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THE VOJTA CONJECTURE IMPLIES GALOIS RIGIDITY

IN DYNAMICAL FAMILIES

WADE HINDES

(Communicated by Romyar T. Sharifi)

Abstract. We show that the Vojta (or Hall-Lang) conjecture implies that
the arboreal Galois representations in a 1-parameter family of quadratic poly-
nomials are surjective if and only if they surject onto some finite and uniform
quotient. As an application, we use the Vojta conjecture, our uniformity the-
orem over Q(t), and Hilbert’s irreducibility theorem to prove that the prime
divisors of many quadratic orbits have density zero.

To prove the surjectivity of the �-adic Galois representation attached to an elliptic
curve, it suffices to prove the surjectivity onto some finite quotient. Namely, if
G ≤ GL2(Zl) is a closed subgroup that surjects onto GL2(Z/�

nZ) for some small
n, then G must be equal to GL2(Zl); see [17]. However, in [7] Rafe Jones has
suggested that such a rigidity is unlikely to hold if we replace GL2(Zl) with the
automorphism group Aut(T∞) of an infinite binary rooted tree T∞, replace the
subgroup G with the image of an arboreal Galois representation G∞(φ) attached to
a quadratic polynomial φ ∈ Q[x] (see [1] and [8]), and replace GL2(Z/�

nZ) with the
automorphism group Aut(Tn) of a level n binary rooted tree Tn; here the difficulty
arises from the fact that the Frattini subgroup of Aut(T∞) has infinite index. To
illustrate this point, Jones cleverly constructs a large quadratic polynomial

(1) φ(x) = (x− 88255775491812351975604)2 + 88255775491812351975605,

satisfying G8(φ) ∼= Aut(T8) and G∞(φ) �∼= Aut(T∞); see [7]. However, our unifor-
mity theorem over rational function fields [3, Theorem 1] together with Hilbert’s
irreducibility theorem suggest that such a rigidity holds in a 1-parameter family
obtained by specializing a quadratic polynomial with polynomial coefficients. In
this paper we prove such a claim, assuming some powerful (yet standard) conjec-
tures in arithmetic geometry. As a consequence, we predict that the prime divisors
of many quadratic orbits have density zero; see Corollary 1.

Notation. We fix some notation. Let φ(x) = (x−γ(t))2+c(t) for some polynomials
γ, c ∈ Z[t] and let φa(x) = (x − γ(a))2 + c(a) be the specialization of φ at some
integer a. Finally, we say that φa is stable if every iterate of φa is irreducible.
Then we have the following theorem regarding the arboreal Galois representations
G∞(φa) in the family {φa}a∈Z.
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Theorem 1. Suppose that φ is not isotrivial, φ(γ) · φ2(γ) �= 0, and the Vojta (or
Hall-Lang) conjecture holds. Then there exist an integer nφ > 0 and an effectively
computable finite set Fφ such that for all integers a /∈ Fφ,

Gnφ
(φa) ∼= Aut(Tnφ

) implies that G∞(φa) ∼= Aut(T∞).

Furthermore, if φa is stable, then

sup
a �∈Fφ

φa is stable

{[
Aut(T∞) : G∞(φa)

]}
is finite.

The study of arboreal representations owes its beginnings to classical prime fac-
torization problems in polynomial recurrences. Specifically, let f ∈ Z[x] be a poly-
nomial with integer coefficients and let b = b0 ∈ Z. For n ≥ 1, define the sequence
bn = f(bn−1) = fn(b0). A fundamental object in dynamics, this set of numbers is
called the orbit of b with respect to f and is denoted

(2) Of (b) := {b, f(b), f2(b), . . . }.
It is a classical question in number theory to ask whether Of (b) contains infinitely
many primes. At the moment, this question is well beyond reach. For example, if
f(x) = (x − 1)2 + 1 and b = 3, then bn = 22

n

+ 1 are the Fermat numbers, which
have been studied extensively [10].

However, one can ask a more tractable question, which has connections to ar-
boreal representations. Namely, how big is the set of prime divisors in a particular
orbit? As a partial answer, it is known that G∞(f) ∼= Aut(T∞(f)) implies that the
set

(3) Pf (b) := {primes p
∣∣ bn = fn(b) ≡ 0 (mod p) for some n ≥ 1}

of prime divisors of Of (b) has density zero [8, Theorem 4.1]. Intuitively, this means
that if the Galois groups of iterates of f are as large as possible, then the prime
divisors in any particular orbit cannot accumulate. To illustrate this point and
Theorem 1, we use our uniformity theorem over Q(t) (see [3, Theorem 1]) and
Hilbert’s irreducibility theorem to predict that the prime divisors of many quadratic
orbits have density zero.

Corollary 1. Suppose that φ satisfies the following conditions:

(a) φ is not isotrivial,

(b) Gmφ
(φ) ∼= Aut(Tmφ

) for mφ given by

mφ :=

{
17 , deg(γ) �= deg(c)

2 · log2
(
78 · deg(γ)

deg(c−γ) + 9
)

, deg(γ) = deg(c)

}
.

Then the Vojta (or Hall-Lang) conjecture implies the following statements:

(1) There exists a thin set Eφ such that G∞(φa) ∼= Aut(T∞) for all a /∈ Eφ.

(2) The density δ(Pφa
(b)) = 0 for all b ∈ Z and all a /∈ Eφ.

Before we begin the proof of the theorem, we remind the reader of the relevant
conjectural height bounds in arithmetic geometry. In keeping with standard no-
tation, we let h : Q → R≥0 be the (absolute) logarithmic height of an algebraic

number [15, VIII.5]. Similarly, for f ∈ Q[x], we let h(f) be the maximum of the
heights of the coefficients of f .
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Conjecture 1. For all d ≥ 3 there exist constants C1 = C1(d) and C2 = C2(d) so
that for all f ∈ Z[x] of degree d with disc(f) �= 0, if x, y ∈ Z satisfy y2 = f(x), then

(4) h(x) ≤ C1 · h(f) + C2.

Remark 1.1. Versions of Conjecture 1 were made by Hall and Lang (see [15, IV.7])
for d ≤ 4. On the other hand, for larger d Conjecture 1 is a consequence of the
Vojta conjecture; see the main result of [5] or [16, Example 5].

Proof (Theorem). To prove Theorem 1, we need only assume that the bounds in
Conjecture 1 hold for a single value of d ≥ 3. Therefore, without loss of generality,
we assume that (4) holds for d = 3. Throughout the proof, we use the following
fact: for all f ∈ Q[x] of degree d there are constants C1,f and C2,f , depending on f ,
such that

(5) d · h(α)− C1,f ≤ h(f(α)) ≤ d · h(α) + C2,f for all α ∈ Q̄;

see [14, Theorem 3.11]. We fix some notation. Define the affine transformation
λa(x) = x+ γ(a), and let σa be the quadratic polynomial given by conjugating φa

by λa, that is,

σa(x) := λ−1
a ◦ φa ◦ λa(x) = x2 + c(a)− γ(a).

The triangle inequality on the absolute values of Q and (5) imply that

(6) h(λ−1
a (α)) ≤ h(α) + 2 · log(3) + deg(γ) · h(a) + h(γ) for all α ∈ Q̄.

On the other hand, there is a lower bound

(7) h(α)− deg(γ) · h(a)−A1,φ ≤ h(λ−1
a (α)) for all α ∈ Q̄

and some positive constant A1,φ; see [14, Theorem 3.11]. Moreover, repeated ap-
plication of the triangle inequality implies that

(8) h(σm
a (α)) ≤ 2m ·

(
h(α) +A2,φ + deg(c− γ) · h(a)

)
for all α ∈ Q̄

and some positive constant A2,φ. Finally, since φ is not isotrivial, deg(c−γ) �= 0. In
particular, (5) implies that there exists a computable, positive constant B1,φ such
that

(9) deg(c− γ) · h(a)−B1,φ ≤ h
(
c(a)− γ(a)

)
for all a ∈ Q̄.

From here, we derive Theorem 1 from the following lemma, which ensures the
existence of so-called square-free, primitive prime divisors in the critical orbit after
a uniform number of iterates; compare to [2] and [13].

Lemma 1.1. Assume the Vojta (or Hall-Lang) conjecture and suppose that a ∈ Z

satisfies the following properties:

(1) φa(γ(a)) · φ2
a(γ(a)) �= 0,

(2) c(a)− γ(a) /∈ {−2,−1, 0, },

(3) deg(c− γ) · h(a)−B1,φ > 0.

Then there is an nφ > 0 (not depending on a) such that for all n > nφ there exists
an odd prime pn with the following property:

(10) vpn
(φn

a(γ(a))) �≡ 0 (mod 2) and vpn
(φj

a(γ(a))) = 0 for all 1 ≤ j ≤ n− 1;

here vp denotes the normalized p-adic valuation. Such a prime pn is called a square-
free, primitive prime divisor for φn

a(γ(a)).
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Proof. For every n, write φn
a(γ(a)) = 2en · dn · y2n for en ∈ {0, 1} and some odd,

square-free integer dn. Our goal is to first prove that the dn grow rapidly, and from
there deduce that eventually each new dn is divisible by a new prime. Note that if
the dn’s were to grow slowly, then (ignoring the power of 2 for now), there would be
values of d for which the curve dY 2 = φ2

a(X) has a rational point with very large
coordinates compared to the height of its defining equation. Quantifying this idea
leads to a contradiction of Conjecture 1.

If n is such that no prime pn as in (10) exists, then dn is a unit or dn =
∏

pi for
some primes pi ∈ Z satisfying pi

∣∣φmi
a (γ(a)) and 1 ≤ mi ≤ n−1. On the other hand,

if dn is not a unit, then each pi
∣∣φn−mi

a (0), since pi
∣∣φmi

a (γ(a)) and pi
∣∣φn

a(γ(a)). To
see this, note that

φn−mi
a (0) ≡ φn−mi

a (φmi
a (γ(a))) ≡ φn

a(γ(a)) ≡ 0 (mod pi).

In particular, when dn is not a unit, we have the refinement:

(11) dn =
∏

pi, where pi
∣∣φti

a (γ(a)) or pi
∣∣φti

a (0) for some 1 ≤ ti ≤
⌊n
2

⌋
.

Our goal is to show that n is bounded independently of a. To do this, define the
elliptic curve

(12) C
(dn)
φa

: Y 2 = 2en · dn · (X − c(a)) · φa(X).

Note that C
(dn)
φa

is nonsingular by assumption (1) of Lemma 1.1. Then we have the
integral point

(13)
(
φn−1
a (γ(a)) , 2en · dn · yn ·

(
φn−2
a (γ(a))− γ(a)

))
∈ C

(dn)
φa

(Z).

In particular, the Hall-Lang conjecture (cf. Conjecture 1 for d = 3) on integral
points of elliptic curves implies that

(14) h
(
φn−1
a (γ(a))

)
≤ κ1 · h(dn) + κ2 · h(a) + κ3

for some absolute constants κi > 0.
Assuming the Vojta conjecture, one obtains a similar bound as in (14); we simply

replace C
(dn)
φa

and the point on (13) with the genus two curve Y 2 = 2en · dn·
(X − c(a)) · φ2(X) and its corresponding point with X-coordinate φn−2

a (γ(a)); see
[4] for more on these hyperelliptic curves defined by iteration. Finally, apply the
main result of [5]; see also [16, Example 5].

Combining (6) and (14), we obtain

(15) h(λ−1
a (φn−1

a (γ(a)))) ≤ κ1 · h(dn) + κ2,φ · h(a) + κ3,φ,

where the constants κ2,φ and κ3,φ depend on φ. However,

λ−1
a (φn−1

a (γ(a))) = λ−1
a ◦ φn−1

a ◦ λa(0) = σn−1
a (0).

On the other hand, the canonical height (see [14, 3.4]) satisfies∣∣ĥσa
(x)− h(x)

∣∣ ≤ h
(
c(a)− γ(a)

)
+ log(2) ≤ deg(c− γ) · h(a) +B1,φ + log(2),

for all x ∈ Q; see [6, Lemma 12]. In particular, we apply this bound to x = σn−1
a (0)

and use (15) to conclude that

(16) 2n−1 · ĥσa
(0) = ĥσa

(σn−1
a (0)) ≤ κ1 · h(dn) + κ′

2,φ · h(a) + κ′
3,φ.



THE VOJTA CONJECTURE IMPLIES GALOIS RIGIDITY 1935

Moreover, Ingram has shown in [6, Proposition 11], that

ĥσa
(x) ≥ 1

32
max

{
h
(
c(a)− γ(a)

)
, 1

}
for all wandering points x ∈ Q.

By assumption c(a) − γ(a) /∈ {−2,−1, 0}, so that 0 is a wandering point of σa

(equivalently, φa is not postcritically finite). To see this, note that if 0 is not
wandering, then c(a) − γ(a) belongs to the Mandelbrot set M over the complex
numbers; see [14, §4.24]. In particular, [14, Proposition 4.19] implies that |c(a) −
γ(a)| ≤ 2, where | · | denotes the complex absolute value. Hence the absolute
logarithmic height of c(a) − γ(a) is at most log(2). One checks that this implies
that c(a)− γ(a) ∈ {0,−1,−2} as claimed.

On the other hand, we know there exists a positive constant B1,φ as in (9).

Consolidating this fact with the lower bound on ĥσa
(0) and the bound on (16), we

obtain that

(17) 2n−6 ·
(
deg(c− γ) · h(a)−B1,φ

)
≤ κ1 · h(dn) + κ′

2,φ · h(a) + κ′
3,φ.

The left hand side of (17) is of our desired shape. It remains to bound h(dn) in
terms of h(a), to complete the proof of Lemma 1.1. To do this, note that (7) and
(11) together imply that

h(dn) ≤
�n

2 �∑
i=1

h(φi
a(γ(a))) +

�n
2 �∑

j=1

h(φj
a(0))

≤
�n

2 �∑
i=1

h(σi
a(0)) +

�n
2 �∑

j=1

h(σj
a(γ(a))) + n ·

(
deg(γ) · h(a) +A1,φ

)
.

(18)

On the other hand, (8) implies that

h(σi
a(0)) ≤ 2i ·

(
A2,φ + deg(c− γ) · h(a)

)
and

h(σj
a(γ(a))) ≤ 2j ·

(
h(γ(a)) +A2,φ + deg(c− γ) · h(a)

)
.

However, there exists a positive constant A3,φ, such that h(γ(a)) ≤ deg(γ) · h(a) +
A3,φ. Hence,

h(dn) ≤ 2�
n
2 �+2 ·

(
A2,φ + deg(c− γ) · h(a)

)
+ 2�

n
2 �+1 ·

(
deg(γ) · h(a) +A3,φ

)
+ n ·

(
deg(γ) · h(a) +A1,φ

)
.

(19)

Combining (17) and (19), we see that

2n−6 ≤
(
κ1 · deg(c− γ) · h(a) + κ1 ·A2,φ

deg(c− γ) · h(a)−B1,φ

)
· 2�n

2 �+2

+

(
κ1 · deg(γ) · h(a) + κ1 ·A3,φ

deg(c− γ) · h(a)−B1,φ

)
· 2�n

2 �+1

+

(
κ1 · deg(γ) · h(a) + κ1 ·A1,φ

deg(c− γ) · h(a)−B1,φ

)
· n+

(
κ′
2,φ · h(a) + κ′

3,φ

deg(c− γ) · h(a)−B1,φ

)
.

(20)
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However, as a real valued function, any linear fractional transformation ρ(x) =
ax+b
cx+d is bounded away from its poles. Hence, if we view h(a) as the variable x, we
see that

(21) 2n−6 ≤ M1,φ · 2�n
2 �+2 +M2,φ · 2�n

2 �+1 +M3,φ · n+M4,φ,

since deg(c− γ) · h(a)−B1,φ > 0. In particular, if Mφ := max{Mi,φ}, then
(22) n ≤ max{6, 2 · log2(Mφ) + 19}.
Therefore, we have bounded n independently of a. This completes the proof of
Lemma 1.1. �

With the lemma in place, we return to the proof of Theorem 1. Let Pφ(t) be the
polynomial whose roots cut out conditions (1) and (2) of Lemma 1.1, that is,

(23) Pφ(t) := φ(γ(t)) · φ2(γ(t)) ·
(
c(t)− γ(t)

)
·
(
c(t)− γ(t) + 1

)
·
(
c(t)− γ(t) + 2

)
.

From here, we can define the finite set of exceptional specializations:

(24) Fφ :=

{
a ∈ Z

∣∣∣∣ Pφ(a) = 0 or h(a) ≤ B1,φ

deg(c− γ)

}
.

Remark 1.2. The set Fφ can be explicitly computed by using an effective version
of the Nullstellensatz to compute B1,φ; see the proof of the lower bound in [14,
Proposition 3.11]. However, since φ is relatively simple, it is likely that Fφ may be
computed without the Nullstellensatz.

We now set nφ := 1 + max{2, 2 · log2(Mφ) + 19} and suppose that Gnφ
(φa) ∼=

Aut(Tnφ
) and that a /∈ Fφ. To prove that G∞(φa) ∼= Aut(T∞), we first show that

φa is stable.
If φa is not stable, then [9, Proposition 4.2] implies that φn

a(γ(a)) is a square
for some n ≥ 1. However, by Lemma 1.1, such an n must be less than nφ. In
particular, Gn−1(φa) ∼= Aut(Tn−1), as the Galois group of the larger iterate φ

nφ
a is

maximal. Moreover, since the full automorphism group of the preimage tree acts
transitively on the roots of φn−1

a , we conclude that φn−1
a must be irreducible.

On the other hand, [3, Lemma 1] implies that Kn(φa)/Kn−1(φa) is not maximal,
since φn

a(γ(a)) is a square in Kn−1(φa); in fact, it is already a square over the
rational numbers. Therefore, Gn(φa) � Aut(Tn), contradicting our assumption
that Gnφ

(φa) ∼= Aut(Tnφ
). We conclude that φa is stable.

Now, letm be any integer and suppose that the subextensionKm(φa)/Km−1(φa)
is not maximal. In particular, m > nφ since Gnφ

(φa) ∼= Aut(Tnφ
). However, we

have shown that φa is stable, hence φm
a (γ(a)) ∈

(
Km−1(φa)

)2
; see [3, Lemma 1].

Hence, if we write φm
a (γ(a)) = 2em · dm · y2m for some ym, dm ∈ Z such that dm is

a unit or an odd square-free integer, then the primes dividing dm must ramify in
Km−1(φa).

On the other hand, by [11, Corollary 2, p.159], we see that the primes which ram-
ify in Km−1(φa) must divide the discriminant of φm−1

a . Let Δn be the discriminant
of φn

a . Then we have the following formula, given in [9, Lemma 2.6]:

(25) Δn = ±Δ2
n−1 · 22

n · φn
a(γ(a)).

In particular, if dm is not a unit, then dm =
∏

pi for some odd primes pi ∈ Z

such that pi
∣∣φmi(γ) and 1 ≤ mi ≤ m − 1. However, since m > nφ, Lemma 1.1

implies that there exists a prime divisor of dm which is coprime to all lower iterates,
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a contradiction. Hence, Km(φa)/Km−1(φa) is maximal for all m. It follows that
G∞(φa) ∼= Aut(T∞), completing the first statement of Theorem 1.

Similarly, if a /∈ Fφ and φa is stable, then Lemma 1.1 implies that the subex-
tensions Km(φa)/Km−1(φa) are maximal for all m > nφ. Hence G∞(φa) is a finite
index subgroup of Aut(T∞), and[

Aut(T∞) : G∞(φa)
]
=

[
Aut(Tnφ

) : Gnφ
(φa)

]
=

22
nφ−1[

Knφ
(φa) : Q

] ≤ 22
nφ−1

2nφ
= 22

nφ−nφ−1,

since φ
nφ
a is an irreducible polynomial of degree 2nφ over the rational numbers. In

particular, the index bound does not depend on a, which completes the proof of
the theorem. �

If we fix φ, it is natural to ask to what extent the corresponding nφ is computable
(at least conjecturally). However, since the constants appearing in Conjecture 1
are not explicit, we cannot make the proof of Theorem 1 effective. Nonetheless, it
is possible to use additional techniques in the theory of rational points on curves
to classify the Galois behavior of small iterates and produce a conjectural nφ. For
instance, we make the following conjecture when φ(x) = x2 + t.

Conjecture 2. If φa(x) = x2 + a, then for all a ∈ Z,

G3(φa) ∼= Aut(T3) implies that G∞(φa) ∼= Aut(T∞).

In particular, if a �= 3, then G2(φa) ∼= Aut(T2) implies that G∞(φc) ∼= Aut(T∞).

Remark 1.3. The evidence for Conjecture 2 comes from [4, Theorem 1.1]. There
we prove that G3(φa) ∼= Aut(T3) implies G4(φa) ∼= Aut(T4). Furthermore, we show
that if a �= 3 and G2(φa) ∼= Aut(T2), then G4(φa) ∼= Aut(T4).

We close with the proof of Corollary 1.

Proof (Corollary). If φ is not isotrivial and Gmφ
(φ) ∼= Aut(Tmφ

), then it follows

from [3, Theorem 1] that G∞(φ) ∼= Aut(T∞). In particular, φ(γ) · φ2(γ) �= 0 and
there exists a finite set Fφ and an integer nφ such that

(26) Gnφ
(φa) ∼= Aut(Tnφ

) implies that G∞(φa) ∼= Aut(T∞),

for all a /∈ Fφ; see Theorem 1 above. On the other hand, since G∞(φ) ∼= Aut(T∞),
we conclude that Gnφ

(φ) ∼= Aut(Tnφ
) and Hilbert’s irreducibility theorem implies

that the set

(27) Zφ :=
{
a ∈ Z

∣∣ Gnφ
(φa) �∼= Aut(Tnφ

)
}

is thin; see [12, Theorem 3.4.1]. Hence, the set Eφ := Zφ ∩ Fφ is also thin, and
if a �∈ Eφ, then (26) and (27) imply that G∞(φa) ∼= Aut(T∞). In particular, the
density δ(Pφa

(b)) of prime divisors of Oφa
(b) is zero; see [8, Theorem 4.1]. This

completes the proof of Corollary 1. �
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