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THE CONSTRUCTION OF A COMPLETELY SCRAMBLED
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(Communicated by Nimish A. Shah)

Abstract. In this paper, we define a new construction of completely scram-
bled 0-dimensional systems using the inverse limit of sequences of directed
graph covers. These examples are transitive and are not locally equicontinu-
ous. Moreover, any point that is not the unique fixed point is not a point of
local equicontinuity.

1. Introduction

Let X be a compact metrizable space, and f : X Ñ X be a continuous surjective
map. In this paper, we call pX, fq a topological dynamical system, and consider
the case in which X is 0-dimensional. In this case, we call pX, fq a 0-dimensional
system. If X is homeomorphic to the Cantor set, pX, fq is called a Cantor system.
Akin, Glasner and Weiss [1] made use of a special sequence of directed graph covers
to construct a special homeomorphism that has the generic conjugacy class in the
space of all Cantor systems, while Gambaudo and Martens [4] employed special
sequences of directed graph covers to study ergodic measures of Cantor minimal
systems. In [10], we generalized this latter construction to arbitrary 0-dimensional
systems. In this paper, we use a sequence of graph covers to construct examples
that are transitive, completely scrambled, and not locally equicontinuous. A subset
S Ď X is called a scrambled set if, for every x ‰ y P S,

lim sup
nÑ`8

dpfn
pxq, fn

pyqq ą 0

and
lim inf
nÑ`8

dpfn
pxq, fn

pyqq “ 0.

Since Li and Yorke developed the notion of scrambled sets in the study of chaotic
systems [8], there has been some discussion as to how large such sets can be. In
1997, Mai reported a non-compact example that is completely scrambled [9], i.e.,
the scrambled set is the whole space, and conjectured that there was no compact
example. Huang and Ye [7] later disputed this conjecture. They constructed a
compact, 0-dimensional completely scrambled system. By taking the product of
the identity map with any other compact set, and collapsing some subspaces to a
point, their example indicated the existence of others on a variety of spaces. In the
same paper, they also announced the existence of a transitive example. In 2000,
Glasner and Weiss [5] introduced the notion of local equicontinuity. Let pX, fq be
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a homeomorphism on a compact metric space. This is said to be locally equicon-
tinuous if every x P X is an equicontinuity point on the orbit closure of x itself.
Blanchard and Huang [2] announced the existence of a number of examples that
are transitive, locally equicontinuous, and completely scrambled. In this paper,
we construct another set of examples that are 0-dimensional, transitive, and com-
pletely scrambled, but not locally equicontinuous. Moreover, every point that is
not the unique fixed point is not a point of local equicontinuity. We shall make use
of the inverse limit of sequences of graph covers.

2. Preliminaries

In this section, we repeat the construction of graph covers for 0-dimensional
systems originally given in Section 3 of [10]. We also describe some notation for
later use. A pair G “ pV,Eq consisting of a finite set V and a relation E Ď V ˆ V
on V can be considered as a directed graph with vertices V and an edge from u to
v when pu, vq P E. We assume that G is edge surjective, i.e., for every vertex v P V
there exist edges pu1, vq, pv, u2q P E. Let Gi “ pVi, Eiq with i “ 1, 2 be directed
graphs. A map ϕ : V1 Ñ V2 is said to be a graph homomorphism if every edge
is mapped to an edge; we describe this as ϕ : G1 Ñ G2. Suppose that a graph
homomorphism ϕ : G1 Ñ G2 satisfies the following condition:

pu, vq, pu, v1
q P E1 implies that ϕpvq “ ϕpv1

q.

In this case, ϕ is said to be `directional. Suppose that a graph homomorphism ϕ
satisfies both of the following conditions:

pu, vq, pu, v1
q P E1 implies that ϕpvq “ ϕpv1

q and

pu, vq, pu1, vq P E1 implies that ϕpuq “ ϕpu1
q.

Then, ϕ is said to be bidirectional.

Definition 2.1. A graph homomorphism ϕ : G1 Ñ G2 is called a cover if it is a
`directional edge-surjective graph homomorphism.

Let G be a sequence G1
ϕ1

ÐÝ G2
ϕ2

ÐÝ ¨ ¨ ¨ of graph homomorphisms.

Notation 2.2. For m ą n, let ϕm,n :“ ϕn ˝ ϕn`1 ˝ ¨ ¨ ¨ ˝ ϕm´1.

Then, ϕm,n is a graph homomorphism. If all ϕi pi P N
`q are edge surjective,

then every ϕm,n is edge surjective. Similarly, if all ϕi pi P N
`q are covers, every

ϕm,n is a cover. Let us write Gi “ pVi, Eiq for i P N. Define

VG :“ t px0, x1, x2, . . . q P

8
ź

i“0

Vi | xi “ ϕipxi`1q for all i P N u and

EG :“ t px, yq P VG ˆ VG | pxi, yiq P Ei for all i P N u,

each equipped with the product topology.

Notation 2.3. For each n P N, the projection from VG to Vn is denoted by ϕ8,n.

Notation 2.4. Let X be a compact metrizable 0-dimensional space. A finite par-
tition of X by non-empty clopen sets is called a decomposition. The set of all
decompositions of X is denoted by DpXq. Each U P DpXq is endowed with the
discrete topology.
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Notation 2.5. Let f : X Ñ X be a continuous surjective mapping from a compact
metrizable 0-dimensional space X onto itself. Let U be a decomposition of X.
Then, a map κU : X Ñ U is defined as κU pxq “ U P U if x P U P U . A surjective

relation fU on U is defined as

fU :“ t pu, vq | fpuq X v ‰ H u.

In general, pU , fU
q is a graph, because f is a surjective relation.

We can state the following:

Lemma 2.6. Let G be a sequence G0
ϕ0

ÐÝ G1
ϕ1

ÐÝ G2
ϕ2

ÐÝ ¨ ¨ ¨ of covers. Then,
VG is a compact metrizable 0-dimensional space, and the relation EG determines a
continuous mapping from VG onto itself. In addition, if the sequence is bidirectional,
then the relation EG determines a homeomorphism.

Proof. See Lemma 3.5 of [10]. �

Let G be a sequence G0
ϕ0

ÐÝ G1
ϕ1

ÐÝ G2
ϕ2

ÐÝ ¨ ¨ ¨ of covers. Then, by the above
lemma, EG defines a continuous surjective mapping from VG onto itself. The 0-
dimensional system pVG , EGq is called the inverse limit of G, and is denoted by G8.
We write G8 “ pVG , EGq “ pX, fq.

Notation 2.7. Let G be a sequence G0
ϕ0

ÐÝ G1
ϕ1

ÐÝ G2
ϕ2

ÐÝ ¨ ¨ ¨ of covers. Let
Gi “ pVi, Eiq for i P N. For each i P N, we define

Ui :“ tϕ´1
8,ipuq | u P Vi u,

which we can identify with Vi itself.

From [10], we have the following:

Theorem 2.8. A topological dynamical system is 0-dimensional if and only if

it is topologically conjugate to G8 for some sequence of covers G0
ϕ0

ÐÝ G1
ϕ1

ÐÝ

G2
ϕ2

ÐÝ ¨ ¨ ¨ . In addition, if all of the covers are bidirectional, then the resulting
0-dimensional system is a homeomorphism.

We now give some notation that will be used later in the paper.

(N-1) We write G8 “ pX, fq,
(N-2) we fix a metric d on X,
(N-3) for each i P N, we write Gi “ pVi, Eiq,
(N-4) for each i P N, we define Upvq :“ ϕ´1

8,ipvq for v P Vi and Ui :“ tUpvq | v P

Vi u P DpXq, and
(N-5) for each i P N, there exists a bijective map Vi Q v Ø Upvq P Ui. By this

bijection, we obtain a graph isomorphism Gi – pUi, f
Uiq.

Let G “ pV,Eq be a surjective directed graph. A sequence of vertices w “

pv0, v1, . . . , vlq of G is said to be a walk of length l if pvi, vi`1q P E for all 0 ĺ

i ă l. We denote lpwq :“ l and V pwq :“ t v0, v1, . . . , vl u. We say that a walk
w “ pv0, v1, . . . , vlq is a path if vi p0 ĺ i ĺ lq are mutually distinct. A walk
c “ pv0, v1, . . . , vlq is said to be a cycle of period l if v0 “ vl, and a cycle
c “ pv0, v1, . . . , vlq is a circuit of period l if the vi p0 ĺ i ă lq are mutually
distinct. Let w1 “ pu0, u1, . . . , ulq and w2 “ pv0, v1, . . . , vl1 q be walks such that
ul “ v0. Then, we denote w1 ` w2 :“ pu0, u1, . . . , ul, v1, v2, . . . , vl1 q. Note that
lpw1 ` w2q “ l ` l1.
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3. Construction

Let G0 be a singleton graph with only one vertex v0,0 and one edge pv0,0, v0,0q.

We shall construct a sequence of graph covers G0
ϕ0

ÐÝ G1
ϕ1

ÐÝ G2
ϕ2

ÐÝ ¨ ¨ ¨ such
that every Gn pn ľ 1q is a generalized figure-8 with a special vertex vn,0 P Vn

and a special edge en,0 “ pvn,0, vn,0q P En for each n P N. We assume that
ϕnpvn`1,0q “ vn,0 for each n P N. Thus, ϕnpen`1,0q “ en,0 for each n P N.
With this setting, we construct a class of examples. We assume that, for each
n ľ 1, Gn consists of circuits t cn,1, cn,2, . . . , cn,n, en,0 u such that for each 1 ĺ

i ă j ĺ n, V pcn,iq X V pcn,jq “ t vn,0 u. We write lpn, lq :“ lpcn,lq and cn,l “

pvn,l,0 “ vn,0, vn,l,1, vn,l,2, . . . , vn,l,lpn,lq “ vn,0q. Let us construct a cover. We
assume that ϕnpV pcn`1,n`1qq “ vn,0 for each n P N, and that, for each 1 ĺ i ĺ n,
ϕnpcn`1,iq “ en,0`2cn,i`2cn,i`1`¨ ¨ ¨`2cn,n`en,0. These are bidirectional covers,
and the resulting continuous surjection pX, fq is a homeomorphism. The length of
each cn`1,i with 1 ĺ i ĺ n is determined by the length of each cn,j with 1 ĺ j ĺ n,
and we can take lpcn`1,n`1q ą 1 arbitrarily. If we include lpcn`1,n`1q “ 1, we
cannot distinguish cn`1,n`1 with en`1,0. Therefore, we avoid this case. As stated
in the previous section, G8 is written as pX, fq, and we now use the notation
described earlier. It is clear that X has no isolated points. Thus, pX, fq is a Cantor
system.

Theorem 3.1. The Cantor system pX, fq is completely scrambled, topologically
transitive, and is not locally equicontinuous.

Notation 3.2. We denote p :“ pv1,0, v2,0, v3,0, . . . q P X, and every en,0 (n P N) is
simply described as e if there is no possibility of confusion.

It is obvious that p is a fixed point. From the construction of the covers, the
next lemma follows easily:

Lemma 3.3. For m ą n and 1 ĺ l ĺ l1 ĺ n, it follows that lpm, lq ą lpn, l1q.

Lemma 3.4. We have that p P X is the only fixed point, and this is the only
periodic point.

Proof. The first statement is obvious. Suppose that there exists a periodic point
other than p. Then, there exists some N ą 0 such that, for all n ľ N , there exists a
circuit cn of Gn of the same period, and the ϕn are isomorphisms of these circuits.
This contradicts the construction of this graph cover. �

In this section, we show that pX, fq is completely scrambled by stating successive
lemmas. Broadly, we show, in the following order, that

lim infiÑ`8 dpfkpxq, fkppqq “ 0 for x ‰ p,
lim supiÑ`8 dpfkpxq, fkppqq ą 0 for x ‰ p,
lim supiÑ`8 dpfkpxq, fkpyqq “ 0 for x ‰ y P Xzt p u, and
lim supiÑ`8 dpfkpxq, fkpyqq ą 0 for x ‰ y P Xzt p u in separate cases.

Lemma 3.5. For each x P X, it follows that lim infkÑ`8 dpfkpxq, pq “ 0.

Proof. For any n P N, it follows that the sequence ϕ8,npfkpxqq pk ą 0q follows a
walk of Gn. It is clear that this walk passes vn,0 infinitely many times. Thus, the
conclusion is evident. �
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Notation 3.6. For vn,i,j P Vn with 0 ă j ă lpn, iq, we denote remnpvq :“ lpn, iq ´ j.
For an x P Upvq Ă X, remnpvq steps remain until we reach Upvn,0q, i.e., f ipxq R

Upvn,0q for 0 ĺ i ă remnpvq and f remnpvqpxq P Upvn,0q.

Notation 3.7. For v P Vn, we denote the degree of v as follows:

degpvq “

#

`8, if v “ vn,0,

i, if v P V pcn,iqzt vn,0 u.

Lemma 3.8. Let x “ pv0, v1, v2, . . . q P X. For n ă n1, it follows that deg vn ľ

deg vn1 ľ 1.

Proof. By the construction of ϕn pn P Nq, the proof is evident. �

Notation 3.9. Let x “ pv0, v1, v2, . . . q P X. Then, we define the degree of x as
deg x :“ mint deg vi | i P N

` u. Note that deg x “ `8 implies that x “ p.

Lemma 3.10. For p ‰ x “ pu0, u1, u2, . . . q P X, there exists an N ą 0 such that
deg uN “ deg uN`1 “ ¨ ¨ ¨ “ deg x.

Proof. The proof is obvious. �

The next lemma is not explicitly used in this paper, but we believe it helps to
clarify our argument.

Lemma 3.11. The degree of each orbit is constant.

Proof. Let x “ pv0, v1, v2, . . . q P X. We must show that deg fpxq “ deg x. If
x “ p, then the conclusion is obvious. Let x ‰ p and degpxq “ l. Then,
there exists n P N such that vn ‰ vn,0. By Lemma 3.10, we can assume that
deg vn “ deg vn`1 “ ¨ ¨ ¨ “ l. Then, for k ľ 0, we get vn`k P cn`k,l. Thus,
for k ľ 1, it follows that remnpvn`kq ą 2lpcn`k´1,l`1q ` 2lpcn`k´1,l`2q ` ¨ ¨ ¨ `

2lpcn`k´1,n`k´1q ` 1. Thus, remnpvn`kq Ñ `8 as k Ñ `8. Let pvn`k, v
1
n`kq be

an edge of the circuit cn`k,l. For k ľ 1, it follows that v1
n`k ‰ vn`k,0. Because

fpxq “ p. . . , v1
n`k, v

1
n`k`1, v

1
n`k`2, . . . q, it is clear that deg fpxq “ l. �

Lemma 3.12. For x ‰ p, it follows that lim supkÑ`8 dpfkpxq, pq ą 0.

Proof. Let deg x “ l and x “ pu0, u1, u2, . . . q. Because p ‰ x, we have that l ă `8.
By Lemma 3.10, there exists an N P N such that deg un “ l for all n ľ N . Let
n ľ N . Then, un P cn,l. Let pn be the path of cn,l from un to vn,0. By the definition
of N , it follows that ϕn,N punq P V pcN,lq. For 0 ĺ i ĺ remnpunq, ϕ8,npf ipxqq

follows the path from un to vn,0. We get ϕn´1pcn,lq “ e`2cn´1,l `2cn´1,l`1 `¨ ¨ ¨`

2cn´1,n´1 ` e. Thus, pn follows the totality of 2cn´1,l`1, and ϕn´1,N p2cn´1,l`1q

winds around cN,l`1 exactly 2n times. Therefore, ϕn,N ppnq winds around cN,l`1 at
least 2n times. Fixing τ P cN,l`1 such that τ ‰ vN,0, ϕ8,N pf ipxqq “ τ at least 2n

times. Because n ą 0 is arbitrary, the conclusion is now obvious. �

Lemma 3.13. Let x ‰ y be distinct from p. Then, it follows that

lim inf
kÑ`8

dpfk
pxq, fk

pyqq “ 0.

Proof. Let x ‰ y P X be distinct from p, x “ pu0, u1, u2, . . . q, and y “

pv0, v1, v2, . . . q. It follows that deg x, deg y ă `8. Let l “ deg x and l1 “ deg y.
By Lemma 3.10, there exists N ą 0 such that deg uN “ deg uN`1 “ ¨ ¨ ¨ “ l and



2114 TAKASHI SHIMOMURA

deg vN “ deg vN`1 “ ¨ ¨ ¨ “ l1. Note that l, l1 ĺ N . For all n ą N , un P cn,l and
vn P cn,l1 . Because

ϕn´1pcn,lq “ en´1,0 ` 2cn´1,l ` 2cn´1,l`1 ` 2cn´1,l`2

` ¨ ¨ ¨ ` 2cn´1,n´1 ` en´1,0,

it follows that

ϕn,N pcn,lq “ eN,0 ` 2ϕn´1,N pcn´1,lq ` 2ϕn´1,N pcn´1,l`1q ` 2ϕn´1,N pcn´1,l`2q

` ¨ ¨ ¨ ` 2ϕn´1,N pcn´1,N q

`2ϕn´1,N pcn´1,N`1q ` ¨ ¨ ¨ ` 2ϕn,N pcn´1,n´1q ` eN,0.

We write the first two lines as

pn “ eN,0 ` 2ϕn´1,N pcn´1,lq ` 2ϕn´1,N pcn´1,l`1q ` 2ϕn´1,N pcn´1,l`2q

` ¨ ¨ ¨ ` 2ϕn´1,N pcn´1,N q

and the last line as qn “ 2ϕn´1,N pcn´1,N`1q ` ¨ ¨ ¨ ` 2ϕn,N pcn´1,n´1q ` eN,0.
Note that we can write qn “ LpN,nqeN,0 for the positive integer LpN,nq. It
is clear that LpN,nq Ñ `8 as n Ñ `8. Because ϕ8,N pxq P V pcN,lqzt vN,0 u,
the sequence ϕ8,N pf ipxqq pi ľ 0q starts from within 2ϕn´1,N pcn´1,lq. There-
fore, this sequence lies in the pn for small i, and enters into qn for larger i,
eventually reaching the end of qn. Note that pn is a repetition of e0 and cN,j

with l ĺ j ĺ N . Let MpNq :“ max1ĺjĺN lpcN,jq ă `8. Take n to be suffi-
ciently large such that MpNq ă LpN,nq. The same situation occurs for y, and
at least one of ϕ8,N pf ipxqq or ϕ8,N pf ipyqq enters into qn; in the period that
is less than or equal to MpNq, the other takes the value vN,0. Let Lpnq :“
mint remnpϕ8,npxqq, remnpϕ8,npyq u. Then, there exists an i such that both Lpnq´

MpNq ĺ i ĺ Lpnq and t f ipxq, f ipyq u Ă UpvN,0q are satisfied. Because Lpnq Ñ `8

as n Ñ `8, we get lim inf iÑ`8 dpf ipxq, f ipyqq ĺ diamUpvN,0q. Because we can
take N to be arbitrarily large, we have lim infiÑ`8 dpf ipxq, f ipyqq “ 0. �

Notation 3.14. Let x ‰ y P X, x “ pu0, u1, u2, . . . q, and y “ pv0, v1, v2, . . . q. Let
n P N. Suppose that there exists some 1 ĺ i ĺ n such that un, vn P V pcn,iq,
un “ vn,i,j , and vn “ vn,i,j1 . Then, we denote gappun, vnq :“ j1 ´ j.

Lemma 3.15. Let x ‰ y P X, x “ pu0, u1, u2, . . . q, and y “ pv0, v1, v2, . . . q.
Suppose that deg x “ deg y ă `8 and lim supnÑ`8 |gappun, vnq| ă `8. Then,

there exists a d P Z such that fdpxq “ y.

Proof. Because there exists an integer d and a subsequence nk pk P N
`q such that

gappunk
, vnk

q “ d for all k, the conclusion is obvious. �

Lemma 3.16. Let x ‰ y P X be such that fdpxq “ y for some d ‰ 0. Then, it
follows that

lim sup
kÑ`8

dpfk
pxq, fk

pyqq ą 0.

Proof. We prove the statement by contradiction. Assume that

lim sup
kÑ`8

dpfk
pxq, fk

pyqq “ 0.

By Lemma 3.12, lim supkÑ`8 dpp, fkpxqq ą 0. Thus, there exists a point z ‰ p and

a subsequence ki pi P N
`q such that fkipxq Ñ z as i Ñ `8. By the assumption,

we have fkipyq Ñ z as i Ñ `8. Thus, we get fdpzq “ z. Because z ‰ p, this
contradicts Lemma 3.4. �
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Notation 3.17. Let m ą d ľ 1. For n ą m, we denote

rn,d,m :“ 2ϕn,mpcn,dq ` 2ϕn,mpcn,d`1q ` ¨ ¨ ¨ ` 2ϕn,mpcn,nq ` em,0.

Note that in rn,d,m, there is no occurrence of cm,d1 with d1 ă d.

Lemma 3.18. Let n " N " l ľ 1. In ϕn`2,N pcn`2,lq, let cN,l ` s ` cN,l be two
occurrences of cN,l with no occurrence of cN,l in s. Then, lpsq “ m ´ N ` 1 `
řm

k“N lprk,l`1,N q for some m with N ĺ m ĺ n. Besides such appearances, we have
those of the form cN,l `cN,l. Further, when we write ϕn`1,N pcn`1,lq “ ¨ ¨ ¨`cN,l `s
with no occurrence of cN,l in walk s, it follows that lpsq “

řn
k“N rk,l`1,N .

Proof. We abbreviate em,0 as e for all m P N. It follows that

ϕn`1pcn`2,lq “ e ` 2cn`1,l ` 2cn`1,l`1 ` ¨ ¨ ¨ ` 2cn`1,n`1 ` e.

Thus, we obtain the following:

ϕn`1pcn`2,lq “ e ` 2cn`1,l ` rn`1,l`1,n`1.

Therefore, it is sufficient to consider the gap between occurrences of cN,l in 2cn`1,l.
We shall calculate the largest gap in 2cn`1,l “ cn`1,l ` cn`1,l, and show that it is
between the last occurrence of cN,l in the first cn`1,l and the first occurrence of it
in the last cn`1,l. We calculate

ϕn`2,npcn`2,lq “ e ` 2pe ` 2cn,l ` rn,l`1,nq ` rn`1,l`1,n.

In the last expression, both 2cn,l and cn,l ` rn,l`1,n ` e ` cn,l occur. Thus, the
largest gap is in cn,l ` rn,l`1,n ` e ` cn,l, between the last cN,l in cn,l and the first
one in cn,l, as stated above. This gives

ϕn´1pcn,l ` rn,l`1,n ` e ` cn,lq “ e ` 2cn´1,l ` rn´1,l`1,n´1 ` rn,l`1,n´1 ` e
`e ` 2cn´1,l ` rn´1,l`1,n´1.

Thus, by induction, if we project the above expression by ϕn´1,N , the last occur-
rence of cN,l in the first 2cn´1,l and the first occurrence of cN,l in the last occurrence
of 2cn´1,l can be bridged as:

cN,l ` rN,l`1,N ` rN`1,l`t,N ` ¨ ¨ ¨ ` rn,l`1,N ` pn ´ N ` 1qe ` cN,l.

Therefore, if we write s “ rN,l`1,N ` rN`1,l`t,N ` ¨ ¨ ¨ ` rn,l`1,N ` pn ´ N ` 1qe,
then lpsq “ n ´ N ` 1 `

řn
k“N lprk,l`1,N q. This also shows that it is the largest

gap in 2cn`1,l. We have seen that the gap between occurrences of cN,l appears as
the largest gap in 2cm,l with N ă m ĺ n ` 1. Besides these gaps, of course there
exist occurrences of the form 2cN,l. It remains to demonstrate the last statement.
As in the above calculation, it follows that ϕnpcn`1,lq “ e ` cn,l ` cn,l ` rn,l`1,n.
Consequently, we have

ϕn`1,n´1pcn`1,lq “ ¨ ¨ ¨ ` ϕn´1pcn,lq ` rn,l`1,n´1

“ ¨ ¨ ¨ ` e ` 2cn´1,l ` rn´1,l`1,n´1 ` rn,l`1,n´1.

In this way, we get ϕn`1,N pcn`1,lq “ ¨ ¨ ¨`cN,l`rN,l`1,N `rN`1,l`1,N `¨ ¨ ¨`rn,l`1,N .
Thus, we have the desired conclusion. �
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From the proof of the above lemma, we get the following:

Lemma 3.19. In ϕn,N pcn,l ` cn,lq, let A be the last occurrence of cN,l in the first
cn,l, and B the first occurrence in the last cn,l. If we write ϕn,N pcn,l ` cn,lq “

¨ ¨ ¨ ` A ` s ` B ` ¨ ¨ ¨ , then

s “ rN,l`1,N ` rN`1,l`t,N ` ¨ ¨ ¨ ` rn´1,l`1,N ` pn ´ Nqe.

In particular, lpsq “ n ´ N `
řn´1

k“N lprk,l`1,N q.

Notation 3.20. We denote gn,l,N “ n ´ N `
řn´1

k“N lprk,l`1,N q. Then, gn,l,N is the
largest gap between occurrences of cN,l in 2cn,l.

From this point, for x ‰ y with x, y P Xzt p u, we present successive lemmas to
check that lim supkÑ`8 dpfkpxq, fkpyqq ą 0.

Lemma 3.21. Let x ‰ y P X be such that deg x “ deg y ă `8. Then,
lim supkÑ`8 dpfkpxq, fkpyqq ą 0.

Proof. Let x ‰ y P X be such that deg x “ deg y ă `8. Let deg x “ deg y “ l,
x “ pu0, u1, u2, . . . q, and y “ pv0, v1, v2, . . . q. By Lemma 3.10, there exists anN P N

such that deg un “ deg vn for all n ľ N . We can take N such that N " l, and a
gappun, vnq is defined for every n ľ N . Suppose that lim supnÑ`8 |gappun, vnq| ă

`8. Then, by Lemma 3.15 and Lemma 3.16, it follows that lim supkÑ`8 dpfkpxq,

fkpyqq ą 0. Therefore, we assume that lim supnÑ`8 |gappun, vnq| “ `8. Broadly,
we shall show that one of the two orbits enters a domain of degree larger than l,
and, after a long time, another orbit still takes the vertices of degree l. Let n " N .
By the definition of N , it follows that ϕn,N punq P V pcN,lq and ϕn,N pvnq P V pcN,lq.
By Lemma 3.18, both remnpunq Ñ `8 and remnpvnq Ñ `8 hold. Let Kpnq “

mint remnpunq, remnpvnq u. For 0 ĺ i ĺ Kpnq, both ϕ8,npf ipxqq and ϕ8,npf ipyqq

follow the path on cn,l until one of them reaches the end. Without loss of generality,
we assume that gappun, vnq ą 0 for infinitely many n, and we assume that we can
take an arbitrarily large n with arbitrarily large gappun, vnq ą 0. Thus, ϕ8,npf ipyqq

follows the last cN,l first. To catch the timing of this last cN,l, we take an Lpnq ą 0

such that degpϕ8,npfLpnq´1pyqqq “ l and, for Lpnq ĺ i ĺ Kpnq, degpϕ8,npf ipyqqq ľ

l ` 1. Let Apnq :“
řn´1

k“N lprk,l`1,N q “ Kpnq ´ Lpnq. By Lemma 3.18, the gap

between occurrences of cN,l is at most Bpnq :“ n ´ N ´ 1 `
řn´2

k“N lprk,l`1,N q.
Therefore, ϕ8,N pf ipxqq follow cN,l for at least one i with Lpnq ĺ i ĺ Kpnq. We have
to show that we can take i with Lpnq ĺ i ĺ Kpnq such that degϕ8,N pf ipxqq “ l is
arbitrarily large. We have

Apnq ´ Bpnq “
řn´1

k“N lprk,l`1,N q ´

´

n ´ N ´ 1 `
řn´2

k“N lprk,l`1,N q

¯

“ lprn´1,l`1,N q ´ n ` N ` 1
Ñ `8 as n Ñ `8.

Let Lpnq ĺ in ĺ Kpnq be the largest i with Lpnq ĺ i ĺ Kpnq and degϕ8,N pf ipxqq “

l. Then, it follows that in ` Bpnq ą Kpnq ą Apnq. Thus, in ľ Apnq ´ Bpnq is un-
bounded as n Ñ `8. Therefore, degϕ8,N pf ipxqq ‰ degϕ8,N pf ipyqq for infinitely
large i ą 0. This concludes the proof. �

By Notation 3.9, for x ‰ p, we have deg x ă `8.
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Lemma 3.22. Let x ‰ y P X be distinct from p and deg x ` 2 ĺ deg y ă `8.
Then, it follows that

lim sup
kÑ`8

dpfk
pxq, fk

pyqq ą 0.

Proof. Let x “ pu0, u1, u2, . . . q and y “ pv0, v1, v2, . . . q. Let deg x “ l and deg y “

l1. Then, it follows that l`2 ĺ l1. As before, fix a large N ą 0 such that deg un “ l
and deg vn “ l1 for all n ľ N . First, we show that the sequence ϕ8,N pf ipxqq with
i ľ 0 treads cN,l`1 infinitely many times. For each n ą N , we get

ϕn´1pcn,lq “ e ` 2cn´1,l ` 2cn´1,l`1 ` rn´1,l`2,n´1.

In the above expression, for large enough n, un´1 lies in 2cn´1,l. Therefore,
ϕ8,N pf ipxqq with i ľ 0 passes 2cn´1,l`1; it follows that it passes cN,l`1 at least
2n´N times. Because n is arbitrarily large, it passes cN,l`1 infinitely many times.
Next, note that ϕ8,N pf ipyqq with i ľ 0 passes only e or cN,m with l ` 1 ă l1 ĺ

m ĺ N . The conclusion is obvious. �

As in Notation 3.20, in ϕm,N p2cm,lq, the largest gap between occurrences of
cN,l is calculated. In the following lemmas, we also consider the pattern of the
occurrence of gaps.

Lemma 3.23. Let n " N ą l. In ϕn,N pcn,lq, whenever there exist two occurrences
of a gap in cN,l with length gm,l,N , there exists a gap in cN,l of length gm1,l,N between
them, where m1 ą m.

Proof. We first make the following calculation:

ϕn,n´2pcn,lq “ ϕn´2pe ` 2cn´1,l ` rn´1,l`1,n`1q

“ e ` 2ϕn´2pcn´1,lq ` ϕn´2prn´1,l`1,n´1q

“ e ` 2pe ` 2cn´2,l ` rn´2,l`1,n´2q ` rn´1,l`1,n´2

“ e ` e ` 2cn´2,l ` rn´2,l`1,n´2 ` e ` 2cn´2,l ` rn´2,l`1,n´2

`rn´1,l`1,n´2.

Let us project the above expression by ϕn´2,N . Then, we find the occurrence of
gaps as follows:

¨ ¨ ¨ pgap of gn´2,l,N q ¨ ¨ ¨ pgap of gn´1,l,N q ¨ ¨ ¨ pgap of gn´2,l,N q ¨ ¨ ¨ .

By an easy induction, we obtain the conclusion. �

Lemma 3.24. Let n " N " l. In ϕn,N pcn,lq, even after all occurrences of cN,l,
there exists an occurrence of cN,l`1. We write ϕn,N pcn,lq “ ¨ ¨ ¨ ` cN,l ` s when
there is no occurrence of cN,l in s. Then, in s, there exist two gaps in cN,l`1 of
length gn´1,l`1,N such that all gaps in cN,l`1 between them have lengths of less
than gn´1,l`1,N . Furthermore, if we take n to be sufficiently large, after the last
occurrence of cN,l, there exists an arbitrarily large interval before the last occurrence
of two such gaps of length gn´1,l`1,N .
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Proof. We can calculate that:

ϕn,n´2pcn,lq “ ϕn´2pe ` 2cn´1,l ` 2cn´1,l`1 ` rn´1,l`2,n`1q

“ ¨ ¨ ¨ ` ϕn´2pcn´1,lq ` 2ϕn´2pcn´1,l`1q ` ϕn´2prn´1,l`2,n´1q

“ ¨ ¨ ¨ ` cn´2,l ` 2cn´2,l`1 ` rn´2,l`2,n´2

` 2pe ` 2cn´2,l`1 ` rn´2,l`2,n´2q ` rn´1,l`2,n´2

“ ¨ ¨ ¨ ` cn´2,l ` 2cn´2,l`1 ` rn´2,l`2,n´2

` e ` 2cn´2,l`1 ` rn´2,l`2,n´2

` e ` 2cn´2,l`1 ` rn´2,l`2,n´2 ` rn´1,l`2,n´2

“ ¨ ¨ ¨ ` cn´2,l ` cn´2,l`1

` cn´2,l`1 ` rn´2,l`2,n´2 ` e ` cn´2,l`1 ¨ ¨ ¨ ¨ ¨ ¨ (1)
` cn´2,l`1 ` rn´2,l`2,n´2 ` e ` cn´2,l`1 ¨ ¨ ¨ ¨ ¨ ¨ (2)
` cn´2,l`1 ` rn´2,l`2,n´2 ` rn´1,l`2,n´2.

We consider the projection by ϕn´2,N of the above expression. Then, in lines (1)
and (2), there exists a gap in cN,l`1 of length gn´1,l`1,N , and the lengths of the
gaps in cN,l`1 between them are at most gn´2,l`1,N . This concludes the first part
of the claim. Because lpcn´2,l`1q Ñ `8 as n Ñ `8, the last claim is obvious from
the above expression. �
Lemma 3.25. Let x ‰ y P X be distinct from p, and deg x ` 1 “ deg y ă `8.
Then, it follows that

lim sup
kÑ`8

dpfk
pxq, fk

pyqq ą 0.

Proof. Let x ‰ y P X be distinct from p. Let deg x “ l. Then, deg y “ l ` 1.
Let x “ pu0, u1, u2, . . . q and y “ pv0, v1, v2, . . . q. As we have already shown, there
exists an N ą 0 such that deg un “ l and deg vn “ l ` 1 for all n ľ N . The
sequence ϕ8,N pf ipxqq with i ľ 0 passes through only e or cN,m with l ĺ m ĺ N ,
and the sequence ϕ8,N pf ipyqq with i ľ 0 passes through only e or cN,m with
l ` 1 ĺ m ĺ N . Therefore, if ϕ8,N pf ipxqq with i ľ 0 passes cN,l infinitely many
times, then the conclusion is obvious. Therefore, we assume that ϕ8,N pf ipxqq with
i ľ 0 treads cN,l only finitely many times. Note that ϕ8,N pf ipxqq with i ľ 0 passes
cN,l`1 infinitely many times. On the other hand, if ϕ8,N pf ipyqq with i ľ 0 only
take values on cN,l`1 a finite number of times, then the conclusion is again obvi-
ous. Therefore, we assume that ϕ8,N pf ipyqq with i ľ 0 treads on cN,l`1 infinitely
many times. Because ϕn,N pcn,lq contains cN,l, there is some fixed i0 P Z for which
ϕ8,N pf i0´1pxqq becomes the last passage on cN,lzt vN,0 u and ϕ8,N pf i0pxqq “ vN,0.
Therefore, shifting x and y by f i0 , we assume that ϕ8,N pf ipxqq with i ľ 0 does
not pass cN,l. For arbitrarily large K ą 0, taking a large n ą N , ϕ8,n projects
the orbit f ipxq with 0 ĺ i ĺ K onto a path of cn,l. Therefore, for every gap in
cN,l`1, there exists an n ą N such that the gap is seen in ϕn,N pcn,lq. By Lemma
3.24, as ϕ8,N pf ipxqq pi “ 0, 1, . . . q proceeds, there exist a couple of gaps in cN,l`1

of length gn´1,l`1,N , between which no larger gaps occur. Furthermore, this occurs
for arbitrarily large i ą 0 if n is large enough. On the other hand, for arbitrarily
large K ą 0, taking a large n ą N , ϕ8,n projects the orbit f ipyq with 0 ĺ i ĺ K
onto a path of cn,l`1. By Lemma 3.23, if ϕ8,N pf ipyqq with i ą 0 encounters a
couple of gaps in cN,l`1 of length gn´1,l`1,N , a gap in cN,l`1 of larger length must
exist between them. Therefore, we obtain the desired conclusion. �

By proving the lemma above, we have shown that pX, fq is completely scrambled.
The next lemma proves that pX, fq is topologically transitive.
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Lemma 3.26. There exists an x0 such that t f ipx0q | i P N u is dense in X.

Proof. Fix an arbitraryN ą 0. In our notation, cN,1 “ pvN,1,0, vN,1,1, . . . , vN,1,lpN,1q

“ vN,0q. Let uN “ vN,1,1. It follows that ϕN´1puN q “ vN´1,0. Because ϕnpcn`1,lq

“ e ` 2cn,l ` ¨ ¨ ¨ for all n ą 0, we get ϕN pvN`1,1,2q “ vN,1,1 “ uN . In this way, if
un is defined, then un`1 is defined as the first occurrence of u P V pcn`1,1q such that
ϕnpuq “ un. We define x0 :“ pv0,0, v1,0, . . . , vN´1,0, uN , uN`1, . . . q. Let n " N be
arbitrarily large. Then, ϕ8,n`1pf ipx0qq with i ą 0 follows a path pun`1, . . . , vn`1,0q

in cn`1,1. Because ϕnpcn`1,1q winds around cn,1 twice, ϕ8,n`1pf ipx0qq with i ą 0
passes all vertices of cn,1. It is obvious that ϕn´1pcn,1q passes all vertices of Gn´1.
Because n is arbitrary, the conclusion is obvious. �

The following lemma shows that pX, fq is not locally equicontinuous, and every
x ‰ p is not a point of local equicontinuity.

Lemma 3.27. Let x P X with x ‰ p. Then, for every sufficiently large n ą N ą

0, we have some v P V pGnq and in P Z such that, for yn “ f inpxq, it follows
that x, yn P Upvq and there exists an i ą 0 with ϕ8,N pf ipxqq ‰ ϕ8,N pf ipynqq.
Consequently, x ‰ p is not a point of local equicontinuity.

Proof. Let x ‰ p. Let deg x “ l ă `8, and write x “ pu0, u1, u2, . . . q. As before,
there exists an N ą 0 such that deg un “ l for all n ľ N . Let n " N " l.
It is sufficient to show that there exists a y P Upunq on the orbit of x such that
ϕn,N pf ipxqq ‰ ϕn,N pf ipyqq for infinitely many i ą 0. Because cn`1,l winds around
cn,l twice, there exists a vn`1 with un`1 ‰ vn`1 P V pcn`1,lq such that ϕnpvn`1q “

un. Then, we can construct y “ pv0, v1, v2, . . . q with vi “ ui p0 ĺ i ĺ nq such that
deg y “ l and gappui, viq is equal to some constant in ‰ 0 for all i ľ n. Therefore,
we have constructed a yn P Upunq with f inpxq “ yn. We must consider two cases:

Case 1. Suppose that both ϕ8,N pf ipxqq and ϕ8,N pf ipyqq with i ą 0 trace cN,l

only finitely many times. Then, after tracing all cN,l’s, they only trace cN,l`k with
k ą 0 and trace cN,l`1 infinitely many times. By Lemma 3.24, these occurrences
are not periodic. Therefore, we have the desired conclusion.

Case 2. Suppose that both ϕ8,N pf ipxqq and ϕ8,N pf ipyqq with i ą 0 trace cN,l in-
finitely many times. By Lemma 3.23, these occurrences are not periodic. Therefore,
we also obtain the conclusion.

This completes the proof. �
We have finished the proof of Theorem 3.1. We suggest that, in defining the

sequence of graph covers, the expression ϕnpcn`1,iq “ en,0`nn,icn,i`nn,i`1cn,i`1`

¨ ¨ ¨ ` nn,ncn,n ` en,0, with nn,i ľ 2 for all n P N and 1 ĺ i ĺ n can be used. The
above proofs may also be applicable in this case.

After the author submitted the first version of this manuscript, he was notified by
the referee(s) that Foryś, Huang, Li, and Oprocha [3] have presented two methods
for the construction of completely scrambled systems that are weakly mixing, prox-
imal, and uniformly rigid. According to a personal communication with Oprocha,
their systems are completely scrambled systems on compact continua. Therefore,
their examples are different from that presented in this paper. This means, unex-
pectedly for us, that the completely scrambled compacta have a variety of systems.
In any case, it seems that this opens a new topic in this area. Finally, because
all completely scrambled zero-dimensional homeomorphisms are essentially simple,
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they have Bratteli–Vershik representations (see Herman, Putnam, and Skau [6]).
Our construction by graph covers is easily translated to the method of Bratteli
diagrams–we refer readers to [11, Section 7.1], which describes a simple link. A
more satisfactory link is now being prepared.
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