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OF NORMAL SUBGROUPS

ROBERT GURALNICK AND GABRIEL NAVARRO

(Communicated by Phan Huu Tiep)

Abstract. Let G be a finite group and let K be the conjugacy class of x ∈ G.
If K2 is a conjugacy class of G, then [x,G] is solvable. If the order of x is
a power of prime, then [x,G] has a normal p-complement. We also prove
some related results on the solvability of certain normal subgroups when a
non-trivial coset has certain properties.

1. Introduction

If G is a finite group and χ ∈ Irr(G) is an irreducible complex character of G,
then χ2 is never irreducible unless χ(1) = 1. On the other hand, if K = xG is the
conjugacy class of x in G, it can occur that K2 is a conjugacy class of G, even if x
is not central in G. In fact, this occurs not so rarely but only if [x,G] is solvable.

Theorem A. Let G be a finite group, let x ∈ G, and let K = xG be the conjugacy
class of x in G. Then the following are equivalent:

(a) K2 is a conjugacy class of G.
(b) χ(x) = 0 or |χ(x)| = χ(1) for every χ ∈ Irr(G), and CG(x) = CG(x

2).
(c) K = x[x,G] and CG(x) = CG(x

2).

In this case, [x,G] is solvable. Furthermore, if x has order a power of a prime
p, then [x,G] has a normal p-complement.

One can find examples of elements satisfying the conclusions in Theorem A
whenever x is an odd order fixed-point-free automorphism of a group N , and G =
N〈x〉 is the semidirect product. More generally, this holds if x is an automorphism
of N and x2 acts fixed point freely on N (In this case, N = [x,G], and there are
many results in the literature about N .) The odd order elements of the center of
a Frobenius complement, or the odd order elements in the second center of any
nilpotent group, also satisfy Theorem A.

There is a great number of references on the product of conjugacy classes in
finite groups, and some related results. For instance, Arad and Herzog conjectured
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in [AH] that the product of two non-trivial conjugacy classes of a finite non-abelian
simple group is never a conjugacy class, and our Theorem A is an easy case con-
sistent with that conjecture. (It is a fact that simple cannot be replaced by almost
simple in the Arad-Herzog conjecture.) See [GMT] for some results and examples.
Theorem A is also related to the so-called Camina pairs.

Our proof of the fact that [x,G] is solvable in Theorem A uses the Classification
of Finite Simple Groups. As we will see, the key fact is that all the elements of
x[x,G] are G-conjugate. This inspired some related results below.

Theorem B. Suppose that N is a normal subgroup of a finite group G. Let x ∈ G.

(a) If all the elements of xN are G-conjugate, then N is solvable.
(b) If all the elements of xN are G-conjugate, and x is a p-element for some

prime p, then N has a normal p-complement.
(c) If all the elements of xN have odd order, then N is solvable.

It is not true that if all the elements of xN have the same order, then N is
solvable. (Take G = Alt5 × C, where C is a cyclic group of order 30, N = G′

and x ∈ Z(G) of order 30.) Also, it is not true that if all the elements of xN are
p-elements, then N has a normal p-complement (as shown by S4 with p = 2 and
one can construct similar examples for any p). It is also not true that if all elements
of xN are 2-elements, then N is solvable. If N = Alt6 and G = M10 (so G/N has
order 2), every element in G \N has order either 4 or 8. This is likely the basis of
any such counterexample.

The proofs of (a) and (c) require the Classification of Finite Simple Groups.
However, (b) does not.

2. Proofs

If G is a group and x ∈ G, recall that

[x,G] = 〈[x, g] | g ∈ G〉 .
Using that [x, yz] = [x, z][x, y]z , we easily check that [x,G] � G.

In the complex group algebra CG, if X ⊆ G, we write X̂ =
∑

x∈X x ∈ CG.

Lemma 2.1. Let x ∈ G, where G is a finite group, and let K = xG. Then the
following are equivalent:

(a) K̂x ∈ Z(C[G]).

(b) K̂x−1 ∈ Z(C[G]).
(c) For each character χ ∈ Irr(G), either χ(x) = 0 or |χ(x)| = χ(1).

Proof. Let X be an irreducible representation ofG. Then we know that X (K̂) = ωI,
where ω = χ(x)|K|/χ(1) and I is the identity matrix. Note that ω = 0 if and only
if χ(x) = 0 and that |χ(x)| = χ(1) if and only if X (x) is a scalar matrix, and this
happens if and only if X (x−1) is a scalar matrix. (See Lemma (2.27) of [I2].)

If K̂x ∈ Z(C[G]), then X (K̂x) is a scalar matrix, and if K̂x−1 ∈ Z(C[G]), then

X (K̂x−1) is a scalar matrix. Assuming (a) or (b), therefore, we deduce that ωX (x)
or ωX (x−1) is a scalar matrix. If χ(x) �= 0, then ω �= 0, and thus X (x) or X (x−1) is
a scalar matrix, and we have |χ(x)| = χ(1). Conversely, suppose for each character
χ ∈ Irr(G), that either χ(x) = 0 or |χ(x)| = χ(1). Then for every irreducible
representation X of G, we see that ωX (x) and ωX (x−1) are (possibly zero) scalar

matrices, and thus X (K̂x) and X (K̂x−1) are scalar matrices. When C[G] is written
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as a direct sum of matrix algebras, therefore, the component of K̂x and of K̂x−1

in each summand is a scalar matrix, and it follows that K̂x and K̂x−1 are central
in C[G]. �

Theorem 2.2. Let K be a conjugacy class of G, where G is a finite group. Then
the following are equivalent:

(a) K2 is a conjugacy class of G.
(b) If x ∈ K, then CG(x) = CG(x

2), and K = Nx, where N = [x,G].
(c) If x ∈ K, then CG(x) = CG(x

2), and for all χ ∈ Irr(G), either χ(x) = 0
or |χ(x)| = χ(1).

Proof. First suppose that K2 is a class, and let x ∈ K. Then xK ⊆ K2, so
|K| ≤ |K2|. Also, K2 is the class of x2, and since CG(x) ⊆ CG(x

2), we have
|K| ≥ |K2|. Thus equality holds, so CG(x) = CG(x

2), and xK = K2. Similarly,
yK = K2 for y ∈ K, and thus x−1yK = K, and we see that [x, g]K = K for all
g ∈ G. SinceN = [x,G] is generated by the elements [x, g], it follows thatNK = K,
and thus Nx ⊆ K. Also K = x{[x, g] |g ∈ G} ⊆ xN , and hence |K| ≤ |N |. It
follows that Nx = K, proving (b).

Now assume (b), and let x ∈ K. Then K = Nx, so Kx−1 = N and thus

K̂x−1 = N̂ . Also, N̂ ∈ Z(C[G]) since N � G. Now Lemma 2.1 shows that (c) holds.

Assuming (c) now, Lemma 2.1 guarantees that K̂x is central in C[G], and thus
the set Kx is closed under conjugation. This set, therefore, contains the full con-
jugacy class L of x2. By hypothesis, CG(x) = CG(x

2), and so |L| = |K| = |xK|,
and we have that Kx = L. Then Kxg = (Kx)g = L for all g ∈ G, and it follows
that K2 = L, proving (a). �

3. Special cosets

We start with an elementary lemma.

Lemma 3.1. Let G be a finite group, N � G, x ∈ G, and assume that all the
elements in Nx are G-conjugate. If χ ∈ Irr(G) does not contain N in its kernel,
then χ(x) = 0.

Proof. Let X be a representation of G affording χ. Since N � G, we have that N̂
is central in C[G], and by Schur’s Lemma it follows that X (N̂) is a scalar matrix.

The trace of X (N̂) is ∑
n∈N

χ(n) = |N |[χN , 1N ] = 0 ,

and we conclude that X (N̂) = 0. Now,

X (x̂N) = X (x)X (N̂) = 0 .

Since all the elements of xN are G-conjugate by hypothesis, it follows that the trace

of X (x̂N) is a multiple of χ(x), and the result follows. �

We next complete the proof of Theorem A and the first two parts of Theorem B.
We use the Classification of Finite Simple Groups in order to ensure that every non-
abelian minimal normal subgroup of a finite group possesses a non-trivial irreducible
character that extends to G. (See for instance [BCLP].) The following generalizes
some of the results in [L].
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Theorem 3.2. Let G be a finite group and let N be a normal subgroup of G. Let
x ∈ G be such that all elements of xN are conjugate in G. Then:

(a) N is solvable.
(b) If π is the set of prime divisors of o(x), then x normalizes some Hall

π-complement H of N on which it acts fixed point freely.
(c) If x is a p-element for some prime p, then N has a normal p-complement.

Proof. We first prove (a). We argue by induction on |N |. If E is a minimal normal
subgroup of G contained in N , it then follows by induction that N/E is solvable.
In particular, we may assume that E is the direct product of non-abelian simple
groups.

Note that all elements of xE are conjugate in G and so we may assume by
induction that N = E.

By Theorems 2, 3, 4 and Lemma 5 of [BCLP], there exists 1 �= θ ∈ Irr(E) that
extends to χ ∈ Irr(G). Now, by Lemma 3.1, we conclude that χ(xn) = 0 for all
n ∈ N . Now, let τ = χ〈N,x〉 ∈ Irr(〈N, x〉). Since τN is irreducible, by Lemma
(8.14) of [I2], there exists m ∈ N such that τ (xm) = χ(xm) �= 0, and this is a
contradiction.

We next prove (b). Let H be a Hall π-complement of N . Since all Hall π-
complements are conjugate in N (since N is solvable), the Frattini argument gives
x = mn, for some m ∈ NG(H) and n ∈ N . Therefore xn−1 normalizes H, and
therefore some G-conjugate of x normalizes H, using the hypothesis. If H1 = Hg ⊆
N is normalized by x, notice that all the elements of xH1 have the same order (a
π-number), and therefore x cannot centralize any element of H1.

Finally, we give two different proofs of (c). Our first proof uses character theory.
If D/N = CG/N (Nx), working in D and by induction, we may assume that Nx is

central in G/N . Hence, Nx = xG.
Write C = CG(x). We have |G : C| = |N |, and it follows easily that |G : NC| =

|C ∩N | = |CN (x)|. Since all the elements of Nx are p-elements, then CN (x) is a
p-group, and we deduce that |G : NC| is a prime power. Therefore G = QNC, for
every Q ∈ Sylp(G). In particular, all the elements of Nx are NQ-conjugate, and
by working in NQ and by induction, we may assume that NQ = G.

Now let χ ∈ Irr(G) be non-linear. If N ⊆ ker(χ), then χ ∈ Irr(G/N) has degree
a non-trivial power of p. If N is not contained in the kernel of χ, then χ(x) = 0 by
Lemma 3.1. Since

χ(x) ≡ χ(1)mod p

(because p-power roots of unity are congruent with 1 modulo p in the ring of
algebraic integers), then we deduce that p divides χ(1). Now we apply a result
of Thompson (Corollary 12.2 of [I2]), to conclude that G (and therefore N) has a
normal p-complement. (We notice that this proof does not use the Classification of
Finite Simple Groups.)

Our second proof is group-theoretical. Note that G acts via conjugation on the
set X of p-complements in N and that N acts transitively on X. Suppose that
|X| > 1. Then |X| is a non-trivial power of p. By (b), every element in the coset
xN has a fixed point on X, whence by a minor extension of Burnside’s Lemma (see
[FGS, Lemma 13.1]), every element in xN has a unique fixed point in X. On the
other hand, since x is a p-element and and p divides |X|, the number of fixed points
of x on X is a multiple of p. This contradiction completes the proof. �
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Contrary to the case of Theorem 3.2 when a p-complement of N is normal in
G, if the set of prime divisors π of o(x) involves more than one prime, there are
examples where the Hall π-complement of N need not be normal.

We now complete the proof of Theorem B. It remains only to prove part (c).

Lemma 3.3. Suppose that N is a normal subgroup of a finite group G. Let x ∈ G
and assume that all elements in xN have odd order. Then N is solvable.

Proof. We induct on the order of N . If F(N) �= 1, we can pass to G/F(N). So we
may assume that N contains a normal subgroup E of G with E a direct product of
non-abelian simple groups. Then all elements of xE still have odd order and so by
minimality E = N . Write E = L× . . .× L with L simple. By [FGS, 12.1], there is
a class of involutions zL that is Aut(L) invariant. Thus, the class of w := (z, . . . , z)
is Aut(E) invariant. Thus G = ECG(w). In particular xE ∩CG(w) is non-empty.
Thus, we may assume that x centralizes w. Then x has odd order and so xw has
order twice that of x, a contradiction. �

Recall that a pair (G,N) is a Camina pair if for every x ∈ G−N , all the elements
of xN consist of G-conjugates. Our hypothesis in our theorem resembles Camina
pairs, but one coset at a time.

Finally, we make some remarks on fixed-point-free automorphisms of finite
groups. If x is a fixed-point-free automorphism of N , then xN is a single G-
conjugacy class in G = 〈N, x〉. (This is elementary and follows because every ele-

ment of N can be uniquely written in the form n−1nx−1

. In particular, xn−1nx−1

=

xnx−1

.)

Lemma 3.4. Let X be a group of automorphisms of a finite group N . Assume that
either X is cyclic or that |X| and |N | are coprime. The following are equivalent:

(a) X acts fixed point freely on N ;
(b) X fixes no non-trivial conjugacy class of N .
(c) X fixes no non-trivial irreducible character of N .

Proof. Clearly, (b) implies (a). So assume that X acts fixed point freely. Let G be
the semidirect product NX.

First suppose that X = 〈x〉. Since x acts fixed point freely on N , all elements
in xN are conjugate via an element of N . Suppose the Cx = C for some C = zN

for some 1 �= z ∈ N . Then xy centralizes z for some y ∈ N , whence xy does not
act fixed point freely on N and so neither does x.

Finally assume that |X| and |N | are coprime. Note that X is a Hall π-subgroup
of G for π the set of prime divisors of |X|. By the Schur-Zassenhaus theorem, all
Hall π-subgroups of G are conjugate. If X fixes the class zN , then G = CG(z)N
and so CG(z)/CN (z) ∼= X, whence CG(z) contains a Hall π-subgroup. Thus, X
centralizes a conjugate of z.

If X is cyclic, (b) is also equivalent to (c) by Brauer’s Lemma on character tables
[I2, Theorem (6.32)].

If |X| is coprime to |N |, (b) is equivalent to (c) by the Glauberman correspon-
dence [G] whenN is solvable and by [I1] whenX is solvable (and by Feit-Thompson,
either N or X is solvable). �

Note that if X is cyclic generated by x, then x acting fixed point freely on N is
equivalent to the fact that all elements in xN (in the semidirect product NX) are
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conjugate. Note that this condition obviously descends to X-invariant subgroups
of N and to quotients of N by X-invariant normal subgroups. If X has coprime
order, then the same is true by general results about coprime actions.

This gives a quick proof of the fact that non-solvable groups do not admit
fixed-point-free automorphisms or fixed-point-free coprime order groups of auto-
morphisms (using the classification of finite simple groups). The following result is
essentially [FGS, 12.1]. See also Rowley [R] for a different proof.

Theorem 3.5. Let N be a non-solvable finite group. Let X be a group of automor-
phisms of N . Assume that either X has order coprime to |N | or is cyclic. Then
there exists a non-central conjugacy class C of N that is X-invariant. In particular,
X does not act fixed point freely on N .

Proof. By the remarks preceding the theorem and Lemma 3.4, we see that the
invariance of a non-trivial class C is equivalent to the action being fixed-point-
free and that these properties descend to quotients. Thus, we may assume that
F(N) = 1. Let A be a minimal characteristic subgroup of N . Then A = L× . . .×L
with L non-abelian simple. By [FGS, 12.1], L contains a class of involutions zL

that is Aut(L)-invariant and so the class of w := (z, . . . , z) is Aut(N) invariant. �

As we have noted, by [BCLP] there is always a character of a finite non-abelian
simple group invariant under the full automorphism group. One might ask whether
the same is true for Brauer characters and for p′-classes. If p �= 2, this is true for
p′-classes by [FGS, 12.1]. However for p = 2, this fails. Indeed, taking G = M10

(a point stabilizer in M11), we see that no conjugacy class of elements of odd order
in Alt(6) is invariant under G (the two classes of elements of order 3 and the two
classes of elements of order 5 are interchanged by the outer automorphism). By
Brauer’s Lemma on character tables, no non-trivial irreducible Brauer character of
Alt(6) (for p = 2) is invariant under G (and also therefore not invariant under the
full automorphism group).

If N is non-solvable, one might also ask if N necessarily contains a non-trivial
conjugacy class that is invariant under Aut(N).
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