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MAXIMAL REGULARITY: POSITIVE COUNTEREXAMPLES

ON UMD-BANACH LATTICES AND EXACT INTERVALS

FOR THE NEGATIVE SOLUTION

OF THE EXTRAPOLATION PROBLEM

STEPHAN FACKLER

(Communicated by Marius Junge)

Abstract. Using methods from Banach space theory, we prove two new struc-
tural results on maximal regularity. The first says that there exist positive
bounded analytic semigroups on UMD-Banach lattices; namely, �p(�q) for
p �= q ∈ (1,∞), without maximal regularity. In the second result we show
that the extrapolation problem for maximal regularity behaves in the worst
possible way: for every interval I ⊂ (1,∞) with 2 ∈ I there exists a family
of consistent bounded analytic semigroups (Tp(z))z∈Σπ/2

on Lp(R) such that

(Tp(z)) has maximal regularity if and only if p ∈ I.

1. Introduction

Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. One
says that−A hasmaximal regularity (for one or equivalently all choices of T > 0 and

of p ∈ (1,∞)) if for all f ∈ Lp([0, T ];X) the mild solution u(t) =
∫ t

0
T (t− s)f(s) ds

of the inhomogeneous abstract Cauchy problem{
u̇(t) +A(u(t)) = f(t),

u(0) = 0,

satisfies u ∈ W 1
p ([0, T ];X)∩Lp([0, T ];D(A)). Maximal regularity is a fundamental

tool in the study of non-linear partial differential equations (see [11], [3], [12] and
the references therein).

Although maximal regularity has been very successful in concrete applications,
fundamental questions in the structural understanding of this concept are still open
(for an explicit statement see for example [9, Section 7]). For example, until re-
cently, no explicit example of a generator of an analytic semigroup without maximal
regularity on Lp for p ∈ (1,∞) \ {2} has been known, although the existence was
shown in [10]. In fact, the first explicit examples were given by the author in [6]
and [8]. The aim of this note is to develop the techniques from [8] further in order
to give new contributions to the study of the structure of maximal regularity with
the help of the theory of Schauder bases. For a survey on the open questions in
this area we refer to [5].
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In the first main result (Theorem 3.3) we show that there exist generators of
positive bounded analytic semigroups on UMD-Banach lattices; namely, on �p(�q)
for p �= q ∈ (1,∞), without maximal regularity. Hence, positivity does not imply
maximal regularity. This is in contrast to the following positive result due to L. Weis
[17, Remark 4.9c)]: the generator of a bounded analytic semigroup on some Lp-
space for p ∈ (1,∞) that is positive and contractive on the real line has maximal
regularity.

In the second main result (Theorem 4.8) we study the extrapolation problem for
maximal regularity. In [8] it was shown that maximal regularity does in general not
extrapolate from L2 to the Lp-scale, i.e., there exists a family of consistent semi-
groups (Tp(t))t≥0 on Lp for p ∈ (1,∞) such that (T2(t))t≥0 has maximal regularity,
but (Tp(t))t≥0 fails maximal regularity for some, indeed all, p ∈ (1,∞) \ {2}. Here
we extend this negative result. Indeed, we show that the extrapolation problem
behaves in the worst possible way. We now briefly explain what this means.

Suppose that one has given a family (Tp(z)) of consistent analytic C0-semigroups
on Lp for p ∈ (1,∞) and let M ⊂ (1,∞) be the set all p ∈ (1,∞) for which the
semigroup (Tp(z)) has maximal regularity. Since an analytic C0-semigroup on a
Hilbert space has maximal regularity by a result of de Simon [14, Lemma 3,1], one
has 2 ∈ M . Moreover, it follows from complex interpolation that M is a subinterval
of (1,∞). We show that apart from these obvious structural restrictions one cannot
obtain any further positive results for the extrapolation problem: for every interval
I ⊂ (1,∞) with 2 ∈ I there exists a family of consistent C0-semigroups (Tp(z))z∈Σπ

2

on Lp(R) such that (Tp(z))z∈Σπ
2
has maximal regularity if and only if p ∈ I.

In contrast, positive results for the extrapolation problem are known under addi-
tional assumptions on the semigroups (see [7, Section 6] and the references therein).

2. R-sectorial operators and associated operators

In this section we present the necessary background on sectorial operators and
maximal regularity. Here and later on we write for ω ∈ (0, π)

Σω := {z ∈ C \ {0} : |Arg z| < ω}.

Definition 2.1 (Sectorial operator). A densely defined operator A on a Banach
space X is called sectorial if there exists an ω ∈ (0, π) such that

(Sω) σ(A) ⊂ Σω and sup
λ �∈Σω+ε

‖λR(λ,A)‖ < ∞ ∀ε > 0.

One defines the sectorial angle of A as ω(A) := inf{ω : (Sω) holds}.

Recall that on Banach spaces sectorial operators with a sectorial angle strictly
smaller than π/2 are exactly the (negative) generators of strongly continuous
bounded analytic semigroups. Maximal regularity can be characterized by a
stronger boundedness property than the boundedness in operator norm. Let rk(t) :=
sign sin(2kπt) be the k-th Rademacher function.

Definition 2.2 (R-boundedness). A family of operators T ⊂ B(X) on a Banach
space X is called R-bounded if there exists a finite constant C ≥ 0 such that for
each finite subset {T1, . . . , Tn} of T and arbitrary x1, . . . , xn ∈ X one has

(2.1)

∥∥∥∥
n∑

k=1

rkTkxk

∥∥∥∥
L2([0,1];X)

≤ C

∥∥∥∥
n∑

k=1

rkxk

∥∥∥∥
L2([0,1];X)

.
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The best constant C such that (2.1) holds is denoted by R(T ).

Further let Rad(X) denote the closed linear span in L2([0, 1];X) of functions
of the form

∑n
k=1 rkxk for n ∈ N and x1, . . . , xn ∈ X. We need the following

strengthening of the sectoriality condition.

Definition 2.3 (R-sectorial operator). A sectorial operator A on a Banach space
X is called R-sectorial if for some ω > ω(A) one has

(Rω) R{λR(λ,A) : λ �∈ Σω} < ∞.

One defines the R-sectorial angle as ωR(A) := inf{ω : (Rω) holds}.

One has the following connection between maximal regularity and R-sectorial
operators by L. Weis [17, Theorem 4.2] (the UMD assumption is actually only
needed in one implication). For the definition and further information on UMD-
spaces we refer to [13] and [2]. In the following we only need that mixed Lp(Lq)-
spaces for p, q ∈ (1,∞) are UMD.

Theorem 2.4. Let −A be the generator of a bounded analytic C0-semigroup
(T (z))z∈Σ on a Banach space X. Then the following hold:

(a) If −A has maximal regularity, then A is R-sectorial with ωR(A) < π
2 .

(b) Conversely, if X is UMD, −A has maximal regularity if A is an R-sectorial
operator with ωR(A) < π

2 .

Hence, it suffices to construct sectorial operators which are not R-sectorial to
give counterexamples to maximal regularity. We now transfer the R-sectoriality of
an operator on X to the boundedness of an associated operator on Rad(X). This
variant of the transference result in [8, Theorem 3.3] (see also [5, Proposition 3.16]
and [1, Theorem 3.6]) is the central tool for the counterexamples to be given later.

Proposition 2.5. Let A be an R-sectorial operator. Then there exists a constant
C ≥ 0 such that for all (qn)n∈N ⊂ R− the associated operator

R :
N∑

n=1

rnxn �→
N∑

n=1

rnqnR(qn, A)xn

defined on the finite Rademacher sums extends to a bounded operator on Rad(X)
with operator norm at most C.

Proof. Since A is R-sectorial, one has C := R{λR(λ,A) : λ ∈ R−} < ∞. Hence,
for all finite Rademacher sums we have by the definition of R-boundedness∥∥∥∥

N∑
n=1

rnqnR(qn, A)xn

∥∥∥∥ ≤ C

∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥. �

3. Positive analytic semigroups without maximal regularity

In this section we construct generators of positive bounded analytic semigroups
without maximal regularity. Let X be a Banach space that admits a 1-uncondition-
al Schauder basis (em)m∈N. Then it is well known that (em)m∈N induces on X via

x =

∞∑
m=1

amem ≥ 0 :⇔ am ≥ 0 for all m ∈ N
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the structure of a Banach lattice. Let π : N → N be a permutation of the even
numbers. Then by a classical perturbation result (fm)m∈N defined by

(3.1) fm =

{
em, m odd,

em−1 + eπ(m), m even,

is a Schauder basis for X [15, Ch. I, Proposition 4.4]. Let A be the Schauder multi-
plier associated to some real positive sequence (γm)m∈N with respect to (fm)m∈N,
that is,

D(A) =

{
x =

∞∑
m=1

amfm :

∞∑
m=1

γmamfm exists

}
,

A

( ∞∑
m=1

amfm

)
=

∞∑
m=1

γmamfm.

Then A clearly is a closed densely defined operator. Let BV be the Banach
space of all sequences (xm)m∈N with bounded variation, i.e., ‖(xm)‖BV := |x1| +∑∞

m=1 |xm+1 − xm| < ∞. Concerning the boundedness of A, one has the following
positive result [16, Lemma 2.4].

Proposition 3.1. Let (fm)m∈N be a Schauder basis for a Banach space X. Then
there exists a constant K ≥ 0 such that for all (γm)m∈N ∈ BV the Schauder
multiplier A associated to (γm)m∈N with respect to (fm)m∈N is bounded and satisfies

‖A‖ ≤ K ‖(γm)‖BV .

Let us for the moment assume that −A generates a C0-semigroup (e−tA)t≥0

on X. Clearly, this semigroup is positive with respect to the just defined lattice
structure if and only if e−tAem ≥ 0 for all m ∈ N and all t ≥ 0. For odd m this is
satisfied because of e−tAem = e−tAfm = e−γmtem. For even m one has

e−tAem = e−tA(fπ−1(m) − eπ−1(m)−1) = e−tA(fπ−1(m) − fπ−1(m)−1)

= e−tγπ−1(m)fπ−1(m) − e−tγπ−1(m)−1fπ−1(m)−1

= e−tγπ−1(m)(eπ−1(m)−1 + em)− e−tγπ−1(m)−1eπ−1(m)−1

= (e−tγπ−1(m) − e−tγπ−1(m)−1)eπ−1(m)−1 + e−tγπ−1(m)em.

(3.2)

Therefore (e−tA)t≥0 is positive if and only if γm ≤ γm−1 for all even m ∈ N.
Later, the following elementary observation will be useful.

Lemma 3.2. For γm > γm−1 > 0 consider the function d(t) := t[(t + γm−1)
−1 −

(t+ γm)−1] on R+. Then d has a maximum which is larger than 1
2
γm−γm−1

γm+γm−1
.

With these preliminary observations we obtain the following result.

Theorem 3.3. Let X be a Banach space that admits a normalized non-symmetric
1-unconditional Schauder basis (em)m∈N. We consider X as a Banach lattice with
the order induced by (em)m∈N. Then there exists a sectorial operator A on X with
ω(A) = 0 and the following properties:

(a) −A generates a positive bounded analytic C0-semigroup on X;
(b) A is not R-sectorial.
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Proof. It follows from [15, first part of the proof of Proposition 23.2] that there
exists a permutation π : N → N of the even numbers such that (e2m−1)m∈N and
(eπ(2m))m∈N are not equivalent. Hence, there exists a sequence (am)m∈N such that
the expansion for (am)m∈N converges with respect to (e2m−1)m∈N or (eπ(2m))m∈N

but not for both. For the rest of the proof we will assume that the expansion
converges for (eπ(2m))m∈N. In the other case a similar argument can be applied if
one replaces (fm)m∈N by

fm =

{
em + eπ(m+1), m odd,

eπ(m), m even.

We use the following twisted version of the lacunary sequence (2m)m∈N:

γm =

{
2m+1, m odd,

2m−1, m even.

By definition, one has γm < γm−1 for all even m ∈ N. Let A be the multiplier
associated to (γm)m∈N. We now show that A is sectorial with ω(A) = 0, but not
R-sectorial. The positivity of the semigroup (e−tA)t≥0 then follows from the above
choice of (γm)m∈N.

Let us consider the sequence (e−tγα
m)m∈N for t > 0 and α > 0. For its total

variation one obtains

∞∑
m=1

e−t2(2m−1)α − e−t22mα

+ e−t2(2m−1)α − e−t22(m+1)α

≤ t

∞∑
m=1

(22mα − 2(2m−1)α)e−t2(2m−1)α

+ (2(2m+2)α − 2(2m−1)α)e−t2(2m−1)α

= (23α + 2α − 2)t

∞∑
m=1

2(2m−1)αe−t2(2m−1)α

=
23α + 2α − 2

2α − 1
t

∞∑
m=1

∫ 22mα

2(2m−1)α

e−t2(2m−1)α

ds

≤ 23α + 2α − 2

2α − 1
t

∞∑
m=1

∫ 22mα

2(2m−1)α

e−ts/2α ds

≤ 23α + 2α − 2

2α − 1
t

∫ ∞

2α
e−ts/2α ds =

2α

2α − 1
(23α + 2α − 2)e−t.

It follows from ω(Aα) = αω(A) [11, Theorem 15.16] and Proposition 3.1 that A is
sectorial with ω(A) = 0.

Now assume that A is R-sectorial. Let (qm)m∈N ⊂ R− be a sequence to be
chosen later. Then it follows from Proposition 2.5 that the operator R : Rad(X) →
Rad(X) associated to the sequence (qm)m∈N is bounded. We now apply R to
the element x =

∑∞
m=1 ameπ(2m)rm of Rad(X). Since R(λ,A) is the multiplier
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associated to the sequence ((λ− γm)−1)m∈N and eπ(2m) = f2m − f2m−1, we obtain

R(x) = R
( ∞∑

m=1

am(f2m − f2m−1)rm

)

=
∞∑

m=1

rm
amqm

qm − γ2m
f2m − rm

amqm
qm − γ2m−1

f2m−1

=

∞∑
m=1

rm
amqm

qm − γ2m
(eπ(2m) + e2m−1)− rm

amqm
qm − γ2m−1

e2m−1

=

∞∑
m=1

rm
amqm

qm − γ2m
eπ(2m) + rmamqm

(
1

qm − γ2m
− 1

qm − γ2m−1

)
e2m−1.

Now take qm = −22m−1 as motivated in Lemma 3.2. Then we see that

∞∑
m=1

1

2
rmameπ(2m) +

1

6
rmame2m−1

exists in Rad(X). By [4, Theorem 12.3] and the unconditionality of the basis,∑∞
m=1 ame2m−1 converges. This contradicts the choice of (am)m∈N and therefore

A is not R-sectorial. �

We now give some concrete examples of spaces for which the above theorem can
be applied.

Example 3.4. For p, q ∈ (1,∞) consider the UMD-spaces �p(�q) with their natural
lattice structure. Its ordering is induced by the standard unit vector basis (em)m∈N

of �p(�q) for some enumeration of N × N. Clearly, �p(�q) contains both copies of
�p and �q and therefore for p �= q the basis (em)m∈N is 1-unconditional and non-
symmetric. Hence, for p �= q, Theorem 3.3 yields a sectorial operator A on �p(�q)
with ω(A) = 0 such that −A generates a positive bounded analytic C0-semigroup
without maximal regularity.

Example 3.5. In the next section we see that for p ∈ (1,∞) \ {2} the space �p
admits after equivalent renorming a non-symmetric 1-unconditional basis. If one
uses the ordering induced by this basis, one sees with the help of Theorem 3.3
that one can give �p after equivalent renorming a non-standard lattice structure
for which there exists a generator −A of a positive bounded analytic C0-semigroup
without maximal regularity satisfying ω(A) = 0. Further, these arguments apply
to every normalized unconditional basis of Lp([0, 1]) for p ∈ (1,∞) \ {2} as such
bases are automatically non-symmetric [15, Ch. II, Theorem 21.1].

4. Exact control of the extrapolation scale

In this section we give the announced complete negative solution of the extrapo-
lation problem for maximal regularity. For p ∈ (1,∞) let (em)m∈N be the standard
unit vector basis of Xp := (

⊕∞
n=1 �

n
2 )�p seen as a sequence space, the �p-sum of finite

dimensional Euclidean spaces of increasing dimension. Consider the basis (fm)m∈N

given by (3.1) with respect to the following permutation already used in [8]. Let
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b0, b1, b2, . . . be the first even numbers in the blocks Bk := [ (k−1)k
2 + 1, k(k+1)

2 ]
(k ∈ N). Now, define

π(m) =

⎧⎪⎨
⎪⎩
m, m odd,

bk, m = 4k + 2,

min 2N \ ({bn : n ∈ N} ∪ π([1,m− 1])), m = 4k.

We need the following technical result proved in [8, Proposition 6.6].

Proposition 4.1. The basis (fm)m∈N is unconditional for p ∈ (1, 2].

We are interested in the case p > 2. We make frequent use of the following tech-
nical observation. For a sequence (am)m∈N let (bm) = (0, . . . , 0, a1, 0, . . . , 0, a2, . . .)
be a sequence built from (am)m∈N by inserting zeros. Denote by ϕ : N → N the
mapping which sends k to the position of ak in the new sequence (bm)m∈N. Then
the following holds (for a proof of the first implication see [8, Lemma 6.7], the
second can be proved analogously).

Lemma 4.2. Let p ∈ [1,∞), (am)m∈N be a sequence, (bm)m∈N and ϕ : N → N be
as above and suppose that

M := sup
k∈N

ϕ(k + 1)− ϕ(k) < ∞.

If (am)m∈N ∈ Xp, then (bm)m∈N ∈ Xp as well. Conversely, if (bm)m∈N ∈ Xp, then
(am)m∈N ∈ Xp.

Recall that in the proof of Theorem 3.3 the fundamental property of (γm)m∈N

used (as clarified in Lemma 3.2) was that the ratios

(4.1)
γm − γm−1

γm + γm−1

are bounded from below. We now study more precisely the Schauder multipliers
associated to various sequences (γm)m∈N for the basis (fm)m∈N.

As a starting point we make the very elementary observation that one can find
sequences (γm)m∈N for which the ratio (4.1) has a prescribed growth.

Lemma 4.3. Let (cm)m≥2 be a sequence of real numbers with cm ∈ (0, 12 ) for all
m ∈ N. Then there exists a unique strictly increasing sequence (γm)m∈N of real
numbers with γ1 = 1 and

(4.2)
1

2

γm − γm−1

γm + γm−1
= cm for all m ≥ 2.

We now formulate a necessary condition for the R-sectoriality of the Schauder
multiplier associated to the sequence (γm)m∈N given by (4.2).

Proposition 4.4. Let (cm)m≥2 be a sequence with cm ∈ (0, 12 ) for all m ≥ 2
and (γm)m∈N the sequence given by Lemma 4.3. Suppose that for some p > 2 the
sectorial operator A on Xp given as the Schauder multiplier

D(A) =

{
x =

∞∑
m=1

amfm :

∞∑
m=1

γmamfm exists

}
,

A

( ∞∑
m=1

amfm

)
=

∞∑
m=1

γmamfm,

is R-sectorial. Then (amc4m+2)m∈N ∈ Xp for all (am)m∈N ∈ �p.
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Proof. Observe that the basic sequence (eπ(4m+2))m∈N is isometrically equivalent
to the standard unit vector basis of �p. Let (am)m∈N ∈ �p. Then the Rademacher
series x =

∑∞
m=1 rmameπ(4m+2) lies in Rad(Xp). One can now argue as in the proof

of Theorem 3.3:
Let (qm)m∈N ⊂ R− be a sequence to be chosen later. Since A is R-sectorial

by assumption, it follows from Proposition 2.5 that the operator R : Rad(X) →
Rad(X) associated to the sequence (qm)m∈N is bounded. We now apply R to x.
Because of eπ(4m+2) = f4m+2 − f4m+1 we obtain

R(x) = R
( ∞∑

m=1

rmam(f4m+2 − f4m+1)

)

=

∞∑
m=1

rm
amqm

qm − γ4m+2
f4m+2 − rm

amqm
qm − γ4m+1

f4m+1

=

∞∑
m=1

rm
amqm

qm − γ4m+2
(eπ(4m+2) + e4m+1)− rm

amqm
qm − γ4m+1

e4m+1

=

∞∑
m=1

rm
amqm

qm − γ4m+2
eπ(4m+2)

+ rmamqm

(
1

qm − γ4m+2
− 1

qm − γ4m+1

)
e4m+1.

By Lemma 3.2 one has for t = γ4m+2

t[(t+ γ4m+2)
−1 − (t+ γ4m+1)

−1] = −1

2

γ4m+2 − γ4m+1

γ4m+2 + γ4m+1
= −c4m+2.

Hence, for the choice qm = −γ4m+2, we obtain

R(x) =

∞∑
m=1

1

2
rmameπ(4m+2) − c4m+2rmame4m+1.

As in the proof of Theorem 3.3 one deduces that
∑∞

m=1 c4m+2ame4m+1 converges
in Xp. By Lemma 4.2 this implies that (amc4m+2)m∈N ∈ Xp. �

In the next step we prove a sufficient criterion for maximal regularity. In fact,
we will establish the boundedness of the imaginary powers. Let A denote the
Schauder multiplier associated to some sequence (γm)m∈N as above. It then follows
from formula (3.2) that the imaginary powers Ait for t ∈ R act as

(4.3)

∞∑
m=1

amem �→
∞∑

m=1

γ̃it
mamem +

∞∑
m=1

a2m(γit
π−1(2m) − γit

π−1(2m)−1)eπ−1(2m)−1,

where

γ̃m =

{
γm, m odd,

γπ−1(m), m even.

It is clear that the first series of the right hand side of (4.3) converges for all
(am)m∈N ∈ Xp. The crucial point is therefore the question whether the second
series, which by the unconditionality of the basis (em)m∈N can be rewritten as

∞∑
m=1

a2m(γit
π−1(2m) − γit

π−1(2m)−1)eπ−1(2m)−1 =

∞∑
m=1

aπ(2m)(γ
it
2m − γit

2m−1)e2m−1,
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converges in Xp for all (am)m∈N ∈ Xp. Equivalently by Lemma 4.2, the sequence
(aπ(2m)(γ

it
2m − γit

2m−1))m∈N must lie in Xp for all (am)m∈N ∈ Xp. We now give a
sufficient condition. Here we use the fact that if a sectorial operator A on some
UMD-space has bounded imaginary powers of polynomial growth, then A is R-
sectorial with ωR(A) = 0 [3, Theorem 4.5].

Proposition 4.5. Let (cm)m∈N be a sequence with cm ∈ (0, 18 ) for all m ≥ 2 and
let (γm)m∈N be the sequence given by Lemma 4.3. Consider for p > 2 the sectorial
operator A on Xp defined as

D(A) =

{
x =

∞∑
m=1

amfm :
∞∑

m=1

γmamfm exists

}
,

A

( ∞∑
m=1

amfm

)
=

∞∑
m=1

γmamfm.

If (bmc2m)m∈N lies in Xp for all (bm)m∈N ∈ �p, then A has bounded imaginary
powers with linear growth. In particular, A is R-sectorial with ωR(A) = 0.

Proof. A short calculation shows that one has for all m ∈ N

|γit
2m − γit

2m−1|2 = |exp(it log γ2m)− exp(it log γ2m−1)|2

= |exp(it log γ2m)|2 + |exp(it log γ2m−1)|2

− 2Re exp(it(log(γ2m−1 − log γ2m)))

= 2(1− cos(t(log γ2m−1 − log γ2m))).

Here we have used the identity

|z − w|2 = (z − w)(z − w) = |z|2 + |w|2 − (zw + zw) = |z|2 + |w|2 − 2Re zw.

Further, one has

|log γ2m−1 − log γ2m| =
∣∣∣∣log

(
γ2m−1

γ2m

)∣∣∣∣ =
∣∣∣∣log

(
1− γ2m − γ2m−1

γ2m

)∣∣∣∣
≤

∣∣∣∣log
(
1− 2

γ2m − γ2m−1

γ2m + γ2m−1

)∣∣∣∣ = |log(1− 4c2m)| .

It follows from elementary calculus that 1− cosx ≤ x2

2 for all x ∈ R. In particular,
we obtain the estimate

2(1− cos(t(log γ2m−1 − log γ2m))) ≤ t2 log2(1− 4c2m).

A further elementary estimate from calculus is that |log(1− 4x)| ≤ 8x holds for all
x ∈ [0, 1

8 ]. Therefore we see that for all m ∈ N one has

(4.4) |γit
2m − γit

2m−1| ≤ 8 |t| c2m.

Now, let (am)m∈N ∈ Xp. Since p > 2, we have the inclusion Xp ↪→ �p. Hence,
(aπ(2m))m∈N ∈ �p. By assumption, the mapping (bm)m∈N �→ (bmc2m)m∈N from
�p into Xp is well defined and closed. Hence, by the closed graph theorem, there
exists a constant C ≥ 0 such that ‖(c2mbm)‖Xp

≤ C ‖(bm)‖�p for all (bm)m∈N in �p.

Hence, we obtain that (aπ(2m)c2m)m∈N ∈ Xp with

‖(aπ(2m)c2m)‖Xp
≤ C‖(aπ(2m))‖�p ≤ C ‖(am)‖Xp

.
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It is now a direct consequence of equation (4.4) that ((γit
2m − γit

2m−1)aπ(2m)) ∈ Xp

with

‖((γit
2m − γit

2m−1)aπ(2m))‖Xp
≤ 8C |t| ‖(am)‖Xp

.

Altogether this shows that A has bounded imaginary powers with ‖Ait‖ ≤ K(1+|t|)
for some constant K > 0. �

Remark 4.6. Essentially the same conditions as in Proposition 4.5 even imply the
boundedness of the H∞-calculus for A (for the necessary background see [11] and
[3]). For this first let g ∈ H∞(Hω), where Hω := {z ∈ C : |Im z| < ω} is the strip
of height ω > 0. Then for z ∈ R it follows from Cauchy’s integral formula that for
all ω̃ ∈ (0, ω) and all k ≥ 1∣∣gk(z)∣∣

k!
=

∣∣∣∣∣ 1

2πi

(∫ ∞+iω̃

−∞+iω̃

−
∫ ∞−iω̃

−∞−iω̃

)
g(w)

(w − z)k+1
dw

∣∣∣∣∣
≤

‖g‖Hω

π

∫ ∞

−∞

1

|s+ iω̃ − z|k+1
ds =

‖g‖Hω

π

∫ ∞

−∞

1

(s2 + ω̃2)(k+1)/2
ds

=
‖g‖Hω

π
ω̃−k

∫ ∞

−∞

1

(1 + s2)(k+1)/2
ds ≤ ω̃−k ‖g‖Hω

,

where Hω is endowed with the supremum norm. Hence, we obtain for z0, z ∈ R,
with |z − z0| < ω̃ that

|g(z)− g(z0)| ≤
∞∑
k=1

ω−k ‖g‖Hω
|z − z0|k ≤ Cω̃ ‖g‖Hω

|z − z0|

for a universal constant Cω̃ > 0. Using the notation from Proposition 4.5 we obtain
for f ∈ H∞(Σθ) and θ > 0

|f(γ2m)− f(γ2m−1)| = |(f ◦ exp)(log γ2m)− (f ◦ exp)(log γ2m−1)|
≤ Cθ̃ ‖f ◦ exp‖Hθ

|log γ2m − log γ2m−1| ≤ 8Cθ̃ ‖f‖Σθ
c2m

using the estimates from the proof of Proposition 4.5 provided 8c2m < θ̃ for some θ̃ ∈
(0, θ). If (c2m)m∈N is a zero sequence, this condition is satisfied for sufficiently large
m and we can deduce the boundedness of the H∞-calculus for A with ωH∞(A) = 0
as in the above proof.

For a special type of sequences (cm)m∈N one can use the above results to obtain
a complete characterization of maximal regularity.

Corollary 4.7. Let (cm)m∈N be an eventually decreasing sequence with cm ∈ (0, 18 )
for all m ≥ 2 and (γm)m∈N the sequence given by Lemma 4.3. Consider for p > 2
the sectorial operator A on Xp defined by

D(A) =

{
x =

∞∑
m=1

amfm :

∞∑
m=1

γmamfm exists

}
,

A

( ∞∑
m=1

amfm

)
=

∞∑
m=1

γmamfm.

Then A is R-sectorial if and only if (cm)m∈N ∈ (
⊕∞

n=1 �
n
q )�∞, where 1

2 = 1
p + 1

q .

Moreover, in this case one has ωR(A) = 0.
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Proof. Clearly, it suffices to show the corollary for decreasing sequences. As a first
observation we show that both the conditions in Proposition 4.4 and Proposition 4.5
are equivalent to: (amcm)m∈N ∈ Xp for all (am)m∈N ∈ �p. We show only the
non-trivial implication for the condition in Proposition 4.5. Of course, for the
condition in Proposition 4.4 the proof is completely analogous. So assume that
(amc2m)m∈N ∈ Xp for all (am)m∈N ∈ �p. Now let (am)m∈N ∈ �p. In order to show
that (amcm)m∈N ∈ Xp, by Lemma 4.2, it suffices to show that (a2mc2m)m∈N and
(a2m+1c2m+1)m∈N lie in Xp. For the first sequence this follows directly from the
assumption and for the second this follows from the monotonicity of (cm)m∈N.

Hence, we have shown that A is R-sectorial if and only if (amcm)m∈N ∈ Xp for
all (am)m∈N ∈ �p. In this case, by the closed graph theorem, there exists a constant
M ≥ 0 such that

(4.5) ‖(amcm)‖Xp
≤ M ‖(am)‖�p

for all (am)m∈N ∈ �p. Now, it remains to show that this condition is equivalent to
(cm)m∈N ∈ (

⊕∞
n=1 �

n
q )�∞ . On the one hand it follows from Hölder’s inequality that

for (cm)m∈N ∈ (
⊕∞

n=1 �
n
q )�∞ one has

‖(amcm)‖Xp
≤ sup

m∈N

( ∑
k∈Bm

|ck|q
)1/q( ∞∑

m=1

|am|p
)1/p

,

which is (4.5). On the other hand it follows from (4.5) that for all n ∈ N

sup
‖(am)‖�p

≤1

( ∑
k∈Bn

|akck|2
)1/2

≤ M.

This implies that for all n ∈ N one has( ∑
k∈Bn

|ck|q
)1/q

≤ M.

In other words one has (cm)m∈N ∈ (
⊕∞

n=1 �
n
q )�∞ . This finishes the proof. �

We now give two fundamental examples for (cm)m∈N. First, for cm = k−α for
m ∈ Bk and α ∈ (0, 12 ) one has (cm)m∈N ∈ (

⊕∞
n=1 �

n
q )�∞ if and only if p ≤ 2

1−2α .

Second, cm = k−α log k for m ∈ Bk lies in (
⊕∞

n=1 �
n
q )�∞ if and only if p < 2

1−2α .
These two families of sequences can now be used to obtain a complete answer to
the maximal regularity extrapolation problem.

Theorem 4.8. Let I ⊂ (1,∞) be an arbitrary interval with 2 ∈ I. Then there exists
a family of consistent bounded analytic C0-semigroups (Tp(z))z∈Σπ

2
on Lp(R) for

p ∈ (1,∞) such that (Tp(z))z∈Σπ
2
has maximal regularity (resp. bounded imaginary

powers / a bounded H∞-calculus) if and only if p ∈ I.

Proof. Let I be such an interval and let p0 be the right end of I. We first construct
a family (Tp(z))z∈Σπ

2
that has maximal regularity if and only if p ∈ (1, 2) ∪ I. For

p0 = 2 this has already been done in [8, Corollary 6.8]. So we may assume p0 > 2.
Choose cm = k−α for m ∈ Bk and α = p0−2

2p0
if p0 ∈ I or cm = k−α log k for

m ∈ Bk and α = p0−2
2p0

if p0 �∈ I multiplied by appropriate scaling constants such

that cm ∈ (0, 18 ) for all m ≥ 2. Then it follows from Corollary 4.7 and the above
calculations that the analytic semigroups on Xp for p ∈ (1,∞) whose generators are



2026 STEPHAN FACKLER

the Schauder multipliers associated to the sequence (−γm)m∈N given by Lemma 4.3
with respect to the basis (fm)m∈N have maximal regularity for p ∈ (2,∞) if and
only if p ∈ I∩(2,∞). Moreover, it follows from Proposition 4.1 and [8, Theorem 2.5]
that these semigroups have maximal regularity for p ∈ (1, 2]. In order to obtain
consistent semigroups (Tp(z))z∈Σπ

2
on Lp which have maximal regularity if and only

if p ∈ (1, 2) ∪ I, one needs to transfer the just constructed example consistently in
p ∈ (1,∞) from the Xp- to the Lp-scale. In fact, this can be done as in the proof
of [8, Theorem 6.3]:

From the Khintchine inequality one obtains consistent isomorphisms Xp =

(
⊕∞

n=1 �
n
2 )�p

∼−→ (
⊕∞

n=1 Radn)�p , where Radn is the span of the first n Rademacher
functions in Lp([0, 1]). Hence, (

⊕∞
n=1 Radn)�p can be identified with a closed sub-

space of Lp([0,∞)). Together with the projection given by the direct sum of the
consistent Rademacher projections Lp([0, 1]) → Radn we are able to transport the
counterexample consistently to Lp([0,∞)).

Taking dual semigroups, it follows from the first part of the proof that there
exist consistent analytic C0-semigroups (Sp(z))z∈Σπ

2
on Lp([0,∞)) for p ∈ (1,∞)

such that (Sp(z))z∈Σπ
2
has maximal regularity if and only if p ∈ (2,∞)∪ I. Taking

the direct sum of (Tp(z))z∈Σπ
2
and (Sp(z))z∈Σπ

2
one obtains the desired family of

semigroups. �

Remark 4.9. It is an open problem whether every generator of a bounded analytic
C0-semigroup on a uniformly convex UMD-space that is contractive on R≥0 has
maximal regularity or even a bounded H∞-calculus.

We now comment on what we know about the contractivity of the semigroups
considered above. First, it is easy to see that on X2 = �2 the semigroup given by
a sequence (cm)m∈N is contractive for all allowed (cm)m∈N. Further, on X∞ :=
(
⊕∞

n=1 �
n
2 )c0 one can again use the standard basis (em)m∈N to define the Schauder

basis (fm)m∈N and the sectorial operators as for example formulated in Corol-
lary 4.7. Using the same notation as before, the operator B = −A given by a
sequence (cm)m∈N is the generator of a bounded analytic C0-semigroup on X∞.
Thus, by the Lumer–Phillips theorem, B generates a contractive semigroup on X∞
if and only if B is dissipative, i.e., if for all x ∈ D(B) there exists an x∗ ∈ J(x) :=

{x∗ ∈ X∗
∞ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} such that Re〈Bx, x∗〉 ≤ 0. We now study this

condition.
Observe that one has Bem=−γmem for oddm and Beπ(m) = −(γm−γm−1)em−1

−γmeπ(m) for even m. Then one has for x ∈ D(B) and x∗ ∈ X∗
∞

〈Bx, x∗〉 = −
∑

m odd

γmxmx∗
m −

∑
m even

γπ−1(m)xmx∗
m

−
∑

m odd

(γm+1 − γm)xπ(m+1)x
∗
m.

Now, choose k ∈ N and xm = γm+1−γm

2γm
for m ∈ Bk and m ≡ 1 mod 4 and

xπ(m+1) = −1 for m ∈ Bk and m + 1 ≡ 2 mod 4 and xm = 0 otherwise. Notice

that if k is sufficiently large and
∑

m∈Bk
|xm|2 > 1; then x∗ =

∑
m∈Bk

xmem is the
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unique element in J(x). One therefore obtains

〈Bx, x∗〉 = −
∑

m∈Bk:
m≡1 mod 4

γm |xm|2 +
∑

m∈Bk:
m≡1 mod 4

(γm+1 − γm) |xm|

=
∑

m∈Bk:
m≡1 mod 4

1

4

(γm+1 − γm)2

γm
> 0.

If (cm)m∈N �∈ (
⊕∞

n=1 �
n
2 )�∞ , one has

∑
m∈Bk

|xm|2 > 1 for sufficiently large k be-

cause of the monotonicity of (cm)m∈N and the estimate cm+1 ≤ γm+1−γm

2γm
for all m ∈

N. Hence, it follows from the above calculation that (cm)m∈N �∈ (
⊕∞

n=1 �
n
2 )�∞ im-

plies the non-contractivity of the semigroup. Notice that (cm)m∈N �∈ (
⊕∞

n=1 �
n
2 )�∞

is exactly the limit case for p → ∞ of the condition given in Corollary 4.7.
We do not know whether analogously for p ∈ (2,∞) the condition (cm)m∈N �∈

(
⊕∞

n=1 �
n
q )�∞ with 1

2 = 1
p + 1

q implies that the generated semigroup is not contrac-

tive.
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