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INCOHERENT COXETER GROUPS

KASIA JANKIEWICZ AND DANIEL T. WISE

(Communicated by Kevin Whyte)

Abstract. We use probabilistic methods to prove that many Coxeter groups
are incoherent. In particular, this holds for Coxeter groups of uniform exponent
> 2 with sufficiently many generators.

1. Introduction

A Coxeter group G is given by the presentation

〈a1, . . . , ar | a2i , (aiaj)mij : 1 ≤ i < j ≤ r〉
where mij ∈ {2, 3, . . . ,∞} and where mij = ∞ means no relator of the form
(aiaj)

mij . Throughout this paper all presentations of Coxeter groups are of the
above form. It is traditional to encode the above data forG in terms of an associated
labelled graph ΥG, whose vertices correspond to the generators and where an edge
labelled by mij joins vertices ai, aj when mij < ∞. We omit an edge for mij = ∞.

Definition 1.1. A group G is coherent if every finitely generated subgroup of G
is finitely presented. Otherwise, G is incoherent.

Our main result which is stated and proven as Theorem 3.3 is the following:

Theorem 1.2. For each M there exists R = R(M) such that if K is a Coxeter
group with 3 ≤ mij ≤ M and rank r ≥ R, then K is incoherent.

Our result joins a similar result for groups acting properly and cocompactly
on Bourdon buildings [Wis11] and we expect that there is more to come in this
direction.

2. Preliminaries on Coxeter groups, walls, and Morse theory

2.1. Euler characteristic and compression. Let G be a Coxeter group given
by

〈a1, . . . , ar | a2i , (aiaj)mij : 1 ≤ i < j ≤ r〉
and let X be the standard 2-complex associated to this presentation. Consider an

index d torsion-free subgroup G′ of G. Let X̂ → X be a cover of X corresponding to

G′. All edges embed in X̂, since all generators are torsion elements, and all 2-cells
embed since each proper subword of (aiaj)

mij is a torsion element. Consider the

complex X obtained from X̂ by first collapsing 2-cells corresponding to a2i relators
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Figure 1. The compression X̂ → X. Each bigon collapses to an
edge and six 2-cells collapse to a single 2-cell.

to 1-cells and second collapsing 2mij copies of 2mij-gons with the same boundary

when mij 	= ∞. The complex X is the compression of X̂. See Figure 1 for the
compression arising from 〈a, b | a2, b2, (ab)3〉.

We say G has dimension ≤ 2 when X is aspherical. This holds precisely when
1

mij
+ 1

mjk
+ 1

mki
≤ 1 for each i, j, k. Indeed, there is then a natural metric of

nonpositive curvature on X induced by metrizing each 2-cell as a regular Euclidean
polygon. However if some 3-generator subgroup is finite, then X contains a copy
of S2. We focus on Coxeter groups of dimension ≤ 2, in which case the following
discussion of χ(G) is sensible.

The complex X has one 0-cell, r 1-cells and one 2-cell for each pair of generators

{i, j} with mij < ∞. As degree(X̂ → X) = d, the complex X̂ has d 0-cells, dr

1-cells and d 2-cells for each pair {i, j} with mij < ∞. The complex X has d

0-cells, dr
2 1-cells and d

2mij
2-cells for each pair {i, j} with mij < ∞. The Euler

characteristic of G is:

(1) χ(G) =
χ(X)

[G : G′]
=

1

d

(
d− dr

2
+

∑
{i,j}

d

2mij

)
= 1− r

2
+

∑
{i,j}

1

2mij
.

This is independent of the choice of a finite index torison-free subgroup. We thus
have:

χ(G(r,m)) = 1− r

2
+

(r − 1)r

4m
.

Thus if m is fixed, then χ(G(r,m)) > 0 for all sufficiently large r.

2.2. Walls. Let K be a combinatorial 2-complex with the property that each 2-cell
has an even number of sides (we have in mind K = X as defined in the previous
section). Two 1-cells in the attaching map ∂pC → K1 of a 2-cell C are parallel if
they are images of opposite edges in ∂pC. An abstract wall is an equivalence class
of 1-cells in the equivalence relation generated by parallelism. A wall W associated
to an abstract wall W̄ is a graph with a locally injective map φ : W → K defined
as follows:

• for each 1-cell a in W̄ there is a vertex va in W ,
• φ(va) is the center of a,
• for each pair of 1-cells a, a′ in W̄ and each 2-cell C in which a, a′ are parallel,
there is an edge (va, va′) in W ,

• the edge (va, va′) is sent by φ to an arc in C joining φ(va) and φ(va′).

The wall W is dual to each 1-cell in W̄ . The wall W is adjacent to x at a vertex v
of link(x), if it is dual to the 1-cell corresponding to v. The wall W is adjacent to
x at an edge e of link(x), if W is not adjacent at either endpoint of e but is dual
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Figure 2. In each case above, the wall self-osculates at the central vertex.

to a pair of 1-cells in ∂pC where C is a 2-cell corresponding to e. We say that the
wall W

• embeds if W → K is injective,
• is two-sided if W → K extends to an embedding W × (−1, 1) → K,
• self-osculates at x if it is adjacent to x at more than one vertex and/or edge
of link(x). See Figure 2.

2.3. Orientation of walls. An embedded wall W → K is two-sided if and only if
there is a globally consistent orientation of its dual 1-cells such that parallel 1-cells
in any 2-cell C have opposite orientations in ∂pC. An orientation of a two-sided
wall W is one of two globally consistent orientations of its dual 1-cells. Let W be
the set of all walls in K. An orientation on W is a choice of orientation on each
W ∈ W .

2.4. Bestvina-Brady Morse theory. An affine complex K has cells that are
convex Euclidean polyhedra, which metrically agree on their faces. A map f : K →
R is a Morse function if it is linear on each cell C, constant on C if and only if
dimC = 0, and the image f(K0) of the 0-skeleton is a closed discrete subset of R.
It follows that the restriction of f to a cell has a unique minimum and maximum.

Let x ∈ K0. A vertex v ∈ link(x) is ascending (resp. descending) if the corre-
sponding 1-cell is oriented away from x (resp. toward x). An edge e ∈ link(x) is
ascending (resp. descending) if each wall passing through the corresponding 2-cell
is oriented away from x (resp. toward x). The ascending link link↑(x) (resp. de-
scending link link↓(x)) is the subgraph of link(x) consisting of all ascending (resp.
descending) vertices and edges.

We will employ the following result of Bestvina-Brady proven in [BB97, Thm 4.1]:

Theorem 2.1. Let K be a finite (aspherical) affine cell complex. Consider a map

K → S1 that lifts to a Morse function K̃ → R. If link↑(x) and link↓(x) are

nonempty and connected for each x ∈ K̃0, then ker(π1K → Z) is finitely generated.

2.5. An orientation induces a combinatorial map K1 → S1. Let S1 have
a cell structure with one 0-cell and one (oriented) 1-cell. Each orientation on
W determines an orientation preserving combinatorial map K1 → S1. The map
∂pC → S1 is null-homotopic for each 2-cell C, since pairs of opposite 1-cells in
∂pC travel in opposite directions around S1. Thus the map K1 → S1 extends to

K → S1. The map K → S1 lifts to K̃ → S̃1 
 R, but the restriction of this map
to a 2-cell does not necessarily have a unique minimum or maximum.

The lawful subcomplex Y ⊂ K is the subcomplex of K obtained by discarding
2-cells whose attaching maps cannot be expressed as the concatenation αβ−1 where
α → K1, β → K1 are positively directed paths. The restriction Y → S1 of the map

K → S1 lifts to Ỹ → R which is a Morse function in the sense of Bestvina-Brady.
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3. Main theorem

The Coxeter group of uniform exponent m and rank r is the Coxeter group G(r,m)

with the following presentation:

〈a1, . . . , ar | a2i , (aiaj)m : 1 ≤ i < j ≤ r〉.
The standard 2-complex of the above presentation for G(r,m) is denoted by X(r,m).

Theorem 3.1. For each m ≥ 3 there exists Rm such that for all r ≥ Rm the
group G(r,m) has a finite index torsion-free subgroup G′ that admits an epimorphism
G′ → Z whose kernel N is finitely generated.

Corollary 3.2. For m ≥ 3, the group G(r,m) is incoherent for all sufficiently large
r.

Proof. A result of Bieri in [Bie81] states that a nontrivial finitely presented normal
subgroup of a group of cohomological dimension ≤ 2 is either free or of finite index.
Since [G′ : N ] = ∞ it remains to exclude the case where N is free, whence:

χ(G′) = χ(N) · χ(Z) = (1− rank(N)) · 0 = 0.

This is impossible for all sufficiently large r, since then χ(G′) > 0 (see Section 2.1).
�

A Coxeter subgroup is generated by a subset of the generators ofG. It is presented
by those generators together with all relators in those generators appearing in the
presentation of G [Dav08]. We now prove the main result stated in the introduction:

Theorem 3.3. For each M there exists R = R(M) such that if K is a Coxeter
group with 3 ≤ mij ≤ M and rank r ≥ R, then K is incoherent.

Proof. The multi-color version of Ramsey’s theorem [GRS80] states that given a
number of colors c and natural numbers n1, . . . , nc there exists a number R =
R(n1, . . . , nc) such that if the edges of a complete graph Γ of order at least R are
colored with c colors, then for some i there exists a complete subgraph of Γ of order
ni with edges of color i. Let c = M and ni = Ri of Theorem 3.1. Consequently
there exists a uniform exponent Coxeter subgroup G(r,m) of K for some m ≤ M
and r = Rm. By Corollary 3.2 the subgroup G(r,m) is incoherent and hence so is
K. �

The above results lend credence to the following:

Conjecture 3.4. Let G be a finitely generated infinite Coxeter group of dimen-
sion ≤ 2. If χ(G) > 0, then G is incoherent.

3.1. A polynomial degree finite cover of X(r,m) with good walls. The goal
of this subsection is to prove the following:

Proposition 3.5. There is a homomorphism β : G(r,m) → Qk(r) such that the

compression X(r,m) of the induced cover X̂(r,m) → X(r,m) has the following property:
each wall is 2-sided, embedded and has no self-osculation.

Moreover |X0

(r,m)| is at most |Q|k(r) ≤ |Q|rC for some constant C.

The proof of Proposition 3.5 appears at the end of this subsection.
A partition of a set S is a map p : S → {1, 2, 3, 4}. The partition p separates

a, b, c, d if p(a), p(b), p(c), p(d) are distinct.
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Lemma 3.6. Let S have cardinality r ≥ 4. There is a collection of

k = k(r) =

⌈
log

(
r
4

)
log 32

29

⌉
partitions such that each quadruple of distinct elements of S is separated by this
collection.

Proof. Let M denote the set of all partitions of S, and note that |M | = 4r. Let Mk

denote the collection of cardinality k subsets of M and note that |Mk| =
(
4r

k

)
. Let

Nk ⊂ Mk be the subcollection consisting of sets of k partitions that do not separate
some quadruple. We want to show that |Nk| < |Mk|. Let Nk({a, b, c, d}) ⊂ Mk be
the subcollection of sets that fail to separate a, b, c, d ∈ S. We have

|Nk| ≤
(
r

4

)
|Nk({a, b, c, d})|

since there are
(
r
4

)
quadruples {a, b, c, d} of distinct elements of S. There are 4! ·

4r−4 = 6 ·4r−3 partitions that separate a, b, c, d. Thus there are 4r−6 ·4r−3 = 29
32 ·4r

partitions that do not separate a, b, c, d. We thus have

|Nk({a, b, c, d})| =
( 29

32 · 4r
k

)
.

Observe that we have the following:(29
32 · 4r
k

)
<

(29

32

)k
(
4r

k

)
.

Since k ≥ log
(
r
4

)
/ log 32

29 we have (
r

4

)(29

32

)k

≤ 1.

Altogether we have

|Nk| ≤
(
r

4

)
|Nk({a, b, c, d})| <

(
r

4

)(29

32

)k
(
4r

k

)
≤

(
4r

k

)
= |Mk(P )|. �

Proof of Proposition 3.5. There is a finite quotient ψ : G(4,m) � Q such that kerψ

is torsion-free, and the compression X(4,m) of the induced cover X̂(4,m) → X(4,m)

has the following property: each wall in X(4,m) is two-sided, embedded and has no
self-osculation. This follows from the separability of wall stabilizers [HW10].

Let S = {1, . . . , r}. Each partition p : S → {1, 2, 3, 4} defines a homomorphism
φp : G(r,m) → G(4,m) induced by φp(ai) = ap(i). Let

β = (ψ ◦ φp1
, . . . , ψ ◦ φpk

) : G(r,m) → Qk(r)

where (p1, . . . , pk) is a collection of partitions from Lemma 3.6. For each partition
p there is a map φp : X(r,m) → X(4,m) induced by φp. We will show that a “wall
pathology” in X(r,m) would project to a wall pathology in X(4,m) for a suitable p
and hence there are no such wall pathologies. Suppose there is a wall W in X(r,m)

that self-intersects within a 2-cell C. Let ai, aj be the generators of G(r,m) labelling

C. Let p ∈ {p1, . . . , pk} separate i and j. The image φp(W ) is a wall in X(4,m)

that self-intersects, which is a contradiction. Thus walls in X(r,m) embed. We
now show that no wall in X(r,m) has a self-osculation. Suppose W in X(r,m) has
a self-osculation at some 0-cell x, and let C,C ′ be 2-cells adjacent to x such that
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W is dual to edges in both C,C ′. Let ai, aj , ai′ , aj′ be generators that label the
boundaries of C,C ′. If i, j, i′, j′ are distinct consider a partition p that separates
them. The image φp(W ) is a wall in X(4,m) that has a self-osculation, which is a
contradiction. Otherwise C and C ′ share one label and we let p be a partition that
separates the three distinct generators, and the argument is similar. Hence walls
do not have self-osculations in X(r,m). Finally, the fact that all walls of X(r,m) are

two-sided follows by considering a single φp : X(r,m) → X(4,m).
Finally, to see that the degree is bounded by a polynomial we observe that:

|Q|k ≤ |Q|
log (r4)
log 32

29

+1
= |Q|

(
r

4

) log |Q|
log 32

29 ≤ |Q|r
4 log |Q|
log 32

29 . �

3.2. Probability of an empty or disconnected link is exponentially small.
Let Γ be a complete graph on r vertices. Consider assigning a vertex to be as-
cending [respectively descending] with probability 1

2 . Furthermore, for an edge
whose vertices are ascending [descending] assign it to be ascending [descending]
with probability 1

2m−2 . Let Γ↑ [Γ↓] be the subgraph of Γ consisting of all ascending
[descending] vertices and edges.

Observe that Γ↑ is assured to be nonempty and connected if

(1) there exists an ascending vertex in Γ, and
(2) for each pair of distinct vertices v1, v2 ∈ Γ↑ there is a third vertex v3 ∈ Γ↑

such that (v1, v3) and (v2, v3) are edges in Γ↑.

Let Pi denote the probability that condition (1) fails to be satisfied. If Γ fails
to be nonempty and connected, then at least one of (1), (2) is not satisfied. Conse-
quently

P(Γ↑ fails) ≤ P1 + P2.

Similarly,

P(Γ↓ fails) ≤ P1 + P2.

Lemma 3.7. P1 = 1
2r .

Proof. Since no wall in W has a self-osculation, each wall is adjacent to x at at
most one vertex of Γ. Each of the r vertices in Γ is descending with probability 1

2

and these probabilities are independent. Hence P1 = 1
2r . �

Lemma 3.8. P2 ≤
(
r
2

)
1
4 (1−

1
22m−3 )

r−2.

Proof. For distinct vertices v1, v2 ∈ Γ↑ the edge (v1, v2) is ascending with probabil-
ity 1

2m−2 . For a triple v1, v2, v3 of distinct vertices in Γ, where v1, v2 are ascending
the probability that v3 is also ascending and both edges (v1, v3), (v2, v3) are ascend-
ing is

1

22m−3
.

For v1, v2 ∈ Γ↑ the probability that there is no connecting v3 as above equals

(1− 1

22m−3
)r−2.

Thus

P2 ≤
∑

v1,v2∈Γ

1

4
(1− 1

22m−3
)r−2 =

(
r

2

)
1

4
(1− 1

22m−3
)r−2. �
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Consider orientations on the set of all walls W of X(r,m). We orient each wall

randomly, assigning probability 1
2 to each of two orientations for each wall W ∈ W .

For each 0-cell x ∈ X(r,m) the graph link(x) is complete on r vertices. No self-

osculations in X(r,m) provide that walls adjacent to two distinct edges and/or ver-
tices of link(x) are distinct. Thus every vertex of link(x) is ascending [descending]
with probability 1

2 and each edge of link(x) whose edges are ascending [descending]

is ascending [descending] with probability 1
2m−2 . We thus have the following:

Corollary 3.9. P(link↑(x) or link↓(x) fails) is exponentially decreasing. Specifi-
cally

P(link↑(x) or link↓(x) fails) ≤ P(link↑(x) fails) + P(link↓(x) fails)

≤ 2(P1 + P2) ≤
1

2r−1
+

(
r

2

)
1

2
(1− 1

22m−3
)r−2.

3.3. Proof of Theorem 3.1.

Proof. Proposition 3.5 provides a finite cover X̂(r,m) whose degree is bounded by a

polynomial in r, and such that the compression X = X(r,m) has the property that
its walls are two-sided and have no self-osculations.

To apply Theorem 2.1 we need to find an orientation on W such that link↑(x)

and link↓(x) are nonempty and connected for each x ∈ X
0
. We orient each W ∈ W

randomly assigning probability 1
2 to each of two orientations of W . We need to

prove that

P(link↑(x) or link↓(x) fails for some x ∈ X
0
) < 1.

Since the left hand side is bounded above by∑
x∈X

0

P(link↑(x) or link↓(x) fails)

it suffices to prove that for each x ∈ X
0

P(link↑(x) or link↓(x) fails) <
1

|X0|
.(∗)

|X0| is bounded by a polynomial in r, but by Corollary 3.9 the probability on the
left decreases exponentially in r, hence the inequality (∗) holds for all r greater
than some R(m).

After finding an orientation on W such that link↑(x) and link↓(x) are nonempty

and connected, we consider the lawful subcomplex Y ⊂ X and the map X
φ−→ S1

induced by the orientation whose restriction to Y lifts to a Morse function Ỹ → R.
By Theorem 2.1 the group ker(π1Y → Z) is finitely generated. Consequently, its
quotient N = ker(π1X → Z) is also finitely generated. To see that π1X → Z is
nontrivial, observe that X1 has a positively directed closed path since X is compact
and each link↑(x) is nonempty. �
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4. Local quasiconvexity and Coxeter groups with nonpositive

sectional curvature

4.1. Negative sectional curvature and local quasiconvexity.

Definition 4.1 (Sectional curvature). An angled 2-complex is a 2-complex Y with
an angle �(e) ∈ R assigned to each edge e of link(y) for each y ∈ Y 0. As edges
in link(y) correspond to corners of 2-cells at y, we regard the angles as assigned to
corners of 2-cells at y. The curvature at a 2-cell f of Y is given by

κ(f) = 2π −
∑

e∈Corners(f)

def(e)

where def(e) = π − �(e). The curvature of Y at y is given by

(2) κ(y) = 2π − πχ(link(y)) +
∑

e∈Corners(y)

�(e) = (2− v)π +
∑

def(e).

A section of a combinatorial 2-complex Y at the 0-cell y is a combinatorial im-
mersion (S, s) → (Y, y). A section is regular if link(s) is finite, connected, nonempty,
with no valence ≤ 1 vertex. Pulling back the angles at a corner at y to corners at s,
the curvature of a section (S, s) → (Y, y) is defined to be κ(s). We say that Y has
sectional curvature ≤ α at y if all regular sections of Y at y have curvature ≤ α.
Finally, Y has sectional curvature ≤ α if each 2-cell has curvature ≤ α and Y has
sectional curvature ≤ α at each 0-cell.

Definition 4.2 (Quasiconvexity). Let G be a group with a finite generating set
S and the Cayley graph Γ(G,S). A subgroup H of G is quasiconvex if there is a
constant L ≥ 0 such that every geodesic in Γ(G,S) between two elements of H lies
in the L-neighborhood of H. When G is hyperbolic, the quasiconvexity of H is
independent of the generating set of G [Sho91]. A group G is locally quasiconvex if
every finitely generated subgroup of G is quasiconvex. Every quasiconvex subgroup
of a hyperbolic group is finitely presented [Sho91]. Thus a locally quasiconvex
hyperbolic group is coherent.

The main result about negative sectional curvature is as follows [Wis04,MPW13]:

Theorem 4.3. If Y is a compact, piecewise Euclidean nonpositively curved 2-
complex whose associated angles have negative sectional curvature, then π1Y is
locally quasiconvex.

The following is known about locally quasiconvex Coxeter groups:

Proposition 4.4. For each r ≥ 3 there exists N(r) such that for all m > N(r) the
group G(r,m) is locally quasiconvex.

We briefly review two ways of proving Proposition 4.4. One method to prove
Proposition 4.4 is from [MW05] or [Sch03, Thm IV] and shows that a Coxeter
group G(r,m) is locally quasiconvex whenever m ≥ 3

2r. We shall focus on review-
ing conditions ensuring negative sectional curvature so that Theorem 4.3 provides
Proposition 4.4.

As in Section 2.1, let X be the standard 2-complex of the presentation of G =
G(r,m) and let X be the compression of a finite cover of X corresponding to a finite
index torsion-free subgroup of G. If each 3-generator Coxeter subgroup of G is
infinite (i.e. 1

mij
+ 1

mjk
+ 1

mki
≤ 1), then there is a natural metric of nonpositive
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curvature on X induced by metrizing each 2-cell as a regular Euclidean polygon.
The previous condition is equivalent to the nonpositive curvature of all sections
(S, s) → (X, x) where S is a disc. Thus we say that G has nonpositive planar
sectional curvature, when all 3-generator Coxeter subgroups are infinite. Finally,

if all exponents satisfy mij > r(r−1)
2(r−2) , then X has negative sectional curvature

[Wis04, Thm 13.3].

4.2. Nonpositive sectional curvature. Let X denote the standard 2-complex of
the presentation of Coxeter group G and let X denote the compression of a cover
of X corresponding to a finite index torsion-free subgroup. There is a surprisingly
elegant characterization of nonpositive sectional curvature of X in terms of the
Euler characteristic of Coxeter subgroups of G.

Theorem 4.5. The following are equivalent:

(1) X has nonpositive sectional curvature,
(2) χ(H) ≤ 0 for each nontrivial Coxeter subgroup H ⊂ G whose associated

graph ΥH is connected but not a tree.

Proof. (1) ⇒ (2): Suppose χ(H) > 0 and ΥH is connected and not a tree. We can
assume that ΥH has no valence 1 vertex, since the Coxeter subgroup H ′ associ-
ated to the subgraph ΥH′ of ΥH obtained by removing a valence 1 vertex satisfies
χ(H ′) ≥ χ(H) by equation (1). A section at a 0-cell of X whose vertices correspond
to the generators of H has curvature 2πχ(H) by comparing equations (1) and (2).

(2) ⇒ (1): Let x be a 0-cell of X. It suffices to consider sections corresponding
to the full subgraphs of link(x). Indeed def(e) > 0 for each edge e since each
angle is < π and thus adding edges increases κ by the second part of equation (2).
Any regular section corresponding to a full subgraph is isomorphic to the associated
graph ΥH of a Coxeter subgroup H and the curvature of the section equals 2πχ(H).
Thus if the section has positive curvature, then χ(H) > 0. �

Problem 4.6. Let G have a nonpositive planar sectional curvature with χ(G) > 0
and ΥG connected and not a tree. Is it true that π1G is incoherent?

We hope that the methods used here can be applied to an appropriate finite
index subgroup. An affirmative answer to Problem 4.6 would be a step in proving
the following:

Conjecture 4.7. If G has nonpositive planar sectional curvature, then the follow-
ing are equivalent:

(1) G is coherent,
(2) X has nonpositive sectional curvature.
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