ∈ S and

(2.9)

∫
S

g(x)νn(dx) −→
∫
S

g(x)ν(dx) (< ∞) as n → ∞.

Then

(2.10)

∫
S

f(x)νn(dx) −→
∫
S

f(x)ν(dx) as n → ∞

uniformly in f ∈ G.

3. Proof of Theorem 1.1

Let (Ω,F , P ) be the probability space of the Xn’s and X = (X1, X2, . . .); let
further μ be the limit random measure of (Xn). Let (Yn) be a sequence of r.v.’s
on (Ω,F , P ) such that, given X and μ, the r.v.’s Y1, Y2, . . . are conditionally i.i.d.
with distribution μ, i.e.,

(3.1) P (Y1 ∈ A1, . . . , Yk ∈ Ak|X, μ) =

k∏
i=1

P (Yi ∈ Ai|X, μ) a.s.

(3.2) P (Yj ∈ A|X, μ) = μ(A) a.s.

for any j, k and Borel sets A,A1, . . . , Ak on the real line. Such a sequence (Yn)
always exists after a suitable enlargement of the probability space (in fact (Yn) exists
on (Ω,F , P ) if (Ω,F , P ) is atomless over σ(X, μ); see the vector-valued version of
Theorem (1.5) of [5]; see also the remark preceding Theorem (1.3) in [5, p. 479]) or,
alternatively, the sequence (Xn) can be redefined, without changing its distribution,
on a standard sequence space over which (Yn) can be defined; see [1, p. 72]. Clearly,
(Yn) is an exchangeable sequence; we call it the limit exchangeable sequence of (Xn).
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It is not hard to see (cf. [1], [5]) that there exists a subsequence (Xnk
) such that

for every k ≥ 1 we have

(3.3) (Xnj1
, . . . , Xnjk

)
D−→ (Y1, . . . , Yk) if j1 < · · · < jk , j1 → ∞.

Note that the existence of a subsequence (Xnk
) and exchangeable (Yk) satisfying

(3.3) was first proved by Dacunha-Castelle and Krivine [6] via ultrafilter techniques.
The limit exchangeable sequence, as defined above, also has the following simple
property, proved in [1, Lemma 12].

Lemma 3.1. For every σ(X)-measurable r.v. Z and any j ≥ 1 we have

(Xn, Z)
D−→ (Yj , Z).

As before, let M denote the set of all probability measures on R and let π be
the Prohorov metric on M defined by

π(ν, λ) = inf
{
ε > 0 : ν(A) ≤ λ(Aε) + ε and

λ(A) ≤ ν(Aε) + ε for all Borel sets A ⊂ R
}
.

Here

Aε = {x ∈ R : |x− y| < ε for some y ∈ A}
denotes the open ε-neighborhood of A. Let

(3.4) S =

{
ν ∈ M :

∫
xdν(x) = 0 ,

∫
x2dν(x) < +∞

}
.

Since
∫∞
−∞ x2dμ(x) < ∞ a.s. (which follows from (1.2)) and

∫∞
−∞ xdμ(x) = 0 a.s.

by Xn → 0 weakly, we have

(3.5) P
{
μ ∈ S

}
= 1.

Following Aldous [1] we define another metric d on S by

(3.6) d(ν, λ) =

(∫ 1

0

(
F−1
ν (x)− F−1

λ (x)
)2

dx

)1/2

where Fν and Fλ are the distribution functions of ν and λ, respectively, and F−1

is defined by

F−1(x) = inf
{
t : F (t) ≥ x

}
, 0 < x < 1,

for any distribution function F . The right side of (3.6) equals ‖F−1
ν (η)−F−1

λ (η)‖2
where η is a random variable uniformly distributed in (0, 1). Since F−1

ν (η) and
F−1
λ (η) are r.v.’s with distribution ν and λ, respectively (and thus square inte-

grable), it follows that d is a metric on S. It is easily seen (cf. [1, p. 80] and relation
(5.15) in [1, p. 74]) that d is separable and generates the same Borel σ-field as π.
By the definition of d we have, letting 0 denote the zero distribution,

(3.7) Ed(μ, 0)p = E(Var(μ))p/2 = E

(∫ ∞

−∞
x2dμ(x)

)p/2

< ∞

by our assumption (1.2). The following lemma expresses the crucial equicontinuity
property of d.
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Lemma 3.2. Let

(3.8) ψ(a1, . . . , an) =
∥∥ n∑

i=1

aiYi

∥∥
p
.

Then we have

(3.9)

∣∣∣∣∣‖t+
n∑

k=1

akξ
(ν)
k ‖p − ‖t+

n∑
k=1

akξ
(λ)
k ‖p

∣∣∣∣∣ ≤ Kd(ν, λ)ψ(a1, . . . , an)

for some constant K > 0, every n ≥ 1, ν, λ ∈ S, real numbers t, a1, . . . , an and

i.i.d. sequences (ξ
(ν)
n ), (ξ

(λ)
n ) with respective distributions ν and λ.

Relation (3.9) means that the class of functions {ft,a,n} defined by

(3.10) ft,a,n(ν) = ψ(a)−1
∥∥t+ n∑

k=1

akξ
(ν)
k

∥∥
p
, a = (a1, . . . , an) 
= 0

(where the variable is ν and t, a, n are parameters), is equicontinuous. In the
context of unconditional convergence of lacunary series, the importance of such
equicontinuity conditions was discovered by Aldous [1]. A similar condition in
terms of the compactness of the 1-conic class belonging to the type determined by
(Xn) was given by Krivine and Maurey (see Proposition 3 in Guerre [9]). The proof
of our results is, however, purely probabilistic and we will not use types.

Proof of Lemma 3.2. We start with recalling the well-known fact that if (ξn) is an
i.i.d. sequence with Eξn = 0, Eξ2n < +∞, then

(3.11) C‖ξ‖1

(
k∑

i=1

a2i

)1/2

≤
∥∥ k∑

i=1

aiξi
∥∥
p
≤ ‖ξ‖2

(
k∑

i=1

a2i

)1/2

for any 1 ≤ p < 2 and any (a1, . . . , an) ∈ R
n, where C > 0 is an absolute constant.

Since the Lp norm of
∑k

i=1 aiξi in (3.11) cannot exceed the L2 norm, the upper
bound in (3.11) is obvious, while the lower bound is classical; see [13]. Since

E |
∑n

i=1 aiYi|p can be obtained by integrating E

∣∣∣∑n
i=1 aiξ

(ω)
i

∣∣∣p over Ω with respect

to dP (ω) where for each ω ∈ Ω the ξ
(ω)
i are i.i.d. with distribution μ(ω), relation

(3.11) implies that

(3.12) A

(
k∑

i=1

a2i

)1/2

≤
∥∥ k∑

i=1

aiYi

∥∥
p
≤ B

(
k∑

i=1

a2i

)1/2

where

A = C

[
E

(∫ ∞

−∞
|x|dμ(x)

)p]1/p
, B =

[
E

(∫ ∞

−∞
x2dμ(x)

)p/2
]1/p

.

By (1.2) and since the assumptions of Theorem 1.1 imply that μ is not concentrated
at zero a.s., we have 0 < A ≤ B < ∞.

Turning to the proof of (3.9), note that the Lp norms on the left-hand side

depend on the sequences (ξ
(ν)
n ), (ξ

(λ)
n ) only through their distributions ν, λ, but not

the actual choice of these i.i.d. sequences and thus it suffices to verify (3.9) for
any specific construction. Let (ηn) be a sequence of independent r.v.’s, uniformly

distributed over (0, 1). Then ξ
(ν)
n = F−1

ν (ηn) and ξ
(λ)
n = F−1

λ (ηn) are i.i.d. sequences
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with distribution ν and λ, respectively. Using these sequences in (3.9), the left-

hand side is at most ‖
∑n

i=1 ai(ξ
(ν)
i − ξ

(λ)
i )‖p and since ξ

(ν)
n − ξ

(λ)
n = F−1

ν (ηn) −
F−1
λ (ηn) is also an i.i.d. sequence with mean 0 and variance d(ν, λ)2, using (3.11)

and the first relation of (3.12) we get that the left-hand side of (3.9) is at most
Kd(ν, λ)ψ(a1, . . . , an) with some constant K > 0. This completes the proof of
Lemma 3.2.

With the equicontinuity statement of Lemma 3.2 at hand, we can prove the
sufficiency part of Theorem 1.1 with a selection procedure similar to [2]. Assume
that (Xn) satisfies (1.2) and fix 0 < ε ≤ 1/2. We shall construct a sequence
n1 < n2 < · · · of integers such that

(3.13) (1− ε)ψ(a1, . . . , ak) ≤
∥∥ k∑

i=1

aiXni

∥∥
p
≤ (1 + ε)ψ(a1, . . . , ak)

for every k ≥ 1 and (a1, . . . , ak) ∈ R
k. In view of (3.12), this will imply that (Xnk

)
is equivalent to the unit vector basis of �2, but it actually shows more, namely that
under the assumptions of Theorem 1.1 there is a subsequence (1 + ε)-equivalent to
the limit exchangeable sequence and hence (1 + ε)-symmetric.

To construct n1 we set

Q(a, n, �) = |a1Xn + a2Y2 + · · ·+ a�Y�|p,
R(a, �) = |a1Y1 + a2Y2 + · · ·+ a�Y�|p

for every n ≥ 1, � ≥ 2 and a = (a1, . . . , a�) ∈ R
�. We show that

(3.14) E

{
Q(a, n, �)

ψ(a)p

}
−→ E

{
R(a, �)

ψ(a)p

}
as n → ∞ uniformly in a, �.

(The right side of (3.14) equals 1.) To this end we recall that, given X and μ,
the r.v.’s Y1, Y2, . . . are conditionally i.i.d. with common conditional distribution
μ and thus, given X, μ and Y1, the r.v.’s Y2, Y3, . . . are conditionally i.i.d. with
distribution μ. Thus

(3.15) E
(
Q(a, n, �)|X, μ

)
= ga,�(Xn, μ)

and

(3.16) E
(
R(a, �)|X, μ, Y1

)
= ga,�(Y1, μ)

where

ga,�(t, ν) = E
∣∣a1t+ �∑

i=2

aiξ
(ν)
i

∣∣p (t ∈ R
1 , ν ∈ S)

and (ξ
(ν)
n ) is an i.i.d. sequence with distribution ν. Integrating (3.15) and (3.16) we

get

(3.17) E
(
Q(a, n, �)

)
= Ega,�(Xn, μ),

(3.18) E
(
R(a, �)

)
= Ega,�(Y1, μ)

and thus (3.14) is equivalent to

(3.19) E
ga,�(Xn, μ)

ψ(a)p
−→ E

ga,�(Y1, μ)

ψ(a)p
as n → ∞ , uniformly in a, �.
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We shall derive (3.19) from Lemma 2.4 and Lemma 3.1. As we have seen above,
there exists a separable metric d on S, generating the same σ-field as the Prohorov
metric π, such that (3.9) holds. But then the limit random measure μ, which is a
random variable taking values in (S, π) (i.e., a measurable map from the underlying
probability space to (S,Bπ) where Bπ denotes the Borel σ-field in S generated by
π) can be also regarded as a random variable taking values in (S, d). Also, μ is

clearly σ(X) measurable and thus (Xn, μ)
D−→ (Y1, μ) by Lemma 3.1. Hence, (3.19)

will follow from Lemma 2.4 (note the equivalence of (2.7) and (2.8)) if we show that
the class of functions

(3.20)

{
ga,�(t, ν)

ψ(a)p

}

defined on the product metric space (R1 × S , λ1 × d) (λ1 denotes the ordinary
distance on R

1) satisfies conditions (a),(b) of Lemma 2.4. Observe now that

(3.21) ψ(a1, . . . , an) ≥ ψ(a∗1, . . . , a
∗
n)

where a∗i equals either ai or 0. (In case (Yn) is an i.i.d. sequence with mean 0,
(3.21) follows from Jensen’s inequality (see e.g. [8, p. 153]) and the fact that, for
anyH ⊂ {1, 2, . . . , n}, the conditional expectation of

∑n
i=1 aiYi given σ{Yj , j ∈ H}

is
∑

i∈H aiYi. Since (Yn) is a mixture of i.i.d. sequences with mean 0, (3.21) holds
in general.) In particular,

(3.22) ψ(a1, . . . , an) ≥ ψ(0, a2, . . . , an)

and

(3.23) ψ(a1, . . . , an) ≥ ψ(a1, 0, . . . , 0) = const · |a1|
and thus using (3.9) we get for any ν ∈ S, t ∈ R

1 and a = (a1, . . . , a�) ∈ R
�,

∥∥a1t+ �∑
i=2

aiξ
(ν)
i

∥∥
p
≤ |a1t|+

∥∥ �∑
i=2

aiξ
(ν)
i

∥∥
p

≤ |a1t|+ ψ(a2, . . . , a�)d(ν, 0) ≤ const · ψ(a)|t|+ ψ(a)d(ν, 0)

≤ const ψ(a)
(
|t|+ d(ν, 0)

)
.(3.24)

Hence using (3.9), (3.22), (3.23) and the inequality |xp−yp| ≤ |x−y|·p·(xp−1+yp−1)
(x > 0, y > 0) we get for any real t, t′ and ν, ν′ ∈ S

∣∣ga,�(t, ν)− ga,�(t′, ν′)
∣∣ = ∣∣∣∥∥a1t+ �∑

i=2

aiξ
(ν)
i

∥∥p
p
−
∥∥a1t′ + �∑

i=2

aiξ
(ν′)
i

∥∥p
p

∣∣∣
≤
∣∣∣∥∥a1t+ �∑

i=2

aiξ
(ν)
i

∥∥
p

−
∥∥a1t′ + �∑

i=2

aiξ
(ν′)
i

∥∥
p

∣∣∣ const pψ(a)p−1
(
|t|+ |t′|+ d(ν, 0) + d(ν′, 0)

)p−1

≤ const
(
|a1| |t−t′|+ψ(a2, . . . , an)d(ν, ν

′)
)
pψ(a)p−1(|t|+|t′|+ d(ν, 0)+d(ν′, 0)

)p−1

≤ const
(
|t− t′|+ d(ν, ν′)

)
pψ(a)p

(
|t|+ |t′|+ d(ν, 0) + d(ν′, 0)

)p−1

≤ const
(
|t− t′|+ d(ν, ν′)

)
pψ(a)p

(
2|t|+ 2d(ν, 0) + |t− t′|+ d(ν, ν′)

)p−1
.
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Given t, ν and ε > 0, there exists a δ = δ(t, ν, ε) > 0 such that the last expression
is ≤ εψ(a)p provided |t − t′| + d(ν, ν′) ≤ δ and thus the class (3.20) is locally
equicontinuous on the product metric space (R1 × S , λ1 × d). On the other
hand, (3.24) shows that the function in (3.20) is bounded by const(|t|+ d(ν, 0))p ≤
const 2p(|t|p + d(ν, 0)p). Now, using (Xn, μ)

D−→ (Y1, μ), the uniform integrability
of |Xn|p and Ed(μ, 0)p < +∞ (see (3.7)) we get

E
(
|Xn|p + d(μ, 0)p

)
−→ E

(
|Y1|p + d(μ, 0)p

)
.

Thus the class (3.20) satisfies also condition (b) of Lemma 2.4. We thus proved
relation (3.19) and thus also (3.14) whence it follows (note again that the right side
of (3.14) equals 1) that

ψ(a)−1‖a1Xn + a2Y2 + · · ·+ a�Y�‖p
−→ ψ(a)−1‖a1Y1 + a2Y2 + · · ·+ a�Y�‖p as n → ∞(3.25)

unformly in �, a. Hence we can choose n1 so large that∣∣ ‖a1Xn1
+ a2Y2 + · · ·+ a�Y�‖p − ‖a1Y1 + a2Y2 + · · ·+ a�Y�‖p

∣∣ ≤ ε

2
ψ(a1, . . . , a�)

for every �, a. This completes the first induction step.
Assume now that n1, . . . , nk−1 have already been chosen. Exactly in the same

way as we proved (3.25), it follows that for � > k

ψ(a)−1‖a1Xn1
+ · · ·+ ak−1Xnk−1

+ akXn + ak+1Yk+1 + · · ·+ a�Y�‖p
−→ ψ(a)−1‖a1Xn1

+ · · ·+ ak−1Xnk−1
+ akYk + · · ·+ a�Y�‖p as n → ∞

uniformly in a and �. Hence we can choose nk so large that nk > nk−1 and∣∣ ‖a1Xn1
+ · · ·+ ak−1Xnk−1

+ akXnk
+ ak+1Yk+1 + · · ·+ a�Y�‖p

− ‖a1Xn1
+ · · ·+ ak−1Xnk−1

+ akYk + · · ·+ a�Y�‖p
∣∣ ≤ ε

2k
ψ(a1, . . . , a�)

for every (a1, . . . , a�) ∈ R
� and � > k. This completes the k-th induction step; the

so constructed sequence (nk) obviously satisfies∣∣ ‖a1Xn1
+ · · ·+ a�Xn�

‖p − ‖a1Y1 + · · ·+ a�Y�‖p| ≤ εψ(a1, . . . , a�)

for every � ≥ 1 and (a1, . . . , a�) ∈ R
�. The last relation is equivalent to (3.13) and

thus the sufficiency of (1.2) in Theorem 1.1 is proved.

We now turn to the proof of necessity of (1.2) in Theorem 1.1. Assume that
(Xn) is equivalent to the unit vector basis of �2; then for any increasing sequence
(mk) of integers we have ∥∥∥∥∥ 1√

N

N∑
k=1

Xmk

∥∥∥∥∥
p

= O(1)

and thus by the Markov inequality we have for any A ⊂ Ω with P (A) > 0,

(3.26) PA

{∣∣∣∣∣ 1√
N

N∑
k=1

Xmk

∣∣∣∣∣ ≥ T

}
≤ 1/2 for T ≥ T0, N ≥ 1

where T0 depends on A and the sequence (Xn). We show first that

(3.27)

∫ ∞

−∞
x2dμ(x) < ∞ a.s.
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Let F•(x) denote the random distribution function corresponding to μ and assume
indirectly that there exists a set B ⊂ Ω with P (B) > 0 such that

(3.28) lim
t→∞

∫
|x|<t

x2dF•(x) = +∞ on B.

By Egorov’s theorem there exists a set B∗ ⊂ B with P (B∗) ≥ P (B)/2 such that on
B∗ (3.28) holds uniformly, i.e., there exists a positive, nondecreasing, nonrandom
function Kt → +∞ such that

(3.29)

∫
|x|<t

x2dF•(x) ≥ Kt on B∗.

Also,

(3.30)

∫
|x|≥t

dF•(x) −→ 0 a.s. as t → ∞

and thus we can choose a set B∗∗ ⊂ B∗ with P (B∗∗) ≥ P (B∗)/2 such that on B∗∗

relation (3.30) holds uniformly, i.e., there exists a positive, nonincreasing, nonran-
dom function ε̃t → 0 such that

(3.31)

∫
|x|≥t

dF•(x) ≤ ε̃t on B∗∗.

We show that there exists a subsequence (Xmk
) of (Xn) such that (3.26) fails for

A = B∗∗. Since our argument will involve the sequence (Xn) only on the set B∗∗

and on B∗∗ (Xn) satisfies the assumptions of Theorem 1.1 with the same μ and
with ‖Xn‖p = 1 replaced by ‖Xn‖p = O(1) (which is all we need for the rest of
the proof), in the sequel we can assume, without loss of generality, that B∗∗ = Ω.
That is, we may assume that (3.29), (3.31) hold on the whole probability space.

Let C be an arbitrary set in the probability space with P (C) > 0. Integrating
(3.29), (3.31) on C and using (1.1) and Lemma 2.3 we get

(3.32)

∫
|x|<t

x2dFC(x) ≥ Kt,

∫
|x|≥t

dFC(x) ≤ ε̃t for t,−t ∈ H

where H denotes the set of continuity points of FC . Since the integrals in (3.32)
are monotone functions of t and R \H is countable, (3.32) remains valid with Kt/2

resp. ε̃t/2 if we drop the assumption t,−t ∈ H. Thus, keeping the original notation,
in the sequel we can assume that (3.32) holds for all t > 0. Choose now t0 so large
that ε̃t0 ≤ 1/16 and then choose t1 > t0 so large that

K
1/2
t ≥ 4t0 for t ≥ t1.

Then for t ≥ t1 we have, using (3.32),∣∣∣∣
∫
|x|<t

xdFC(x)

∣∣∣∣ ≤ t0 +

∫
t0≤|x|<t

|x|dFC(x)

≤ t0 +

( ∫
|x|≥t0

dFC(x)

)1/2( ∫
|x|<t

x2dFC(x)

)1/2

≤ t0 +
1

4

( ∫
|x|<t

x2dFC(x)

)1/2

≤ 1

2

( ∫
|x|<t

x2dFC(x)

)1/2
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and thus for any C ⊂ Ω with P (C) > 0 we have

(3.33)

∫
|x|<t

x2dFC(x)− 2

(∫
|x|<t

xdFC(x)

)2

≥ 1

2
Kt, t ≥ t1.

Let now (εn) tend to 0 so rapidly that

(3.34)

∞∑
j=ak+1

εj ≤ 2−k.

Let ak = [log k+1] (k = 1, 2, . . .). By Lemma 2.1 there exists a subsequence (Xmk
)

and a sequence (Yk) of discrete r.v.’s such that (2.1) holds and for each k ≥ 1 the
atoms of the finite σ-field σ{Y1, . . . , Yak

} can be divided into two classes Γ1 and Γ2

such that

(3.35)
∑
B∈Γ1

P (B) ≤ εak+1 ≤ 2−k

and for each B ∈ Γ2 there exist PB-independent r.v.’s Z
(B)
ak+1, . . . , Z

(B)
k defined on

B with common distribution FB such that

(3.36) PB

(
|Yj − Z

(B)
j | ≥ 2−k

)
≤ 2−k (j = ak + 1, . . . , k).

Set

S
(B)
ak,k

=
k∑

j=ak+1

Z
(B)
j , B ∈ Γ2,

Sak,k =
∑
B∈Γ2

S
(B)
ak,k

I(B),

where I(B) denotes the indicator function of B. By (3.36) and k2−k ≤ 1,

PB

(∣∣∣∣
k∑

j=ak+1

Yj −
k∑

j=ak+1

Z
(B)
j

∣∣∣∣ ≥ 1

)
≤ k2−k, B ∈ Γ2,

and thus using (3.35) we get

(3.37) P

(∣∣∣∣
k∑

j=ak+1

Yj − Sak,k

∣∣∣∣ ≥ 1

)
≤ (k + 1)2−k.

Since ‖Xn‖1 = O(1), by the triangular inequality and the Markov inequality we
have

P

(∣∣∣∣
ak∑
j=1

Xmj

∣∣∣∣ ≥ akk
1/4

)
≤

ak∑
j=1

P
(
|Xmj

| ≥ k1/4
)

≤ const (log k + 1)k−1/4 =: δk
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which, together with (3.37), (2.1) and (3.34), yields

P

(∣∣∣∣
k∑

j=1

Xmj
− Sak,k

∣∣∣∣ ≥ 3akk
1/4

)
≤ P

(∣∣∣∣
ak∑
j=1

Xmj

∣∣∣∣ ≥ akk
1/4

)

+ P

( k∑
j=ak+1

|Xmj
− Yj | ≥ 1

)
+ P

(∣∣∣∣
k∑

j=ak+1

Yj − Sak,k

∣∣∣∣ ≥ 1

)

≤ δk + (k + 2)2−k.(3.38)

Applying Lemma 2.2 to the i.i.d. sequence {Z(B)
j , ak +1 ≤ j ≤ k} and using (3.33)

with C = B, ak ≤ k/2 and the monotonicity of Kt we get for any T ≥ 2,

PB

(∣∣∣∣S
(B)
ak,k√
k

∣∣∣∣ ≤ T

)
≤ PB

(∣∣∣∣∣ S
(B)
ak,k√
k − ak

∣∣∣∣∣ ≤ 2T

)
≤ const · 2TK−1/2

2T
√
k−ak

≤ const · TK−1/2

2T
√

k/2

where the constants are absolute. Thus using (3.35) it follows that

(3.39) P

(∣∣∣∣Sak,k√
k

∣∣∣∣ ≤ T

)
≤ const · TK−1/2√

k/2
+ 2−k.

Using (3.38), (3.39) and ak ≤ log k + 1 it follows that

P

⎛
⎝
∣∣∣∣∣∣
1√
k

k∑
j=1

Xmj

∣∣∣∣∣∣ ≤ T

⎞
⎠ ≤ P

(∣∣∣∣Sak,k√
k

∣∣∣∣ ≤ T + 3akk
−1/4

)
+ (k + 2)2−k + δk

≤ const
(
T + 3akk

−1/4
)
K

−1/2√
k/2

+ (k + 2)2−k + δk −→ 0 as k → ∞

for any fixed T ≥ 2 which clearly contradicts (3.26) with A = Ω. This completes
the proof of (3.27).

Since Xn −→ 0 weakly in Lp, we have
∫∞
−∞ xdμ(x) = 0 a.s., and thus the

random measure μ has mean zero and finite variance with probability one. Thus the
subsequence principle, specialized to the central limit theorem (see e.g. [3, Theorem
3] and the remark following it) there exists a subsequence (Xnk

) such that

(3.40) N−1/2
N∑

k=1

Xnk

D−→ Y ζ

where Y =
(∫∞

−∞ x2dμ(x)
)1/2

, ζ is a standard normal variable and Y and ζ are

independent. Note that (3.40) holds in distribution, but by a well-known result
of Skorokhod (see e.g. [4], p. 70) there exist r.v.’s WN , W (N = 1, 2, . . .) such

that WN has the same distribution as N−1/2
∑N

k=1Xnk
in (3.40), W has the same

distribution as Y ζ and WN −→ W a.s. Thus (3.40) and Fatou’s lemma imply

(3.41) ‖Y ζ‖p ≤ lim inf
N→∞

‖N−1/2
N∑

k=1

Xnk
‖p < ∞

where the second inequality follows from the equivalence of (Xn) to the unit vector
basis of �2, assumed at the beginning of the proof. Since Y and ζ are independent,
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(3.41) implies E|Y |p < ∞, i.e., (1.2) holds, completing the proof of the converse
part of Theorem 1.1.
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(30 #623)

Institute of Statistics, Graz University of Technology, Kopernikusgasse 24, 8010

Graz, Austria

E-mail address: berkes@tugraz.at

Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010

Graz, Austria

E-mail address: tichy@tugraz.at

http://www.ams.org/mathscinet-getitem?mr=0455090
http://www.ams.org/mathscinet-getitem?mr=0455090
http://www.ams.org/mathscinet-getitem?mr=1029089
http://www.ams.org/mathscinet-getitem?mr=1029089
http://www.ams.org/mathscinet-getitem?mr=859840
http://www.ams.org/mathscinet-getitem?mr=859840
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=807333
http://www.ams.org/mathscinet-getitem?mr=807333
http://www.ams.org/mathscinet-getitem?mr=0385948
http://www.ams.org/mathscinet-getitem?mr=0385948
http://www.ams.org/mathscinet-getitem?mr=0231419
http://www.ams.org/mathscinet-getitem?mr=0231419
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=845871
http://www.ams.org/mathscinet-getitem?mr=845871
http://www.ams.org/mathscinet-getitem?mr=1017045
http://www.ams.org/mathscinet-getitem?mr=1017045
http://www.ams.org/mathscinet-getitem?mr=0152879
http://www.ams.org/mathscinet-getitem?mr=0152879
http://www.ams.org/mathscinet-getitem?mr=0137809
http://www.ams.org/mathscinet-getitem?mr=0137809
http://www.ams.org/mathscinet-getitem?mr=0170385
http://www.ams.org/mathscinet-getitem?mr=0170385

	1. Introduction
	2. Some lemmas
	3. Proof of Theorem 1.1
	Acknowledgement
	References

