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TRANSITIVE GRAPHS UNIQUELY DETERMINED

BY THEIR LOCAL STRUCTURE

JOSHUA FRISCH AND OMER TAMUZ

(Communicated by Patricia Hersh)

Abstract. We give an example of an infinite, vertex transitive graph that
has the following property: it is the unique completion to a transitive graph
of a large enough finite subgraph of itself.

1. Introduction

Vertex transitive graphs “look the same from the point of view of every vertex”;
all vertices play the same role in their geometry. Thus they are a natural model
for a discrete, homogeneous geometrical space. In this paper we study transitive
graphs whose local structure determines their global structure.

Consider the following scenario: Alice has in mind some vertex transitive graph
G and wants to describe it to Bob. Her graph may be infinite, and so she cannot
provide a complete list of the vertices and edges. Instead, she chooses a vertex
in the graph, and shows to Bob a ball of some finite radius around that vertex;
since the graph is transitive, it does not matter which vertex she chooses. Can this
convey to Bob enough information to uniquely determine G, given that he knows
that G is transitive?

For example, if G is the bi-infinite chain, then the answer is no: a ball of any
radius is a finite chain, and so Bob cannot tell whether G is the bi-infinite chain,
or whether it is a large cycle. If G is a regular tree, then likewise the answer is
no: there are many transitive graphs that locally look like trees, but are not trees.
On the other hand, if G is finite then the answer is yes, since in this case Alice
can show Bob the entire graph. Hence the question is: does there exist an infinite
transitive graph that is uniquely determined by a large enough finite ball?

Formally, let G be the set of finite or countably infinite, simple, undirected,
locally finite, connected, vertex transitive graphs; these terms are defined formally
in Section 2. Given a G ∈ G and an r ∈ N, a ball of radius r in G is the subgraph
that includes all vertices at distance at most r from some vertex in G, and all
edges between them. We say that G = (V,E) ∈ G is isolated if it has the following
property: there exists an r ∈ N large enough so that, if a ball of radius r in some
H ∈ G is isomorphic to the ball of radius r in G, then H is isomorphic to G.
Intuitively, the structure of the ball of radius r in G determines G uniquely.
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Clearly, every finite transitive graph is isolated: one can take r to be the radius
of G. However, it is not obvious that there are any infinite graphs that have this
property. In this paper we give an example of an isolated infinite graph, namely
Trofimov’s grandfather graph [9].

Note that the grandfather graph is not unimodular, and so cannot locally re-
semble finite graphs. The novelty is therefore that it can also not locally resemble
any other infinite graph. It would be interesting to find an example of an isolated,
finite, unimodular graph.

This question can be formulated as one of finding isolated points in a natural
topology on the set of transitive graphs, namely the Benjamini-Schramm topol-
ogy [2, 4]. This topological perspective raises a number of interesting questions:
What is the Cantor-Bendixson rank of this space? Which graphs are left after
the isolated points are repeatedly removed? And what generic properties do these
graphs have?

These and similar questions have been previously addressed in regard to the re-
lated space of marked groups [5, 6]. In particular, Cornulier, Guyot and Pitsch [7]
characterize the isolated points in that space. It would be interesting to under-
stand if the (unlabeled) Cayley graphs of these groups are isolated in the space of
transitive graphs.

An analogous, more quantitative version of this question can be asked for finite
graphs: Which finite transitive graphs of radius n are uniquely determined by a
ball of radius (say) n/10?

2. Formal definitions and results

2.1. Transitive graphs. Let G = (V,E) be a graph. We will study the set of
graphs with the following properties:

• V is finite or countably infinite.
• G is simple and undirected: E is a symmetric relation on V .
• G is locally finite: the number of edges incident on each vertex is finite.
• G is connected: there is a path between every pair of vertices.
• G is vertex transitive; we next define this notion.

A graph isomorphism between G = (V,E) and H = (U, F ) is a bijection h : V →
U such that (u,w) ∈ E if and only if (h(u), h(w)) ∈ F . A graph automorphism
is a graph isomorphism from a graph to itself. A graph G = (V,E) is said to be
vertex transitive if its automorphism group acts transitively on its vertices. That
is, if for every u,w ∈ V there exists an automorphism h such that h(u) = w.
The isomorphism class of a transitive graph G is the set of graphs H that are
isomorphic to G. We denote by G the set of isomorphism classes of graphs with the
properties described above. In this paper, we will, whenever unambiguous, refer to
“graph isomorphism classes” simply as “graphs”, and likewise simply denote by G
the isomorphism class of G. We will accordingly write G = H whenever G and H
are in the same isomorphism class.

Given G = (V,E) ∈ G and r ∈ N, let Br(G) = (Vr, Er) be the ball of radius r in
G. This is the finite induced subgraph of G whose vertices Vr are all the vertices
at distance at most r from some vertex of G, and whose edges Er are the edges of
G whose vertices are both in Vr. Since we are concerned with graph isomorphism
classes, and since G is vertex transitive, it does not matter with which vertex of G
we choose to construct Br(G).
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2.2. The Benjamini-Schramm topology and isolated points. The Ben-
jamini-Schramm topology [2, 4] on G is defined by the following metric. Given
G,H ∈ G, let

D(G,H) = sup{2−r : Br(G) = Br(H)}.
It is straightforward to verify that this is indeed a metric. In fact, this topology
is Polish and zero-dimensional. The sets Gd consisting of the graphs with degree d
are compact in this topology.

We say that G ∈ G is isolated if it is an isolated point in this topology. By
the above definition, this means that there exists an r ∈ N such that whenever
Br(G) = Br(H), then G = H. Since Br(G) = G for every finite G and r large
enough, it follows immediately that all the finite graphs are isolated.

Figure 1. The grandfather graph G3. Edges of T3 are straight
black lines. Edges to grandfathers are red curves. The distin-
guished end is the “down” direction.

2.3. The grandfather graph. The grandfather graph of order n ≥ 3, Gn, is the
following graph (see Figure 1). Let Tn be the regular tree of degree n. The ends of
Tn can be identified with the set of infinite simple paths starting at o, an arbitrary
distinguished vertex. Choose a distinguished end. Then each vertex has a unique
edge in the direction of this end. Call the vertex on the other side of that edge
the “father”. Then each vertex has a unique father, and, as one can imagine, each
vertex has a unique “grandfather”. The set of vertices of Gn is identical to that
of Tn. The set of edges includes the set of edges of Tn, and in addition an edge
between each vertex and its grandfather.
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2.4. Main result.

Theorem 1. For n ≥ 3, the grandfather graph Gn is isolated.

That is, there exists an r > 0 such that Gn has a unique ball of radius r among
all vertex transitive graphs. In fact, we show that this already holds for r = 1.

We state here without proof that this result can be further extended to some
classes of graphs that are similar to Gn. For example, the product of Gn with any
finite graph will also be isolated, as will “greatk-grandfather” graphs.

3. More on the grandfather graph

A directed edge in an undirected graph G = (V,E) is an ordered pair (u,w) of
vertices in G such that (u,w) ∈ E.

Let (u,w) and (u′, w′) be two directed edges in a graph G. We say that (u,w)
and (u′, w′) are isomorphic if there exists a graph isomorphism of G that maps u to
u′ and w to w′ (compare to the notion of “doubly rooted graphs” - see, e.g., [1,8]).
While all vertices in a transitive graph are isomorphic, not all directed edges are
necessarily isomorphic.

Figure 2. The ball of radius one in the grandfather graph G3.
The directions and labels of the edges can be inferred from the
undirected graph.

In the grandfather graph Gn, (u,w) and (u′, w′) are isomorphic if and only if
both pairs can be described by the same (ordered) familial relation: that is, if
w is u’s father (respectively son / grandfather / grandson) and w′ is u′’s father
(respectively son / grandfather / grandson). This is a well-known property of this
graph that is related to the fact that it is not unimodular (see, e.g., [3, 8]). In fact,
one can already infer the familial relations by examining the ball of radius one: in
this subgraph (see Figure 2), the father and the sons can be distinguished from the
grandfather and the grandsons, since father-son pairs have n common neighbors,
while grandfather-grandson pairs have only one. Furthermore, a node’s father can
be distinguished from the sons, since the father is connected to all of the sons (he
is their grandfather), whereas the sons are not connected to each other. Thus, if
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w is u’s father but w′ is not u′’s father, there is no graph isomorphism of Gn that
maps (u,w) to (u′, w′).

We can therefore label each directed edge as a father / son / grandfather /
grandson edge (that is, (u,w) will be a father edge if w is u’s father), and this
labeling will be invariant to any isomorphism of the graph.

This labeling gives rise to an equivalent definition of the grandfather graph:
define a father relation on the vertices of n-regular tree Tn; this is any relation
in which each node has a unique father which is its neighbor in the graph. Then,
connect each node to its grandfather. The choice of a father relation is equivalent
to a choice of end, and hence this also results in the grandfather graph.

4. Proof of Theorem 1

Let H = (V,E) be any graph in G such that B1(H) = B1(Gn). We will prove
the theorem by showing that it is isomorphic to Gn. Note that Figure 2 depicts
B1(G3) and hence also B1(H), for the case n = 3.

Consider any two neighboring vertices u and w in H. Since B1(H) = B1(Gn), u
and w will either have one common neighbor or n common neighbors (see Figure 2).
In the first case, color the edge (u,w) red; in the grandfather graph this will occur
when one is the grandfather of the other. In the second case color the edge (u,w)
black; in the grandfather graph this will occur when one is the father of the other.

We next would like to determine the direction of the black (father-son) edges;
that is, we would like to know who is the son and who is the father. Fix two vertices
u and w that are connected by a black edge. Since B1(H) = B1(Gn), it will either
be the case that (1) there is a unique path from u to w that first traverses a black
edge and then a red edge or conversely (2) there is a unique path from u to w that
first traverses a black edge and then a red edge (see Figure 2 again). In the first
case we say that u is w’s father, and in the second case w is u’s father. Note that
exactly one of these two cases must occur, and that indeed each vertex will have a
unique father and n− 1 sons. We will call the directed edge (u,w) a father (resp.,
son) edge if w is u’s father (resp., son).

Note that the resulting father relation on the vertices of H is invariant to the
isomorphism group of H. We will use this to show that H is isomorphic to Gn,
which will prove Theorem 1.

A simple cycle in a graph is a sequence of directed edges (u0, w0), . . . , (uk−1, wk−1)
such that wi = ui+1 mod k, and each edge is visited at most once.

Claim 4.1. There are no simple cycles in H which include only father edges and
son edges.

Proof. Assume by contradiction that (u0, w0), . . . , (uk−1, wk−1) is a simple cycle
comprised only of father edges and son edges. Then all edges are of the same type
(i.e., all father edges or all son edges): otherwise, there must be in the cycle a
son edge followed by a father edge, which would make the cycle non-simple, since
fathers are unique.

By perhaps changing the direction of the cycle we can therefore assume without
loss of generality that all edges are father edges. Now, every node in H has a unique
father and exactly n − 1 sons. Hence each node on the cycle is its own kth-order
father, and each node has n−2 > 0 sons which are not on the cycle. Since the father
relation is invariant to graph isomorphisms, so is the kth-order father relation.



1918 JOSHUA FRISCH AND OMER TAMUZ

Let u be a vertex on the cycle, and let v be a vertex which is not on the cycle
and is a son of u. Then there is no graph isomorphism of H that maps v to u, since
v - unlike u - is not its own kth-order father. Hence H is not transitive, and we
have reached a contradiction. �
Remark. This claim can also be proved by showing that H is not unimodular and
analyzing the Haar measure of the stabilizers of the nodes lying on the cycle (see [8]).

It follows from Claim 4.1 that the restriction of H to father-son edges is iso-
morphic to Tn, the n-regular tree. This restriction is still a connected graph, since
grandfather-grandson edges only connect nodes already connected by length two
paths of father-son edges.

Since B1(H) = B1(Gn), the grandfather edges in H are determined by the
father-son relation, and in the same way that they are determined in Gn. Hence
H can be constructed by adding grandfather edges to Tn, equipped with a father
relation. It follows that H is isomorphic to Gn, thus proving Theorem 1.
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