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AN OPTIMIZATION PROBLEM AND ITS APPLICATION

IN POPULATION DYNAMICS

XUELI BAI, XIAOQING HE, AND FANG LI

(Communicated by Yingfei Yi)

Abstract. This paper is concerned with a diffusive logistic model in popula-
tion ecology. As observed by Y. Lou, in a spatially heterogeneous environment,
this model can always support a total population at equilibrium greater than
the total carrying capacity. In other words, the ratio of the total population at
equilibrium to the total carrying capacity is always larger than 1. Our goal is
to find the supremum of this ratio taken over all possible choices of spatial dis-
tributions of resources and the species’ dispersal rate. A conjecture proposed
by W.-M. Ni is that, in the one-dimensional case, the supremum is 3. We
settle this conjecture and then apply our result to study the global dynamics
of a heterogeneous Lotka-Volterra competition-diffusion system.

1. Introduction

Over the past few decades, it has been well accepted, by both mathematicians
and ecologists, that spatial characteristics play a significant role in population ecol-
ogy. In an attempt to understand the joint effects of diffusion and spatial het-
erogeneity in population dynamics, Lou [11] first investigated the diffusive logistic
equation ⎧⎪⎨

⎪⎩
ut = dΔu+ u(m(x)− u) in Ω× R

+,

∂u/∂ν = 0 on ∂Ω× R
+,

u(x, 0) ≥ 0, u(x, 0) �≡ 0, in Ω,

(1.1)

where u(x, t) represents the population density of a species at location x and time
t, which is therefore assumed to be non-negative, d is the random dispersal rate of
the species which is assumed to be a positive constant, the habitat Ω is a smooth

bounded domain in R
N , Δ =

∑N
i=1

∂2

∂x2
i
is the usual Laplace operator and ν is the

outward unit normal vector on ∂Ω. We impose the zero-flux boundary condition to
ensure that no individual crosses the boundary of the habitat. The function m(x)
is the intrinsic growth rate or carrying capacity, which reflects the environmental
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influence on the species u. Throughout this paper, we assume that m(x) satisfies
the following condition:

(M) m(x) ∈ L∞(Ω), m(x) ≥ 0 and m �≡ const on Ω̄.

It follows from [1] and the references therein that the stationary problem

(1.2) dΔθ + θ(m(x)− θ) = 0 in Ω, ∂θ/∂ν = 0 on ∂Ω

has a unique positive solution θd,m for each d > 0 and θd,m ∈ W 2,p(Ω) for every
p ≥ 1. The following interesting property concerning θd,m was first observed by
Lou [11]:

(1.3)

∫
Ω

θd,m(x) dx >

∫
Ω

m(x) dx, for all d > 0.

Indeed, dividing the equation of θd,m by θd,m itself and integrating over Ω, we
obtain that

(1.4)

∫
Ω

(m− θd,m) dx = −d

∫
Ω

|∇θd,m|2
θ2d,m

dx < 0,

where the last inequality follows from the fact that θd,m �≡ const, as m �≡ const.
Biologically, (1.3) means that when coupled with diffusion, a heterogeneous envi-
ronment can support a total population larger than the total carrying capacity of
the environment, which is quite different from the case when m(x) ≡ const.

Define

E(m) := sup
d>0

∫
Ω
θd,m dx∫
Ω
mdx

.(1.5)

Then by (1.3), E(m) > 1 for anym satisfying condition (M). The following question
was initially proposed by W.-M. Ni:

Question. Is E(m) bounded above independent of m? If so, what is the optimal
bound?

One motivation of the above question is to understand how much more the total
population could be supported by the same total resources, if the resources were
distributed in an “optimal” way, and what would that “optimal” distribution be,
if it exists.

Another motivation for studying the above question is the important role that
E(m) plays in the following two-species Lotka-Volterra competition-diffusion sys-
tem:

(1.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ut = d1ΔU + U(m(x)− U − c V ) in Ω× (0,∞),

Vt = d2ΔV + V (m(x)− b U − V ) in Ω× (0,∞),

∂U/∂ν = ∂V/∂ν = 0 on ∂Ω× (0,∞),

U(x, 0) = U0(x), V (x, 0) = V0(x) in Ω,

where U(x, t) and V (x, t) represent the population densities of two competing
species; d1, d2 > 0 are the (random) dispersal rates of U and V respectively. For
simplicity, we assume that the initial data U0 and V0 are non-negative and non-
trivial, i.e., not identically zero. The function m(x) represents the common carrying
capacity or intrinsic growth rate for both species U and V . The constants b, c > 0
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represent inter-specific competition coefficients, while both intra-specific competi-
tion coefficients in (1.6) have been normalized to be 1. There has been consider-
able work focusing on studying two-species Lotka-Volterra competition models; see
[1–12,14] and references therein.

Concerning the global dynamics of (1.6), Lou [11] proved a remarkable result,
which says that, if b ∈ (1/E(m), 1) and c is sufficiently small, then there exist
d2 > d1 > 0 such that (θd1,m, 0) is globally asymptotically stable, although in
such ranges of b and c, for each x ∈ Ω, the reaction terms of (1.6) indicate co-
existence. We refer the readers to [11] for the precise statement of Lou’s result.
More importantly, Lou proposed the following conjecture in [11]:

Conjecture A. Assume that m(x) satisfies condition (M) in (1.6). For all b ∈
(1/E(m), 1) and c ∈ (0, 1],

(i) (θd1,m, 0) is globally asymptotically stable for all (d1, d2) ∈ ΣU ;
(ii) there exists a unique co-existence steady state which is globally asymptoti-

cally stable if (d1, d2) �∈ ΣU and d1 ≤ d2,

where

ΣU := {(d1, d2) ∈ (0,∞)× (0,∞)| (θd1,m, 0) is linearly stable}.(1.7)

For c small but independent of b ∈ (0, 1), Lam and Ni [9] established Conjecture
A. More recently, He and Ni [5] settled Lou’s above conjecture completely and their
results indicate that E(m) is a key quantity in characterizing the global behavior of
solutions to (1.6). To be more specific, it is proved in [5] that (i) if b, c ∈ (0, 1/E(m)],
then for all d1, d2 > 0, (1.6) has a unique co-existence steady state that is globally
asymptotically stable; (ii) if 1/E(m) < b ≤ 1 and c ≤ 1/E(m), then either U wipes
out V (i.e., (θd1,m, 0) is globally asymptotically stable) or U and V coexist (i.e., (1.6)
has a unique co-existence steady state that is globally asymptotically stable), where
which alternative will happen depends solely on the choice of their dispersal rates
(d1, d2) and is regardless of their initial values. In other words, for the heterogeneous
Lotka-Volterra competition-diffusion model, the region 0 < b, c < 1/E(m) seems to
define the weak competition case.

Furthermore, if the intrinsic growth rates of U and V are not identical in (1.6),
but replaced by m1(x) and m2(x) respectively, i.e.,

(1.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ut = d1ΔU + U(m1(x)− U − c V ) in Ω× (0,∞),

Vt = d2ΔV + V (m2(x)− b U − V ) in Ω× (0,∞),

∂U/∂ν = ∂V/∂ν = 0 on ∂Ω× (0,∞),

U(x, 0) = U0(x), V (x, 0) = V0(x) in Ω,

where mi satisfies condition (M), then it is proved in [5] that (1.8) has a unique
co-existence steady state which is globally asymptotically stable for all d1, d2 > 0,
if

b ≤ 1

E(m1)
·
∫
Ω
m2∫

Ω
m1

and c ≤ 1

E(m2)
·
∫
Ω
m1∫

Ω
m2

.

Hence, a better understanding of E(m) and its supremum over all m satisfying
condition (M) would enable us to obtain a deeper understanding of global dynamics
of the above two-species competition-diffusion systems.

Now, returning to the aforementioned question regarding the supremum of E(m),
in the one-dimensional case, i.e., when N = 1 and Ω is an open interval, W.-M. Ni
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conjectured that the supremum of E(m) over all m’s satisfying condition (M) is 3.
This paper confirms Ni’s conjecture.

Theorem 1.1. Assume that N = 1, i.e., Ω is an open interval and that m(x)
satisfies condition (M). Then

sup{E(m) |m satisfies condition (M)} = 3.(1.9)

Moreover, the supremum 3 in (1.9) is not attainable.

Therefore, in the one-dimensional case, the total population that model (1.1) can
support at equilibrium can be as close to three times the total carrying capacity as
possible, if the function m(x) is chosen appropriately. (See Theorem 2.3 below for
more details.)

According to previous discussions, based on the results in [5] and Theorem 1.1,
we obtain the following corollaries immediately.

Corollary 1.2. Assume that N = 1, i.e., Ω is an open interval and that m(x)
satisfies condition (M). If b, c ∈ (0, 1/3], then system (1.6) has a unique co-existence
steady state that is globally asymptotically stable for all d1, d2 > 0.

Corollary 1.3. Assume that N = 1, i.e., Ω is an open interval and that mi(x)
satisfies (M), i = 1, 2. If

b ≤ 1

3
·
∫
Ω
m2∫

Ω
m1

and c ≤ 1

3
·
∫
Ω
m1∫

Ω
m2

,

then system (1.8) has a unique co-existence steady state that is globally asymptoti-
cally stable for all d1, d2 > 0.

We now proceed to prove Theorem 1.1.

2. Proof of Theorem 1.1

First of all, we recall some important properties of θd,m when d goes to 0 or ∞.

Lemma 2.1. Suppose that condition (M) holds.

(i) d 	→ θd,m is continuous from (0,∞) to W 2,p(Ω) ∩ C1,α(Ω̄) for every p ≥ 1
and α ∈ (0, 1).

(ii) As d → 0+, the solution θd,m → m in Lp(Ω) for every p ≥ 1.
(iii) As d → ∞, the solution θd,m → 1

|Ω|
∫
Ω
m(x) dx in W 2,p(Ω) for every p ≥ 1.

Part (i) can be proved by an application of the Implicit Function Theorem. (See
Proposition 3.6 in [1] and remarks there.) For proofs of parts (ii) and (iii), see
[1, 11].

Now we are ready to show the following:

Theorem 2.2. Assume that N = 1, i.e., Ω is an open interval. Then for any m
satisfying condition (M),

E(m) < 3.

Proof. By suitable rescaling, we can always assume that Ω = (0, 1). We now divide
our proof into five steps. In Steps 1-4, we show that for any m satisfying condition
(M) and d > 0, ∫ 1

0

θd,m(x) dx ≤ 3

∫ 1

0

m(x) dx,
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which implies that E(m) ≤ 3 for all m satisfying condition (M). Finally in Step 5,
we show that actually equality cannot hold.

Step 1: Monotone θd,m. We now prove that∫ 1

0

θd,m(x) dx < 3

∫ 1

0

m(x) dx

whenever θd,m(x) is monotone. Without loss of generality, we may assume that
θd,m is increasing in x (otherwise consider θd,m(1− x)).

By standard elliptic regularity, θd,m ∈ W 2,p(Ω) ∩ C1,α(Ω̄) for every p ≥ 1 and
α ∈ (0, 1). If θ′d,m ≡ const on Ω, then it is obvious that m ≡ const and θd,m ≡ m,

which implies that E(m) = 1 < 3. So from now on, we may assume that θ′d,m ≥
( �≡) 0. Since θd,m is a weak solution to (1.2), we have

d

∫ x

0

θ′′d,mϕdx =

∫ x

0

θd,m(θd,m −m(x))ϕdx(2.1)

for any x ∈ (0, 1] and ϕ ∈ C1([0, x]). Setting ϕ = θ′d,m in (2.1) and using θ′d,m(0) =
0, we get

(2.2)
d

2
(θd,m(x)′)2 =

θ3d,m(x)− θ3d,m(0)

3
−
∫ x

0

θd,mθ′d,mm <
θ3d,m(x)

3
,

where we used the fact that θ′d,m ≥ 0 by our assumption and θd,m > 0 on [0, 1] by
the Maximum Principle. Using the above inequality, we conclude that∫ 1

0

(θd,m −m) dx = d

∫ 1

0

θ′′d,m
θd,m

dx = d

∫ 1

0

(θ′d,m)2

θ2d,m
dx <

2

3

∫ 1

0

θd,m dx.

Hence
∫ 1

0
θd,m < 3

∫ 1

0
m and we finish our proof.

Step 2: Piecewise constant m. Suppose

(2.3) m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1, x ∈ [x0, x1],

a2, x ∈ (x1, x2],

· · ·
an, x ∈ (xn−1, xn],

where 0 = x0 < x1 < x2 < · · · < xn = 1, ai ≥ 0 and aj �= aj+1, i = 1, 2, · · · , n and
j = 1, 2, · · · , n− 1. Define the set

Ji := {x ∈ [xi−1, xi] | θ′d,m(x) = 0}
for i = 1, 2, · · · , n. We claim that

(S) for each i, either Ji contains at most a single point or Ji = [xi−1, xi] and
θd,m|[xi−1,xi] ≡ ai.

We now prove the claim. Assume that Ji contains more than one point. Denote

y1,i := inf{x ∈ [xi−1, xi] | θ′d,m(x) = 0}
and

y2,i := sup{x ∈ [xi−1, xi] | θ′d,m(x) = 0};
then xi−1 ≤ y1,i < y2,i ≤ xi. It suffices to show that y1,i = xi−1 and y2,i = xi.
Since θ′d,m(y1,i) = θ′d,m(y2,i) = 0, θd,m|(y1,i,y2,i) is also a solution to (1.2) with

Ω = (y1,i, y2,i) and m ≡ ai. This implies that θd,m|(y1,i,y2,i) ≡ ai. By interior
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elliptic regularity, θd,m|(xi−1,xi) is C∞((xi−1, xi)). Moreover, (θd,m, θ′d,m) satisfies

the following ordinary differential equation in (xi−1, xi):(
θd,m
θ′d,m

)′
=

(
θ′d,m
θd,m(m− θd,m)

)
in (xi−1, xi),(

θd,m(y�,i)
θ′d,m(y�,i)

)
=

(
ai
0

)
, � = 1, 2.

By uniqueness, we must have θd,m ≡ ai on [xi−1, xi]. This finishes the proof of the
claim.

Denote
J :=

⋃
{Ji | Ji = [xi−1, xi], i = 1, 2, · · · , n}

and

S := (
n⋃

i=1

Ji \ J ) ∪ ∂J .

It is obvious that S is a finite set. Rewrite it as S := {b0, b1, · · · , bk}, where
0 = b0 < b1 < b2 < · · · < bk = 1. Now each section [bi−1, bi], i = 1, 2, · · · , k, boils
down to Step 1, where either θd,m is strictly increasing or is constant on [bi−1, bi],
and we get the conclusion by a simple summation.

Step 3: Riemann integrable m. Fix a Riemann integrable m; for any ε > 0 we can

choose a piecewise constant function mε such that: mε ≥ m and
∫ 1

0
mε ≤

∫ 1

0
m+ε.

It is easy to see that θd,m ≤ θd,mε
by the comparison principle. Thus∫ 1

0

θd,m dx ≤
∫ 1

0

θd,mε
dx ≤ 3

∫ 1

0

mε dx < 3

∫ 1

0

mdx+ 3ε.

Letting ε → 0 gives the conclusion we need.

Step 4: From Riemann integrable m to any m in L∞((0, 1)). Since m ∈ L∞, by
Lusin’s Theorem we can choose a continuous function mε(x) such that ‖mε‖L∞ ≤
‖m‖L∞ and |{x|mε(x) �= m(x)}| < ε. Thus, we have

‖mε −m‖L1 ≤ ε‖m‖L∞ .

Using the estimate (2.4) in [11], we get

‖θd,mε
− θd,m‖L1 ≤ C‖mε −m‖

1
3

L1 ≤ Cε
1
3 ‖m‖

1
3

L∞ → 0, as ε → 0+.

The conclusion in Step 3 implies that∫ 1

0

θd,mε
(x) dx ≤ 3

∫ 1

0

mε(x) dx,

and it follows by letting ε → 0+ that∫ 1

0

θd,m(x) dx ≤ 3

∫ 1

0

m(x) dx.

Step 5: E(m) < 3 for all m satisfying condition (M). We prove Step 5 by contra-
diction. Assume that there exists some g ∈ L∞(Ω) with g(x) ≥ 0 and g �≡ const
on Ω̄ such that E(g) = 3. By Lemma 2.1, the function d 	→

∫
Ω
θd,g/

∫
Ω
g attains its

minimum value 1 when d → 0+ or ∞. Hence there exists some d̃ > 0 such that∫
Ω

θd̃,g = 3

∫
Ω

g.
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By Step 1, θ′
d̃,g

(x) �≡ 0. Hence without loss of generality, we may assume that there

exists some x0 ∈ (0, 1) such that θ′
d̃,g

(x0) > 0. By the continuity of θ′
d̃,g

, we can

choose δ > 0 such that θ′
d̃,g

(x) > 0, for all x ∈ (x0 − δ, x0 + δ). Denote

τ1 := inf{x | θ′
d̃,g

(y) > 0, ∀y ∈ (x, x0)}

and

τ2 := sup{x | θ′
d̃,g

(y) > 0, ∀y ∈ (x0, x)}.

Then we have θ′
d̃,g

(τ1) = θ′
d̃,g

(τ2) = 0 and θ′
d̃,g

(x) > 0, for all x ∈ (τ1, τ2). By Step

1, we have

(2.4)

∫ τ2

τ1

θd̃,g(x) dx < 3

∫ τ2

τ1

g(x) dx.

Since θd̃,g|(0,τ1) and θd̃,g|(τ2,1) are solutions to (1.2) with d = d̃, Ω = (0, τ1) and

(τ2, 1) and m = g|(0,τ1) and g|(τ2,0) respectively, Steps 1-4 imply that

(2.5)

∫ τ1

0

θd̃,g(x) dx ≤ 3

∫ τ1

0

g(x) dx

and

(2.6)

∫ 1

τ2

θd̃,g(x) dx ≤ 3

∫ 1

τ2

g(x) dx.

Adding the above three inequalities together, we obtain that

(2.7)

∫ 1

0

θd̃,g(x) dx < 3

∫ 1

0

g(x) dx,

which is a contradiction. This finishes the proof of the theorem. �

Theorem 2.3. The upper bound “3” in Theorem 2.2 is optimal. In other words,
there exist mε(x) and dε such that

∫
Ω
θdε,mε∫
Ω
mε

→ 3, as ε → 0+.

Proof. Similar to Theorem 2.2, by suitable rescaling, we can always assume that
Ω = (0, 1). Now choose dε =

√
ε, and

(2.8) mε(x) =

{
0, x ∈ [0, 1− ε],

1/ε, x ∈ (1− ε, 1].
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For notational convenience, in the rest of this proof we omit the subscript ε in
dε, mε and θdε,mε

. By (1.4), we have∫ 1

0

(θd,m −m) dx = d

∫ 1

0

(θ′d,m)2

θ2d,m
dx

= d

∫ 1

0

∫ x

0
[(θ′d,m(y))2]′dy

θ2d,m
dx

= 2

∫ 1

0

∫ x

0
θd,m(y)[θd,m(y)−m(y)]θ′d,m(y)dy

θ2d,m
dx

=
2

3

∫ 1

0

θd,m − 2

3

∫ 1

0

θ3d,m(0)

θ2d,m
dx

− 1

ε

∫ 1

1−ε

∫ x

1−ε

θd,m(y)θ′d,m(y)

θ2d,m(x)
dydx

=:
2

3

∫ 1

0

θd,m − I − II.

Hence, to finish the proof of the theorem, we only need to prove that both I and
II are o(1) as ε → 0+.

For I, since θd,m is increasing,

I ≤ 2

3

∫ 1

0

θd,m(0) dx =
2

3
θd,m(0).

Assume ε ∈ (0, 1/4); then (1/4, 3/4) ⊂ (0, 1− ε). Hence

θ′′d,m(y) =
1

d
θ2d,m(y) ≥ 0 for y ∈ (1/4, 3/4),

which implies that

θd,m(x)− θd,m(
1

4
) ≥ [ min

x∈(1/4,3/4)
θ′d,m] · (x− 1

4
) = θ′d,m(

1

4
)(x− 1

4
)

for all x ∈ (1/4, 3/4). Therefore by Theorem 2.2, we have

3 >

∫ 1

0

θd,m(x)dx >

∫ 3
4

1
4

[θd,m(x)− θd,m(
1

4
)] dx

≥ θ′d,m(
1

4
)

∫ 3
4

1
4

(x− 1

4
) dx =

1

8
θ′d,m(

1

4
).

Now, 1
4θ

2
d,m(0) <

∫ 1
4

0
θ2d,m dx = d

∫ 1
4

0
θ′′d,m(x) dx = dθ′d,m( 14 ) < 24

√
ε. This implies

that

I ≤ 2

3
θd,m(0) <

8
√
6

3
4
√
ε.

Next, we consider II. Since θd,m is increasing, we have

II ≤
∫ 1

1−ε

θ′d,m(y)

θd,m(y)
dy ≤

(
d

∫ 1

0

(θ′d,m)2

θ2d,m
dy

) 1
2

·
√
ε√
d
=

(
d

∫ 1

0

(θ′d,m)2

θ2d,m
dy

) 1
2

· 4
√
ε.
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Combined with the fact that d
∫ 1

0

(θ′
d,m)2

θ2
d,m

dy =
∫ 1

0
(θd,m −m) dy ≤ 2

∫
m (Theorem

2.2), we get

II ≤
(∫ 1

0

(θd,m −m) dy

) 1
2

4
√
ε ≤

(
2

∫ 1

0

mdy

) 1
2

4
√
ε ≤

√
2 4
√
ε. �

Now Theorem 1.1 follows directly from Theorems 2.2 and 2.3.

3. Miscellaneous remarks

In the higher-dimensional case, the supremum of E(m) over all m’s satisfying
condition (M) is necessarily no less than 3. Numerical simulation by T. Mori and
S. Yotsutani [13] suggests that, even in the two-dimensional case, the supremum is
much larger than 3. We hope to return to the higher-dimensional case in future
work.
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