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A KAM THEOREM FOR SOME PARTIAL DIFFERENTIAL

EQUATIONS IN ONE DIMENSION

JIAN WU AND XINDONG XU

(Communicated by Yingfei Yi)

Abstract. We prove an infinite-dimensional KAM theorem with dense nor-
mal frequencies. In this theorem, we relax the separation condition on normal
frequencies which is required by the KAM theorem.

1. Introduction

The infinite-dimensional KAM theorem is a powerful tool for constructing quasi-
periodic solutions of PDEs. Wayne [24], Pöschel [22] and Kuksin [19] pioneered this
research, requiring first-order and second-order Melnikov conditions. Following
these works, there have been many important works in this field. On the other
hand, the construction of quasi-periodic solutions of PDEs can also be done by
imposing only first-order Melnikov conditions. This approach has been developed
by Bourgain [4–7], extending the work of Craig-Wayne [9] for periodic solutions.
However, the KAM theorem will provide more information about the linear stability
of the quasi-periodic solutions. We are more interested in the infinite-dimensional
KAM theorem.

The KAM theorem is composed of infinite steps of KAM iteration; to finish one
KAM iteration step on the hamiltonian

(1.1) H =
∑

1≤j≤b

ωj(ξ)Ij +
∑
n∈Z

d
1

Ωn(ξ)|zn|2 + P (ξ, I, θ, z, z̄),

we need to solve a homological equation {N,F} + N̂ = R. The big problem is to
get a lower bound

(1.2) |〈ω, k〉+Ωm − Ωn| ≥ γ(|k|+ 1)−τ , ∀k ∈ Z
b .

This leads to the problem of measure estimation. Mathematicians focus on the
property of perturbation, the dimension of space, new techniques, etc.

In the beginning, to get the lower bound above, the separation condition
|Ωn − Ωm| ≥ α on normal frequencies was required. This requirement restricted
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us to construct quasi-periodic solutions for PDEs under Dirichlet boundary condi-
tions. Then, Chierchia-You [8] obtained quasi-periodic solutions for wave equations
under periodic boundary conditions. Using their theorem, we can get KAM tori
under asymptotic double normal frequencies. However, there are some great differ-
ences between the hamiltonians for PDEs with d = 1 and with d > 1. It is easy to
see that the Ωn asymptotically form finite clusters of uniform size and structure if
d = 1. For d > 1, the cluster sizes may be of arbitrary large dimension.

Then Geng-You [16] proved a KAM result for higher-dimensional PDEs; in their
work the perturbation satisfies momentum conservation and a decay restriction.
With momentum conservation, we need to solve fewer terms than usual, and the
normal form is much easier; with the decay condition on perturbation, by iteration
the normal frequencies take the form Ωn = |n|2+O( ε

|n|� ), which makes the measure

estimate simple. Then Eliasson-Kuksin [12] obtained a more general result for
higher-dimensional PDEs, where the perturbation does not satisfy the condition
above as it did in [16]. In their work, the most important thing is that they
find a relatively weak decay property, Töplitz-Lipschitz; this condition is preserved
by KAM iteration. With this property, they overcome the measure estimation
problem. Different from [16], the normal form is N = 〈ω, I〉 + 〈Ωz, z̄〉 + 〈Hz, z̄〉,
where the cluster in H is growing quickly. Geng-Xu-You [15] gave an understanding
of this property. Following Eliasson-Kuksin’s work, Procesi-Xu [23] gave another
description of the perturbation, which they named quasi-Töplitz. Their results relax
the decay restriction in [16].

The development of the KAM theorem also focused on unbounded perturbation.
The first KAM result on this subject was by Kuksin [20], and then Kappeler-
Pöschel [17] for hamiltonians with analytic perturbations given by KdV. In their
work, one can find the normal frequencies Ω dependent on the angle variable θ;
this makes it hard to solve the homological equation. To solve the homological
equation in this problem, one needs Kuksin’s Lemma, which is applicable in the
case d = 1. Their result is improved by Liu-Yuan [25] for 1-dimensional derivative
NLS (DNLS) equations. Liu-Yuan extend Kuksin’s Lemma and obtain a more
general KAM theorem.

Recently there have been many interesting works on other PDEs. Grébert-
Thomann [13] consider semilinear quantum harmonic Schrödinger equations, corre-
sponding to a generalized hamiltonian. Kappeler-Liang [14] consider the existence
of a quasi-periodic solution with large energy for the Schrödinger equation, Berti-
Biasco-Procesi [3] consider equations with quasi-differential operators, etc.

In any event, one can find that the normal frequencies of the hamiltonian share
a separation condition in all the literature above, that is, Ωn = |n|χ + · · · , χ >
1, n ∈ Zd, d > 1, and Ωn = |n|χ + · · · , χ ≥ 1, n ∈ Z. For 0 < χ < 1, this usually
leads to the density of normal frequency; a famous example is given by the higher-
dimensional wave equation. A similar problem is found when one considers the
water wave equation. There is little progress on the existence of quasi-periodic
solutions for the water wave equation. This field remains largely open and it is
hard for us to use the KAM method; one of the main problems is that the order
χ = 1

2 (see [10]).
In this paper, we relax this condition to be χ > 0. In any event, we can only prove

the KAM theorem for n ∈ Z when perturbation satisfies momentum conservation.
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2. An infinite-dimensional KAM theorem

For given b vectors S = {n1 = 0, n2, · · · , nb} in Z, called tangential sites, denote
Z1 =: Z \ S. Now we consider small perturbations of an infinite hamiltonian

(2.1) N = 〈ω(ξ), I〉+
∑
j∈Z1

Ωj |zj |2

on phase space

D(r, s) = {(θ, I, z, z̄) : |Imθ| < r, |I| < s2, ‖z‖ρ,p < s, ‖z̄‖ρ,p < s},

which is a neighborhood of Tb × {I = 0} × {z = 0} × {z̄ = 0}. Let z =
(· · · , zn, · · · )n∈Z1

, and its complex conjugate z̄ = (· · · , z̄n, · · · )n∈Z1
; the weighted

norm is defined to be

‖z‖ρ,p =
∑
n∈Z1

|zn|e2ρ|n|n2p,

where | · | denotes the sup-norm of complex vectors.
Let O be a positive-measure parameter set in Rb. We consider the functions

F (I, θ, z, z̄; ξ) : D(r, s)×O → C, where F is analytic in I, θ, z and of class C1
W (in

the sense of Whitney) in ξ. We expand F in Taylor-Fourier series:

(2.2) F (θ, I, z, z̄; ξ) =
∑

k,l,α,β

Flkαβ(ξ)I
lei〈k,θ〉zαz̄β ,

where the coefficients Flkαβ(ξ) are of class C1
W , the vectors α ≡ (· · · , αn, · · · )n∈Z1

,
β ≡ (· · · , βn, · · · )n∈Z1

have finitely many non-zero components αn, βn ∈ N, zαz̄β

denotes
∏

n z
αn
n z̄βn

n and 〈·, ·〉 is the standard inner product in Cb.
We use the following weighted norm for F :

(2.3) ‖F‖r,s = ‖F‖D(r,s),O ≡ sup
‖z‖ρ,p<s
‖z̄‖ρ,p<s

∑
k,l,α,β

|Fklαβ|O s2|l|e|k|r |zα||z̄β |,

(2.4) |Fklαβ|O ≡ sup
ξ∈O

(|Fklαβ|+ |∂Fklαβ

∂ξ
|)

(the derivatives with respect to ξ are in the sense of Whitney). To an analytic
function F , we associate a Hamiltonian vector field with coordinates

XF = (FI ,−Fθ, {iFzn}n∈Z1
, {−iFz̄n}n∈Z1

).

Consider a vector function G : D(r, s)×O → 
ρ, with

G =
∑
klαβ

Gklαβ(ξ)I
lei〈k,θ〉zαz̄β ,

where Gklαβ = (· · · , G(i)
klαβ, · · · )i∈Z1

. Its norm is similarly defined as

‖G‖D(r,s),O = sup
‖z‖ρ,p<s
‖z̄‖ρ,p<s

‖MG‖ρ,p̄, p̄ > p,

where

MG = (· · · ,MG(i), · · · )i∈Z1
, MG(i) =

∑
α,β,k,l

|G(i)
klαβ|O s2|l|e|k|r zαz̄β
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is a majorant of G(i). The weighted norm of XF is defined by1

‖XF ‖r,s =: ‖XF ‖D(r,s),O ≡
b∑

j=1

‖FIj‖D(r,s),O +
1

s2

b∑
j=1

‖Fθj‖D(r,s),O

+
1

s
(‖∂zF‖D(r,s),O + ‖∂z̄F‖D(r,s),O).(2.5)

A function F is said to satisfy momentum conservation if {F,M} = 0 with

M =
b∑

i=1

niIi +
∑

m∈Z1

m|zm|2. This implies that

(2.6) Fklαβ = 0 , if π(k, α, β) :=

b∑
i=1

niki +
∑
m∈Z1

m(αm − βm) 
= 0.

By Jacobi’s identity, momentum conservation is preserved by Poisson bracket.
As one can see, the hamiltonian equations of motions of N are

θ̇ = ω, İ = 0, ż = Ωz̄, ˙̄z = Ωz.

For each ξ ∈ O, there is a solution (θ, 0, 0, 0) → (θ + ωt, 0, 0, 0) which corresponds
to an invariant torus in the phase space. Our aim is to prove that, under suitable
assumptions, there is a Cantor set O∞ ⊂ O with positive Lebesgue measure, such
that, for any ξ ∈ O∞ the hamiltonian H still admits invariant tori. The following
assumptions are made.

(A1)Nondegeneracy: The map ξ → ω(ξ) is a C1
W diffeomorphism between O and

its image with |ω|C1
W
, |∇ω−1|O ≤ M .

(A2)Asymptotics of normal frequencies:

(2.7) Ωn = |n|χ + Ω̃n, Ω̃n = o(|n|−ι), 0 < χ < 1, ι > 0,

where |n|ιΩ̃n are C1
W functions of ξ with C1

W -norm uniformly bounded by some
small positive constant L with LM < 1.

(A3)Momentum conservation: The function P satisfies momentum conservation,
{P,M} = 0.

(A4) Regularity of P : P is real analytic in I, θ, z, z̄ and C1
W Whitney smooth in

ξ; in addition ‖XP ‖D(r,s),O < ∞ with p̄ = p+ ι.
Now we are ready to state an infinite-dimensional KAM theorem.

Theorem 2.1. Let H = N + P satisfy assumptions (A1) − (A4). Let γ > 0 be
small enough. Then there is a positive constant ε = ε(b, γ, r, s, ι, L,M) such that if
‖XP ‖D(r,s),O < ε, the following holds: There exist a Cantor subset Oγ ⊂ O with

meas(O \ Oγ) = O(γ) and two maps (analytic in θ and C1
W in ξ)

Ψ : Tb ×Oγ → D(r, s), ω̃ : Oγ → R
b,

where Ψ is ε
γ2 -close to the trivial embedding Ψ0 : Tb ×O → Tb × {0, 0, 0} and ω̃ is

ε-close to the unperturbed frequency ω, such that for any ξ ∈ Oγ and θ ∈ Tb, the
curve t → Ψ(θ + ω̃(ξ)t, ξ) is a quasi-periodic solution of the hamiltonian equations
governed by H = N + P .

1The norm ‖ · ‖D(r,s),O for scalar functions is defined in (2.3).
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As an application, we consider the equation

(2.8) utt +A2u = f(u), x ∈ T, t ∈ R,

where A = |∂x|
1
2 + Mξ. As one can see under periodic boundary conditions, the

operator A has eigenfunction φn = einx and the eigenvalue is assumed to be

(2.9)

{
ωj = |j| 12 + ξj , j ∈ S,

Ωn = |n| 12 , n ∈ Z1.

Introducing v = ut, (2.8) is written as

(2.10)

{
ut = v,
vt = −A2u− f(u).

Let q = 1√
2
A

1
2 u− i 1√

2
A− 1

2 v; thus we obtain

(2.11)
1

i
qt = Aq +

1√
2
A− 1

2 f(A− 1
2 (

q + q̄√
2

)).

Equation (2.11) can be rewritten as the hamiltonian equation

(2.12) qt = i
∂H

∂q̄
,

and the corresponding hamiltonian is

(2.13) H =
1

2
〈Aq, q〉+

∫ 2π

0

g(A− 1
2 (

q + q̄√
2

)) dx,

where 〈·, ·〉 denotes the inner product in L2 and g is a primitive function of f .
It is easy to check that the hamiltonian (2.13) satisfies all the assumptions of

Theorem 2.1. One has the following result at once.

Theorem 2.2. There exists a positive-measure Cantor set C such that for ξ =
(ξ1, · · · , ξb) ∈ C, the non-linear equation (2.8) admits small amplitude analytic
quasi-periodic solutions. These solutions are linearly stable.

3. Proof of Theorem 2.1

Theorem 2.1 will be proved by a KAM iteration which involves an infinite se-
quence of change of variables. Each KAM iteration step makes the perturbation
smaller in a narrow parameter set and analytic domain. We have to prove the
convergence of the iteration sequence and estimate the measure of the excluded set
with infinite KAM steps.

At the ν-step of the KAM iteration, we consider a hamiltonian vector field with

Hν = Nν + Pν = 〈ων , I〉+
∑
n∈Z1

Ων
n|zn|2 + Pν ,

where Pν is defined in D(rν , sν)×Oν and satisfies (A1)–(A4). We will construct a
symplectic change of variables

Φν : D(rν+1, sν+1)×Oν+1 → D(rν , sν)

such that the vector field XHν◦Φν
defined on D(rν+1, sν+1) satisfies

‖XPν+1
‖D(rν+1,sν+1),Oν+1

≤ εκν

with some fixed κ > 1. Moreover, the new hamiltonian still satisfies (A1)-(A4).
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For simplicity, in the following the quantities without subscripts refer to quanti-
ties at the νth step, while the quantities with subscripts + denote the corresponding
quantities at the (ν + 1)th step. Thus we consider the hamiltonian

H = N + P(3.1)

≡ e+ 〈ω(ξ), I〉+
∑
n∈Z1

Ωn(ξ)znz̄n + P (θ, I, z, z̄, ξ, ε)

defined in D(r, s)×O.
We assume that for ξ ∈ O and |k| ≤ K, there is

|〈k, ω(ξ)〉| ≥ γ

Kτ
, k 
= 0,

|〈k, ω〉+Ωn| ≥
γ

Kτ
,

|〈k, ω〉+Ωn +Ωm| ≥ γ

Kτ+σ
,(3.2)

|〈k, ω〉+Ωn − Ωm| ≥ γ

K3τ+4σ+2b
, |k|+ ||n| − |m|| 
= 0,

where σ = max{ τ+1
1−χ ,

τ
ι }.

Expanding P into the Fourier-Taylor series P =
∑

k,l,α,β

PklαβI
lei〈k,θ〉zαz̄β , (A3)

means

(3.3) Pklαβ = 0 if
b∑

j=1

kjnj +
∑
n∈Z1

(αn − βn)n 
= 0.

We now let 0 < r+ < r and define

(3.4) s+ =
1

4
sε

1
3 , ε+ = cγ−2K6τ+8σ+2bε

4
3 .

Here and later, the letter c denotes a suitable (possibly different) constant indepen-
dent on the iteration steps.

We will construct a set O+ ⊂ O and a change of variables Φ : D+ × O+ =
D(r+, s+) × O+ → D(r, s) × O such that the transformed hamiltonian H+ =
N++P+ ≡ H ◦Φ satisfies all the above iterative assumptions with new parameters
s+, ε+, r+ and with ξ ∈ O+.

3.1. Solving the linearized equations. Expand P into the Fourier-Taylor series

P =
∑

k,l,α,β

Pklαβe
i〈k,θ〉I lzαz̄β ,

where k ∈ Z
b, l ∈ N

b and the multi-indices α and β run over the set of all infinite-
dimensional vectors α ≡ (· · · , αn, · · · )n∈Z1

with finitely many non-zero components
of positive integers.

We define

R :=
∑

k,2|l|+|α|+|β|≤2

Pklαβe
i(k,θ)I lzαz̄β , 〈R〉 :=

b∑
i=1

P0ei00Ii +
∑
j∈Z1

P00ejej |zj |2.

The generating function of our symplectic transformation, denoted by F , solves
the “homological equation”:

(3.5) {N,F}+ N̂ = R.
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It is well known (and immediate) that F is uniquely defined by a homological
equation for those ξ such that 〈ω(ξ), k〉+Ω(ξ) · l 
= 0. In order to have quantitative
bounds, we restrict to a set O that has the bound (3.2).

To solve this homological equation with condition (A3) (momentum conserva-
tion), one can refer to [16]. The key point is that with (A3), we only need to solve
fewer terms than before; we only give the estimation below.

3.2. Estimation on the coordinate transformation. With the previous sec-
tion, we give the estimate to XF and φ1

F .

Lemma 3.1. Let Di = D(r+ + i
4 (r − r+),

i
4s), 0 < i ≤ 4. Then

(3.6) ‖XF ‖D3,O ≤ c(γ−1K6τ+8σ+2b)ε.

Lemma 3.2. Let η = ε
1
3 , Diη = D(r+ + i

4 (r − r+),
i
4ηs), 0 < i ≤ 4. If ε �

( 12γK
−τ )6, we then have

(3.7) φt
F : D2η → D3η, −1 ≤ t ≤ 1.

Moreover,

(3.8) ‖Dφt
F − Id‖D1η

≤ c(γ−1K6τ+8σ+2b)ε.

Momentum conservation is preserved by KAM iteration since momentum con-
servation is preserved by the Poisson bracket.

Lemma 3.3. P+ satisfies momentum conservation.

3.3. Estimation for the new perturbation. The map X1
F defined above trans-

forms H into H+ = N+ + P+, where

P+ =

∫ 1

0

{R(t), F} ◦ φt
Fdt+ (P −R) ◦ φ1

F ,

with R(t) = (1− t)(N+ −N) + tR. Hence

XP+
=

∫ 1

0

(φt
F )

∗X{R(t),F}dt+ (φ1
F )

∗X(P−R).

Lemma 3.4. The new perturbation P+ satisfies the estimate

‖XP+
‖D(r+,s+) ≤ cηε+ cγ−1K6τ+8σ+2bη−2ε2 ≤ ε+.

3.4. Iteration lemma and convergence. In order to make the KAM machine
work fluently, for any given s, ε, r, γ, p̄, p, δ, let σ = max{ τ+1

1−χ ,
τ
ι }, and for all ν ≥ 1

we define the sequences

rν = r(1−
ν+1∑
i=2

2−i),

sν =
1

4
ην−1sν−1 = 2−2ν(

ν−1∏
i=0

εi)
1
3 s0,(3.9)

εν = cγ−2K6τ+8σ+2b
ν−1 ε

4
3
ν−1, ην = ε

1
3
ν ,

Mν = Mν−1 + εν−1, Lν = Lν−1 + εν−1,

Kν = c ln ε−1
ν ,
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where c is a constant, and the parameters r0, ε0, L0, s0 and K0 are defined to be
r, ε, L, s and ln 1

ε respectively.
We iterate the KAM step and get the iteration sequence.

Lemma 3.5. Suppose Hν = Nν + Pν is well defined in D(rν , sν)×Oν , where

Nν = 〈ων(ξ), I〉+ 〈Ωνz, z̄〉,
the functions ων and Ων are C1

W smooth and

|ων |C1
W
, |∇ω−1

ν |Oν
≤ Mν , ||n|ιΩ̃ν

n|C1
W

≤ LνMν , |Ων
n − Ων−1

n |Oν
≤ εν−1

|n|ι ;

what’s more
‖XPν

‖D(rν ,sν),Oν
≤ εν .

Then there exists a symplectic change of variables Φν : D(rν+1, sν+1) × Oν+1 →
D(rν , sν), such that on D(rν+1, sν+1)×Oν+1 we have

Hν+1 = Hν ◦ Φν = eν+1 +Nν+1 + Pν+1 = eν+1 + 〈ων+1, I〉+ 〈Ων+1z, z̄〉+ Pν+1,

with ων+1 = ων +
∑
|l|=1

lP0l00, Ω
ν+1
n = Ων

n + P ν
00enen .

The functions ων+1 and Ων+1
n are C1

W smooth with

|ων+1|C1
W
, |∇ω−1

ν+1|O ≤ Mν+1, ||n|ιΩ̃ν+1
n |C1

W
≤ Lν+1Mν+1, |Ων+1

n −Ων
n|Oν+1

≤ εν
|n|ι ;

‖XPν+1
‖D(rν+1,sν+1),Oν+1

≤ εν+1.

3.4.1. Convergence. Suppose that the assumptions of Theorem 2.1 are satisfied.
Recall that

ε0 = ε, r0 = r, s0 = s, ρ0 = ρ, L0 = L,

and O is a bounded positive-measure set. The assumptions of the iteration lemma
are satisfied when ν = 0 if ε0 and γ are sufficiently small. Inductively, we obtain
the following sequences:

Oν+1 ⊂ Oν ,

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦Φν : D(rν+1, sν+1)×Oν+1 → D(r0, s0), ν ≥ 0,

H ◦Ψν = Hν+1 = Nν+1 + Pν+1.

Let Õ =
⋂∞

ν=0Oν . As in [21, 22], thanks to Lemma 3.2, we conclude that

Nν ,Ψ
ν , DΨν , ων converge uniformly on D( 12r, 0)× Õ with

N∞ = e∞ + 〈ω∞, I〉+
∑
n

Ω∞
n znz̄n.

Since

εν+1 = c(γ−1K6τ+8σ+2b
ν )ε

4
3
ν ,

it follows that εν+1 → 0 provided that ε is sufficiently small. And we also have
∞∑
ν=0

εν ≤ 2ε.

Let φt
H be the flow of XH . Since H ◦Ψν = Hν+1, we have

(3.10) φt
H ◦Ψν = Ψν ◦ φt

Hν+1
.

The uniform convergence of Ψν , DΨν , ων and XHν
implies that the limits can be

taken on both sides of (3.10). Hence, on D 1
2ρ
( 12r, 0)× Õ we get

(3.11) φt
H ◦Ψ∞ = Ψ∞ ◦ φt

H∞
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and

Ψ∞ : D(
1

2
r, 0)× Õ → D(r, s)×O.

It follows from (3.11) that

φt
H(Ψ∞(Tb × {ξ})) = Ψ∞(Tb × {ξ})

for ξ ∈ Õ. This means that Ψ∞(Tb × {ξ}) is an embedded torus which is invariant

for the original perturbed hamiltonian system at ξ ∈ Õ. We remark here that the
frequencies ω∞(ξ) associated to Ψ∞(Tb×{ξ}) are slightly different from ω(ξ). The
normal behavior of the invariant torus is governed by normal frequencies Ω∞

n . �

3.5. Measure estimates. For notational convenience, let O0 = O, K0 = 0. Then
at the νth KAM iteration step, we define Oν+1 = Oν\Rν ; the resonant set Rν is
defined to be

Rν =
⋃

|k|≤Kν ,
n,m∈Z1

(Rν
k ∪Rν

kn ∪Rν
knm),(3.12)

where

(3.13) Rν
k = {ξ ∈ Oν : |〈k, ων(ξ)〉| <

γ

Kτ
ν

},

(3.14) Rν
kn = {ξ ∈ Oν : |〈k, ων〉+ Ων

n| <
γ

Kτ
},

(3.15) Rν
knm = {ξ ∈ Oν : |〈k, ων〉 ± Ων

n ± Ων
m| < γ

K3τ+4σ+b
}.

Lemma 3.6 (Lemma 8.4 of [2]). Let g : I → R be b + 3 times differentiable, and
assume that

(1) ∀σ ∈ I there exists s ≤ b+ 2 such that g(s)(σ) > B.
(2) There exists A such that |g(s)(σ)| ≤ A for ∀σ ∈ I and ∀s with 1 ≤ s ≤ b+3.
Define

Ih ≡ {σ ∈ I : |g(σ)| ≤ h}.
Then

meas(Ih)
meas(I) ≤ A

B
2(2 + 3 + · · ·+ (b+ 3) + 2B−1)h

1
b+3 .

For the measure estimates, given � > 0 we define

R�
k,l :=

{
ξ ∈ O : |〈ω, k〉+Ω · l| < γK−�

}
.

Lemma 3.7. For all (k, l) 
= (0, 0), |k| ≤ K and |l| ≤ 2, which satisfy momentum
conservation, one has meas(R�

k,l) ≤ CγK−�.

Proof. By assumption O is contained in some open set of diameter D.
Choose a to be a vector such that 〈k, a〉 = |k|. We have

|∂t(〈k, ω(ξ + ta)〉+Ω · l)| ≥ M(|k| −ML) ≥ M

2
,

which leads to∫
R�

k,l

dξ ≤ 2M−1γK−�

∫
ξ+ta∩R�

k,l

dt

∫
dξ2 . . . dξb ≤ 2M−1Db−1γK−�.

�



2158 JIAN WU AND XINDONG XU

For a proof see [2].

Lemma 3.8.

meas(
⋃

|k|≤Kν

Rν
k) ≤ Kb

ν

γ

Kτ
ν

=
γ

1
4

Kτ−b
ν

,

meas(
⋃

|k|≤Kν ,n

Rν
kn) ≤ Kb+σ

ν

γ

Kτ+σ
ν

=
γ

Kτ−b
ν

.

Lemma 3.9.

meas(
⋃

|k|≤Kν ,n,m

Rν
knm) ≤ γ

K2τ
ν

.

Proof. Notice that for momentum conservation

(3.16)

b∑
j=1

kjnj +
∑
n∈Z1

(αn − βn)n = 0,

one has |n−m| ≤ Cb|k| ≤ CbKν .

We denote π(k) =
∑b

j=1 kjij ; then one has

⋃
|k|≤Kν ,n,m

Rν
knm =

⋃
|k|≤Kν ,n

Rν
kn,n+π(k).

Recall from Lemma 3.8 that ∀ξ /∈
⋃

|k|≤Kν
Rν

k and ∀|k| ≤ Kν one has |〈k, ω〉| ≥
γK−τ

ν . Then if |n| or |m| ≥ Kτ+2σ
ν (recall σ = max{ τ+1

1−χ ,
τ
ι }), one has

|〈k, ω〉+ Ων
n − Ων

n+π(k)|
= |〈k, ω〉+ |n|χ + Ω̃ν

n − |n+ π(k)|χ − Ω̃ν
n+π(k)|

≥ |〈k, ω〉| − ||n|χ − |n+ π(k)|χ| − |Ω̃ν
n| − |Ω̃ν

n+π(k)|

≥ γK−τ
ν − χ| π(k)

|n|1−χ
| − ε0

|n|ι −
ε0

|n+ π(k)|ι

≥ γK−τ
ν − χ| π(k)

|Kτ+2σ
ν |1−χ

| − ε0

Kτ+2σ
ν

− ε0

Kτ+2σ
ν

≥ γK−τ
ν − γ

4
K−τ

ν − γ

4
K−τ

ν

≥ 1

2
γK−τ

ν .

With this reduction, we only consider the resonant set to be no more thanK2τ+4σ+b,
and ⋃

|k|≤Kν ,
n,m∈Z1

Rν
knm =

⋃
|k|≤Kν ,

|n|,|m|≤Kτ+2σ

Rν
knm.

With Lemma 3.7,

meas(
⋃

|k|≤Kν ,
n,m∈Z1

Rν
knm) ≤ γ

K3τ+4σ+b
∗K2τ+4σ ∗Kb

ν ≤ γ

Kτ
ν

.

one has the final estimate. �
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Lemma 3.10. Let τ > b. Then the total measure needed to exclude along KAM
iteration is

meas(
⋃
ν≥0

Rν)

= meas[
⋃
ν≥0

(
⋃

|k|≤Kν ,n,m

Rν
k ∪Rν

kn ∪Rν
knm)]

≤
∑
ν≥0

γ

Kτ
ν

≤ γ.

Appendix A

Lemma A.1 (Lemma 2.1 of [23]). For any regular analytic functions f, g in D(r, s)
and C1

W in O with finite semi-norm (2.5), one has

‖[Xf , Xg]‖r′,s′ ≤ 22d+1δ−1‖Xf‖r,s‖Xg‖r,s ,

‖X{f,g}‖r′,s′ ≤ 22d+1δ−1‖Xf‖r,s‖Xg‖r,s ,

where δ = ( r
′

r )
2 min(s− s′, 1− r

r
′).
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[17] Thomas Kappeler and Jürgen Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45, Springer-
Verlag, Berlin, 2003. MR1997070 (2004g:37099)

[18] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imagi-
nary spectrum (Russian), Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 22–37, 95; English
transl., Funct. Anal. Appl. 21 (1987), 192–205. MR911772 (89a:34073)

[19] Sergej B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes
in Mathematics, vol. 1556, Springer-Verlag, Berlin, 1993. MR1290785 (95k:58145)

[20] Sergei B. Kuksin, A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math.
Math. Phys. 10 (1998), no. 3, ii+64. MR1754991 (2001g:37140)
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