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Abstract. Let (M, g, e−fdv) be a complete smooth metric measure space

with Bakry-Émery Ricci curvature nonnegative outside a compact set. We
prove that the number of ends of such a measure space is finite if f has at
most sublinear growth outside the compact set. In particular, we give an
explicit upper bound for the number.

1. Introduction and main results

A complete smooth metric measure space, denoted by (Mn, g, e−fdv), is an
n-dimensional complete smooth Riemannian manifold (Mn, g) together with a
weighted volume form e−fdv, where f is a smooth function on M and dv is the vol-
ume element of Riemannian metric g. The Bakry-Émery Ricci curvature [1] (also

called ∞-Bakry-Émery Ricci curvature) associated with this space is defined by

Ricf := Ric + Hess(f),

where Ric is the Ricci curvature of the manifold and Hess is the Hessian with
respect to the metric g. The Bakry-Émery Ricci curvature extends the usual Ricci
curvature, and often shares similar properties with the Ricci curvature; see for
example [4], [5], [13], [14], [18], [19] and [20]. This tensor is also related to the
gradient Ricci soliton, which is a special solution of the Ricci flow. Here a gradient
Ricci soliton means a complete manifold (M, g) and a smooth function f in M
satisfy

Ricf = λg

for some constant λ. The soliton is called expanding, steady or shrinking if λ < 0,
λ = 0 and λ > 0, respectively. Ricci solitons possess many interesting geometrical
and topological results. See for example, [3] and [17] for nice surveys on this subject
and the references therein.

On a complete smooth metric measure space (M, g, e−fdv), one can define the
f -Laplacian

Δf := Δ−∇f · ∇,

which is linked with the Bakry-Émery Ricci curvature by the Bochner identity

1

2
Δf |∇u|2 = |Hess(u)|2 + 〈∇u,∇Δfu〉+Ricf (∇u,∇u).
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Since tr(Hess(u)) �= Δfu, one does not immediately obtain geometrical comparison
results from the Bochner identity like the classical comparison theorems for Ricci
curvature. But under appropriate assumptions on f , Wei and Wylie [18] success-
fully generalized classical comparison results to the cases of smooth metric measure
spaces. Another way to deal with the above Bochner identity is to replace Ricf by

the m-Bakry-Émery Ricci curvature

Ricmf := Ricf − 1

m
df ⊗ df

for some constant m > 0. Using this tensor, one can get

1

2
Δf |∇u|2 ≥ (Δfu)

2

m+ n
+ 〈∇Δfu,∇u〉+Ricmf (∇u,∇u),

which is regarded as the Bochner formula for the Ricci curvature of (n + m)-
dimensional manifolds. Then one can proceed as in the classical case to get various
results for the m-Bakry-Émery Ricci curvature; see for example [10] and [21] and
the references therein.

As we all know, the end of a complete smooth metric measure space is an impor-
tant geometrical quantity, and it has received much attention recently. Lichnerowicz
[11], Wei and Wylie [18] proved that if Ricf ≥ 0 for some bounded f and M con-
tains a line, then M = Nn−1 × R and f is constant along the line. In [5], Fang,
Li, and Zhang showed that only an upper bound on f is needed in their splitting
result. As a consequence, if M has at least two ends, their splitting theorem implies
that the manifold N must be compact. Wei and Wylie [18] also showed that any
complete smooth metric measure space with Ricf > 0 for some bounded f has only
one end.

Munteanu and Wang [15] showed that any complete smooth metric measure
space with Ricf ≥ 0 has at most one f -nonparabolic end. Moreover, if a complete

smooth metric measure space (Mn, g, e−fdv) has its Bakry-Émery Ricci curvature
bounded below and the spectrum of f -Laplacian achieves its optimal positive upper
bound, then Munteanu and Wang [15], [16] showed that M has only one end or is
isometric to Nn−1×R for some compact manifold Nn−1. In particular, their result
implies that any nontrivial gradient steady Ricci soliton must have only one end.

In view of their results, we are interested in the number of ends on complete
smooth metric measure spaces under more general curvature assumptions. Our re-
sult gives an explicit upper bound for the number of all ends (include f -nonparabolic

and f -parabolic) on smooth metric measure spaces with nonnegative Bakry-Émery
Ricci curvature outside a compact set.

Theorem 1.1. Let (M, g, e−fdv) be an n-dimensional complete smooth metric
measure space. Fix a point o ∈ M and R > 0. Suppose Ricf ≥ −(n−1)K for some
constant K ≥ 0 in the geodesic ball Bo(R) of radius R, and Ricf ≥ 0 outside the
geodesic ball Bo(R). If f grows sublinearly outside the geodesic ball Bo(R), then

(1.1) NR(M) ≤ 2(n+ 4A)

n− 1 + 4A
(
√
KR)−(n+4A) exp

(
17

2
(n− 1 + 4A)

√
KR

)
,

where NR(M) denotes the number of ends of M with respect to Bo(R), and A :=
A(R) = supx∈Bo(25/2R) |f(x)|.
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Remark 1.2. We can apply a similar argument to obtain an upper bound for the
number of ends under the only conditions of Ricmf (without any assumption on f).
That is, if Ricmf ≥ 0 outside the geodesic ball Bo(R), and Ricmf ≥ −(m − 1)K for
some constant K ≥ 0 on Bo(R), then

NR(M) ≤ 2(n+m)

n+m− 1
(
√
KR)−(n+m) exp

(
17

2
(n+m− 1)

√
KR

)
.

When f is constant, Cai [2] and Li-Tam [9] independently proved that any com-
plete manifold with nonnegative Ricci curvature outside a compact set has at most
finitely many ends (see also [12]).

The proof of Theorem 1.1 adapts the argument of Cai [2], which relies on the
f -volume comparison proved by Wei-Wylie [18] and local properties of Busemann
functions on smooth metric measure spaces [5]. Since these results all depend
on some assumption of f , the growth condition of f in our theorem seems to be
necessary. It is interesting to know whether the growth condition of f is sharp.

The paper is organized as follows. In Section 2, we recall comparison theorems
for the Bakry-Émery Ricci curvature, and state some definitions of geometrical
invariants on complete smooth metric measure spaces. We also explain some basic
facts about Busemann functions on complete smooth metric measure spaces. In
Section 3, we apply Cai’s arguments to prove our main theorem.

2. Preliminaries

In this section, we recall some previous results, which will be prepared to prove
our theorem. We first give the relative f -volume comparison theorem of Wei and
Wylie [18] (see also [19]).

Lemma 2.1. Let (M, g, e−fdv) be an n-dimensional complete noncompact smooth
metric measure space. If Ricf ≥ −(n− 1)K for some constant K ≥ 0, then

(2.1)
Vf (Bx(R1, R2))

Vf (Bx(r1, r2))
≤ V n+4A

K (Bx(R1, R2))

V n+4A
K (Bx(r1, r2))

for any x ∈ M and 0 < r1 < r2, 0 < R1 < R2, r1 ≤ R1, r2 ≤ R2, where
Bx(R1, R2) = Bx(R2)\Bx(R1), and A = A(x,R2) = supy∈Bx(R2) |f(y)|. Here

V n+4A
K (Bx(r)) denotes the volume of the ball in the model space Mn+4A

K , i.e., the
simply connected space form with constant sectional curvature −K and dimension
n+ 4A.

From Lemma 2.1, we immediately get

(2.2)
Vf (Bx(r2))

Vf (Bx(r1))
≤

∫ r2
0

(sinhn−1+4A
√
K t)dt∫ r1

0
(sinhn−1+4A

√
K t)dt

for any x ∈ M and 0 < r1 < r2, where A = A(x, r2) = supy∈Bx(r2) |f(y)|.
We also recall some definitions of basic geometric quantities on complete smooth

metric measure spaces.

Definition 2.2. On a complete smooth metric measure space (M, g, e−fdv), a
smooth function Gf (x, y) defined on (M ×M)\{(x, x)} is called f -Green’s function
if it satisfies

Gf (x, y) = Gf (y, x) and Δf,yG(x, y) = −δf,x(y)
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for all x �= y, where δf,x(y) is defined by∫
M

ψ(y)δf,x(y)e
−fdv = ψ(x)

for every compactly supported function ψ ⊂ M .

Every complete smooth metric measure space admits an f -Green’s function.
Indeed we can follow Li-Tam [9] to give a constructive argument for the existence
of Gf (x, y). However, some metric measure spaces admit f -Green’s functions which
are positive and others may not. This special property distinguishes the function
theory of smooth measure metric measure spaces into two classes.

Definition 2.3. A complete smooth metric measure space (M, g, e−fdv) is said to
be f -nonparabolic if it admits a positive f -Green’s function. Otherwise, it is said
to be f -parabolic.

By the criterion of Li-Tam [8], [9], we easily see that a complete measure manifold
is f -nonparabolic if and only if there exists a positive f -superharmonic function
whose infimum is achieved at infinity.

Definition 2.4. Let M be a complete manifold. A geodesic γ : (−∞,+∞) → M
is called a line if

d(γ(s), γ(t)) = |s− t|
for all s and t. Furthermore, a geodesic γ : [0,+∞) → M is called a ray if

d(γ(0), γ(t)) = t

for all t > 0.

It is easy to see that if M is complete noncompact, it must contain a ray.

Definition 2.5. Let γ1 and γ2 be two rays emanating from the base point o ∈ M .
They are called cofinal if for any R > 0 and any t > R, then γ1(t) and γ2(t) lie in
the same component of M − Bo(R). An equivalence class of cofinal rays is called
an end of M . In this paper we will denote by [γ] the equivalence class of the ray γ.

In general, when we say that E is an end of the manifold M we mean that it
is an end with respect to some compact subset Ω ⊂ M . Notice that the above
definition does not depend on the base point o and the particular complete metric
on M . Thus the number of ends is a topological invariant of M .

Definition 2.6. An end E on (M, g, e−fdv) is said to be f -nonparabolic if it
admits a positive f -Green’s function with Neumann boundary condition on ∂E.
Otherwise, it is said to be f -parabolic.

From Li-Tam [9], we know that a complete smooth metric measure space is f -
nonparabolic if and only if it has an f -nonparabolic end. Of course, it is possible
for an f -nonparabolic space to have many f -parabolic ends.

In the following we recall some basic facts about Busemann functions on complete
smooth metric measure spaces.

For each ray γ ⊂ M , the Busemann function associated to γ is defined by

bγ(x) := lim
t→∞

(t− d(x, γ(t))).

This function is Lipschitz continuous with Lipschitz constant 1 and it is differential
almost everywhere. At the points where bγ is not smooth we interpret the f -
Laplacian in the sense of barriers.
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Definition 2.7. A lower barrier for a continuous function h at the point p ∈ M is
a C2 function hp, defined in a neighborhood U of p, such that

hp(p) = h and hp(x) ≤ h(x), x ∈ U.

We say that a continuous function h on M satisfies Δfh ≥ a at p in the barrier
sense, if for any ε > 0, there exists a lower barrier function hp,ε of h at p such that

Δfhp,ε ≥ a− ε.

A continuous function h that satisfies Δfh ≤ a in the barrier sense is similarly
defined as above.

For any given point p ∈ M , let α(t) be a minimal geodesic from p to the ray
γ(t). As t → ∞, α(t) has a convergent subsequence which converges to a ray at p.
Such a ray is called an asymptotic ray to γ(t) at p.

Let γ be a line in M . Then we have rays γ+ : [0,∞) → M by

γ+(t) = γ(t)

and γ− : [0,∞) → M by
γ−(t) = γ(−t).

Similar to the above procedure, we can define b+γ (or b−γ , respectively) to be the

associated Busemann function of γ+ (or γ−, respectively).

If Bakry-Émery Ricci curvature is nonnegative and f is at most sublinear growth
of distance function, Fang, Li, and Zhang [5] showed that Busemann functions b±

associated to rays γ±, are smooth f -harmonic functions, and satisfy b+ + b− = 0
and Hess b± = 0. In fact, applying their arguments locally, we have the following
lemma.

Lemma 2.8. Let N be the δ-tubular neighborhood of a line γ on (M, g, e−fdv).
Suppose that from every point p in N , there are asymptotic rays to γ± such that
Ricf ≥ 0 and f is of sublinear growth of distance function on both asymptotic rays.
Then through every point in N , there exists a line α such that

b+γ (α
+(t)) = t, b−γ (α

−(t)) = t.

Proof of Lemma 2.8. The proof is a local Fang-Li-Zhang’s discussion [5]. For any
point p ∈ N , by [5] (or [18]) we firstly can prove that the two asymptotic rays
to γ± are uniquely determined at p and form a line, say γp. We can also show
that Busemann functions b±γ at p with b+γ + b−γ = 0, which are smooth f -harmonic
functions (in the barrier sense), satisfy

||∇b±γ || = 1 and Hess b±γ = 0

on γp when Ricf ≥ 0 and f is of sublinear growth. Notice that the restriction of
b±γ to γp is a linear function with derivative 1. Therefore the lemma follows by
reparametrizing γp. �

3. Proof of Theorem 1.1

Following the argument of Lemma 3.3 in [2], applying Lemma 2.8 we get

Lemma 3.1. Under the same assumptions of Theorem 1.1, M cannot admit a line
γ, which satisfies the following property:

(3.1) d(γ(t), Bo(R)) ≥ |t|+ 2R for all t.
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Using Lemma 3.1, we furthermore have

Proposition 3.2. Under the same assumptions of Theorem 1.1, if [γ1] and [γ2]
are two different ends of Mn, then for any t1, t2 ≥ 3R, we have

d(γ1(t1), γ2(t2)) > t1 + t2 − 6R.

Proof. Assume that the conclusion of the proposition is not true. That is, there
exists τ1, τ2 ≥ 3R such that

d(γ1(τ1), γ2(τ2)) ≤ τ1 + τ2 − 6R.

Then we want to get a contradiction. Since [γ1] and [γ2] are two different ends,
there exists a large number A > τ1 + τ2 such that γ1(t) and γ2(t) are in different
unbounded components of M − Bo(A) for all t > A. Let σt, t > A be a minimal
geodesic joining γ1(t) and γ2(t). Then σt must pass through Bo(A). Moreover,
we claim that the middle point mt of σt is in the ball Bo(2A). In fact, let p be a
point in σt∩Bo(A) and without loss of generality we may assume that d(p, γ1(t)) ≤
d(p, γ2(t)). Then

d(o,mt) ≤ d(o, p) + d(p,mt)

≤ A+
1

2
ρt − d(p, γ1(t))

≤ A+
1

2
ρt − (t−A),

where ρt is the length of σt. On the other hand,

ρt = d(γ1(t), γ2(t))

≤ d(γ1(t), γ1(τ1)) + d(γ1(τ1), γ2(τ2)) + d(γ2(τ2), γ2(t))

≤ (t− τ1) + τ1 + τ2 − 6R + (t− τ2)

= 2t− 6R.

Hence,

d(o,mt) ≤ A+
1

2
(2t− 6R)− (t−A)

= 2A− 3R.

This implies that the point mt is in the ball Bo(2A).
Now reparametrizing σt by translating the origin, we still denote it by σt such

that

σt(−
1

2
ρt) = γ1(t), σt(0) = mt, σt(

1

2
ρt) = γ2(t).

Then we claim that σt(s) satisfies inequality (3.1) for − 1
2ρt ≤ s ≤ 1

2ρt. In fact, for
any s ≥ 0, we have

d(σt(s), Bo(R)) ≥ d

(
σt(

1

2
ρt), Bo(R)

)
−

(
1

2
ρt − s

)

≥ (t−R)− 1

2
(2t− 6R) + s

= s+ 2R,

where we used the above fact: ρt ≤ 2t − 6R. Since σt(0) ∈ Bo(2A) for all t ≥ A,
when t → ∞ (hence ρt → ∞), a subsequence of σt converges to a line γ(s) satisfying
inequality (3.1) for all s. This is a contradiction by Lemma 3.1. �
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In particular, Proposition 3.2 implies

Corollary 3.3. Under the same assumptions of Theorem 1.1, if [γ1] and [γ2] are
two different ends of Mn, then

d(γ1(4R), γ2(4R)) > 2R.

We now apply Corollary 3.3 to prove Theorem 1.1, by adapting the argument of
Cai [2].

Proof of Theorem 1.1. Fix a point o ∈ M . Let γ1, γ2, . . . , γk be k rays with k
different ends starting from the base point o. In the following we only need to
bound the number k from above.

We consider the sphere So(4R) of radius 4R, and let {pj} be a maximal set of
points on So(4R) such that the balls Bpj

(R/2) are disjoint from each other. Clearly,
the balls Bpj

(R) cover So(4R). Since the set {γi(4R), i = 1, 2, . . . , k} is contained
in So(4R), each γi(4R) is contained in some Bpj

(R). But by the Corollary 3.3, each
ball Bpj

(R) contains at most one γi(4R), and hence the number of balls is not less
than k. Therefore, to estimate upper bound of the number k, it suffices to bound
the number of balls Bpj

(R/2).
Notice that

Bpj

(
R

2

)
⊂ Bo

(
9

2
R

)
⊂ Bpj

(
17

2
R

)
.

By the f -volume comparison theorem, i.e., (2.2), we have

Vf

(
Bpj

(
17

2
R)

)
≤

∫ 17/2R

0
(sinhn−1+4A

√
Kt)dt∫ R/2

0
(sinhn−1+4A

√
Kt)dt

Vf

(
Bpj

(
R

2
)

)
,

where A = supx∈Bpj
(17/2R) |f(x)|. Therefore, the number of balls Bpj

(R/2) is no

more than ∫ 17/2R

0
(sinhn−1+4B

√
Kt)dt∫ R/2

0
(sinhn−1+4B

√
Kt)dt

.

Here we choose B := supx∈Bo(25/2R) |f(x)|, due to the fact: Bpj
(17/2R) ⊂

Bo(25/2R).
Since

∫ 17/2R

0
(sinhn−1+4B

√
Kt)dt∫ R/2

0
(sinhn−1+4B

√
Kt)dt

≤ 2(n+ 4B)

n− 1 + 4B
· e

17(n−1+4B)
2

√
KR

(
√
KR)n+4B

,

the theorem follows. �
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