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ABSTRACT. Let n and d be integers with 1 < d < n—1. Let £ be a real number
which is not algebraic of degree at most n. We establish that there exist an
effectively computable constant ¢, depending only on £ and on n, an integer k
with 1 < k < d, and infinitely many integer polynomials P(X) of degree m at
most equal to n whose roots aq, ..., o, can be numbered in such a way that

(€= o) ... (€ — ay)| < cH(P)"TFT"—@T L,

This extends a well-known result of Wirsing who dealt with the case d = 1.

1. INTRODUCTION AND RESULT

It follows from the theory of continued fractions that every irrational real number
¢ is approximable at order at least two by rational numbers, in the sense that
there exist infinitely many rational numbers p/q such that |¢ — p/q| < 1/¢%. A
natural question then occurs: what can be said on the rate of approximation to &
by algebraic numbers of bounded degree? This problem was first considered in a
seminal paper of Wirsing [I1], who proved Theorem 1.1 below.

Throughout this text, the height H(P) of a complex polynomial P(X) is the
maximum of the moduli of its coefficients and the height H(«) of an algebraic
number « is the height of its minimal defining polynomial over Z.

Theorem 1.1. Let n be a positive integer. For any real number & which is not
algebraic of degree at most n, there exist an effectively computable constant ¢ and

infinitely many real algebraic numbers a of degree at most equal to n satisfying
_n+3

(1.1) € —a|<cH(a)" 2

Theorem 1.1 has been subsequently slightly improved; see Chapter 3 of [I]. Let
us just mention that Tishchenko [10] established that its conclusion holds with the
exponen —”TJ“O’ in (1.1) replaced by —% — v,, where 7, tends to 3 as n tends to

infinity.
It is often believed that the statement of Theorem 1.1 remains true with the
exponent —"TH in (1.1) replaced by —n — 1 + ¢, with e arbitrarily small, or even

by —n — 1. This is indeed the case when n = 2, as was proved by Davenport and
Schmidt [4] (see also [9]).
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Theorem 1.2. For any real number £ which is neither rational, nor quadratic,
and for any real number ¢ greater than 160/9, there exist infinitely many rational
or quadratic real numbers a satisfying

€ — al < e max{1,[¢]*} H(a) ™.

Theorem 1.2 has been subsequently extended by Davenport and Schmidt [5] (up
to the value of the numerical constant) as follows.

Theorem 1.3. Let n > 2 be an integer and let £ be a real number which is not
algebraic of degree at most n. Then there exist an effectively computable constant c,
depending only on & and on n, an integer k with 1 < k < n—1, and infinitely many

integer polynomials P(X) of degree n whose roots avy,...,a, can be numbered in
such a way that
(1.2) (€ —ar)...(E—ap)| <cH(P) "L

The goal of this note is to establish the following theorem, which could be viewed
as an intermediate result between Theorem 1.1 and Theorem 1.3 (although Theorem
1.3 does not follow from Theorem 1.4).

Theorem 1.4. Let n and d be integers with 1 < d < n — 1. Let & be a real
number which is not algebraic of degree at most n. Then there exist an effectively
computable constant c, depending only on & and on n, an integer k with 1 < k < d,
and infinitely many integer polynomials P(X) of degree m at most equal to n whose
roots o, . ..,y can be numbered in such a way that

(€= a1).. (€ —ow)| < cH(P) 7m it

By taking d = 1 in Theorem 1.4 we recover Theorem 1.1. By takingd =n—1in
Theorem 1.4 we recover a weaker form of Theorem 1.3, namely with the exponent
—n — 1 in (1.2) replaced by —n — . Theorem 1.3 follows from a general result on
linear forms with real coefficients, whose proof is rather subtle.

The conclusion of Theorem 1.4 is not a surprise. It is not unexpected to improve
the value # obtained in (1.1) by taking into account more algebraic numbers.
Indeed, a comparable phenomenon occurs for the closely related question of root
separation of integer, irreducible polynomials, which we briefly survey below.

Throughout, the numerical constants implied by the signs <« and > depend at
most on the degree of the polynomial involved. In 1964, Mahler [§] established that

(1.3) log — ao| > H(P)™ "+

for any distinct roots a; and aq of the integer polynomial P(X) of degree n. This
is sharp for n = 2 and for n = 3. For n > 4, it has been shown in [2] that the
exponent —n+1 in (1.3) cannot be replaced by something greater than —2 — -2=2

2 A(n—1)>
when P(X) is irreducible (a stronger result has been established in [3] for reducible
polynomials).

Actually, (1.3) is a special case of the lower bound
(1.4) I lei =5l > HEP) ™,

1<i<j<d

valid for any integer polynomial P(X) of degree n having at least d > 2 distinct
roots aj, ..., aq. It has been shown in [2] that the exponent —n + 1 in (1.4) cannot
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be replaced by —vgn, for a real number vy less than (d — 1)/d, when P(X) is
irreducible (a stronger result has been established in [3] for reducible polynomials).

Roughly speaking, in the problem of Wirsing and in the question of root separa-
tion of integer, irreducible polynomials, the truth lies somewhere between n/2 and
n. And this interval can be reduced by taking several roots into consideration.

The proof of Theorem 1.4 is a slight extension of Wirsing’s proof of Theorem 1.1.
The idea is as follows. We construct an infinite family of pairs (P (X), Qx(X))k>1
of coprime integer polynomials of degree at most n and taking small values at &.
Then, considering the resultant of P, (X) and Qp(X), Wirsing showed that Py(X)
or Qi(X) has a root quite close to . By studying every possible distribution of the
roots of P(X) and Qx(X) in the ball of radius 1 centered at &, we get Theorem
1.4.

2. PROOF OF THEOREM 1.4

We begin by reproducing Lemma A.3 of [I], often referred to as Gelfond’s Lemma
(see Lemma IT on page 135 of [7]).

Lemma 2.1. Let Pi(X),...,P.(X) be non-zero complex polynomials of degree
ni, ..., N, respectively, and set n =nqy + ...+ n,.. We then have

2" H(P)...H(P,) < H(P,...P,) < 2" H(P,)... HP,).

If the conclusion of Theorem 1.4 holds for a real number &, then it also holds for
any real number of the form £+ %, where p, g are integers with ¢ > 1. Consequently,
we may assume that 0 < & < 1/10.

We infer from Minkowski’s First Theorem and Lemma 2.1 that there exist in-
finitely many irreducible, primitive, integer polynomials P(X) of degree at most n
satisfying

0<|PE)| < HP)"

Let P(X) be such a polynomial. If R(X) is an integer polynomial of degree
at most n which is a multiple of P(X), then, again by Lemma 2.1, there exists a
positive constant ¢, depending only on n and less than 1, such that H(R) > 2¢ H(P).
By Minkowski’s First Theorem, the system of inequalities

[bo" + ...+ bl < c " H(P)™",
[b1], ..., ]bn| < cH(P)

has a non-zero integer solution (bo, ...,b,). Set Q(X) =b, X" + ...+ b1 X + by. If
H(P) > 2c¢71, it follows from the assumption 0 < £ < 1/10 that H(Q) is at most
equal to cH (P). Consequently, by our choice of ¢, the polynomials P(X) and Q(X)
have no common factor.

Hence, one can build two sequences (Py)r>1 and (Qg)k>1 of non-zero integer
polynomials of degree at most n, such that the height of P(X) tends to infinity
with k,

21 POl < H(P)™",  H(Qr) < H(Py), |Qu(E)|<H(P)™ (k=1),
and
P(X) and Qg(X) are coprime (k > 1).
We need an auxiliary result, which extends a lemma of Wirsing [11]. Notice that
in Lemma 2.2 below and in its proof, the constant implied in < depends only on ¢.
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Lemma 2.2. Let t > 2 be an integer and let P(X) and Q(X) be coprime polyno-
mials with integer coefficients of degrees less than or equal to t. Let d be a positive
integer at most equal to t. Let € be a real number with |£| < 1 and which is not
algebraic of degree less than or equal to t. Assume that there exist a root of P(X)
and a root of Q(X) in the open disk centered at & of radius 1. Then, we either have

(22) 1< max{|PE)|"™" - H(P)™"""- H(Q)"|Q(§" - H(Q)'™"' - H(P)'},

or there exist roots aq,...,qy, with u < d, of the polynomial P(X) or roots
Bi,..., By, with v < d, of the polynomial Q(X) such that one of the following
siz cases holds:

(2.3) € =l [€ — o] < |PE)] - H(P) ™,
(2.4) €= Bl 1€ = B < 1Q(E)] - HQ) ™,
(25) (€= ar|---[§ = au)™T < [P 1Q(E)] - H(P)' - H(Q)',
(26) (€= |-+ [¢ = aa) ™ < PO Q)T - H(P) - H(Q)' 4,
27) (€= Bl 1€ = Ba)™ < |P©)]- Q) - H(P) - H(Q) ",

(28)  (I€=Bul--- | = Ba)™H <[P - 1QE)]- H(P)' ™1 H(Q)'.

Proof. We denote by a, . .., ay, the roots of P(X) and by 81, ..., 8, those of Q(X),
numbered in such a way that, if p; := |ay — €| and ¢; :=|5; —§| fori=1,...,m
and j =1,...,n, we have p; < ... < p,, and g1 < ... < @,. Let § and &’ be the
largest indices such that ps < 1 and ¢5 < 1, respectively.

Corollary A.1 of [I] applied with p = 1 gives

(2.9) POI<HP) [[ pi<IPE©)
1<i<§

and

(2.10) ROI<HQ) [] @<l
1<5<8

If 6 < d, then, by (2.9), we get
pi-..ps < H(P)"H|P(€)],
and (2.3) holds with u = 4. Likewise, if 6’ < d, then, by (2.10), we get
q - g < H(@Q) Q)]

and (2.4) holds with v = §’. Thus, we can assume that m,n,d, and §' are all at
least equal to d + 1.

Denote by a,, the leading coefficient of P(X) and by b,, that of Q(X). Denoting
by R the resultant of the polynomials P(X) and Q(X), we have

(2.11) 1 < |R| = |awm|™|bn|™ H lovi — Bj| < |ambn|" H max{p;,q;} =: AB,
1<i<m 1<i<m
1<j<n 1<j<n
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where

(2.12) A= H H max{p;,q; }
1<i<6 1<5 <97

and

B S |ambn‘t H (max{lapi}max{lvqj}) < H(P)t H(Q)t
1<i<m
1<j<n

We distinguish several cases, which cover all the possible configurations of the
roots of P(X) and Q(X). We assume that p; < ¢j.

e First case: p1 < q¢1 < ... <qi+1 < Pd+1-

Observe that

(2.13) I max{pig}= [] @ <I1Q©-HQ™,

1<j<é’ 1< <6
by (2.10), and that, for j =1,...,d+ 1,

H max{p;, ¢;} < H Di-

2<i<s d+1<i<s
Consequently, it follows from (2.9), (2.12) and (2.13) that
(p1-..pa)" A< |QO)]- ST e

1<i<é

< Q|- H@Q) ™ (IP(©)]- H(P)~H)*.
Thus, by (2.11), we get

(- pa)™ < [P Q) H(P) T H(Q),

giving (2.5).

e Second case: p; < ...<Pgr1 < q1.

Then, we have by (2.10), that

A< (g q9) < [QUOI™T - H@ ™,
thus
L<AB < QU™ H(Q"™ " H(P),

which corresponds to (2.2).

e Third case: q1 < pg4+1 and p1 < q1 < ... < Pa+1 < Ga+1-
Then, observe that, for i =2,...,d+ 1,

[[ mex{pigt< J] o
2<5<0! d+1<5<6
Combined with

H max{p;, ¢1} < pa+1-..ps
2<i<s

and (2.13), this gives
(p1---pa)(q1 - qa)?A < |Q(E) I 4 I e

1<5<8 1<i<s
< (1QE)|-HQ)H)™ ! |PE)-H(P)™!
Ifpr...pa <q1...qq, then we get

(pr---pa)™ < Q)T PO H(Q) T H(P)',
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namely (2.6), and, otherwise,

(1 q2)™ < QI PEOIH(Q) ™ H(P),

which corresponds to (2.7).
If ¢1 < p1, then, by distinguishing three cases as above, we get (2.7), (2.2), (2.8),
or (2.5). This completes the proof of the lemma. O

Completion of the proof of Theorem 1.4. If there are infinitely many integer poly-
nomials P(X) of degree at most n such that |P(£)| < H(P)~2", then, by (3.11) of
[1], there exist infinitely many algebraic numbers « of degree at most n such that
|€ —a] < H(a)™™71, and the theorem clearly holds in that case.

Consequently, we assume that there are only finitely many integer polynomials
P(X) of degree at most n such that |P(¢)| < H(P)~2". Since the height of Py(X)
tends to infinity with &, it then follows from the last inequality of (2.1) that the
height of Q(X) also tends to infinity with k.

Let k be sufficiently large such that |Py(€)] < 1 and |Qx(€)] < 1. Then, the
polynomials Py (X) and Qx(X) have a root in the open disk centered at & of radius
1. Apply Lemma 2.2 to the pairs of polynomials (P, Qx). By (2.1), we get

max{|Py(€)| " - H(Py)" 4 H(Qx)", |Qx(§)*T - H(Qx)" ™"~ H(Py)"}
< H(P,) "
Thus, (2.2) cannot hold for k large enough.
Furthermore, we derive from (2.1) that
(Qu(OITH P(€) H (Qr)"™" " H(PR)" ™ < H(Py) ™) < H(Qg) ")
and
[P(©)[ T Qi) H ()™ H(Qu)" ™" < H(Py) ™2 < H(Qg) "+,

Combined with (2.5) to (2.10), this shows that there are roots oy, ..., aq of Py(X)
such that

(1€ = |-+ [€ = aa)) ™ < H(Py)~(roHe+2)
or there are roots (1, ..., 34 of Qr(X) such that

(1€ = Bil -+ 1€ = Bal) ™ < H(Qy) ™ "HHH+2),
This completes the proof of the theorem. O
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