
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 144, Number 5, May 2016, Pages 1971–1983
http://dx.doi.org/10.1090/proc/13014

Article electronically published on January 26, 2016

RANDOMIZED SHARKOVSKY-TYPE RESULTS

AND RANDOM SUBHARMONIC SOLUTIONS

OF DIFFERENTIAL INCLUSIONS

JAN ANDRES AND PAWE�L BARBARSKI

(Communicated by Yingfei Yi)

Abstract. Two multivalued deterministic versions of the celebrated Sharkov-
sky cycle coexistence theorem are randomized in terms of very general random
periodic orbits. It is also shown that nontrivial subharmonics of scalar random
upper-Carathéodory differential inclusions imply the coexistence of random
subharmonics of all orders.

1. Introduction

The aim of the present paper is to randomize: (i) two multivalued deterministic
Sharkovsky-type theorems (cf. [20]) obtained by the authors in [3, 7] and (ii) the
deterministic theorem for scalar differential equations and inclusions, saying that
the existence of a pure (nontrivial) subharmonic solution implies the coexistence of
subharmonic solutions of all orders, whose various proofs can be found in [2, 4, 18,
19, 21].

The first goal is related to the existence of random periodic orbits rather than
random periodic points (cf. [9,10]) and there are quite rare results in this field (see
[1,6,8,16,23]). The main technique, Proposition 3.2 below, will be developed for a
very general class of multivalued random operators in a Suslin space. In this way,
all our earlier results in [1, 6, 8] will be generalized both as a method in Section 3
as well as its application to Sharkovsky-type theorems in Section 4.

As concerns the second goal, the forcing property for the subharmonic solutions
of random differential inclusions was already studied by the authors in [4] and [6],
but the proofs were either only indicated in [4] or incomplete in [6]. Here, full proofs
of the related Theorem 5.6 below will be given in Section 5. Although random
periodic solutions of differential equations have been investigated as random fixed
points of the associated random operators (see e.g. [11, 12, 22]), as far as we know,
there are no further results for random subharmonic solutions considered as random
periodic orbits of the associated random operators.
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Although the proofs of the statements might seem to be rather technical (some
preliminaries are therefore recalled in Section 2), the main randomized theorems
are formulated in an extremely simple and transparent way. Moreover, since the
developed randomization technique is quite universal and powerful, it can be easily
applied elsewhere.

2. Preliminaries

By N, R, I, we denote the set of natural numbers, the set of real numbers, and
the interval [0, 1], respectively. For finite I ⊂ N, the symbol LCM I denotes the
lowest common multiple of elements of I. We denote D(n) = {p < n : p|n} and
d(n) = |D(n)|, for n ∈ N. We also fix the following notation: (Ω,Σ) is a measurable
space, I is a proper σ-ideal on Ω (i.e. Ω /∈ I), and μ (if it exists) is a complete
σ-finite nontrivial measure on (Ω,Σ). We say that Σ is complete if such a measure
exists. We say that Σ is nonatomic with respect to I if for every A ∈ Σ such that
A /∈ I, there is a splitting A = B ∪ C such that B,C ∈ Σ and B,C /∈ I.

We recall the notion of a Suslin family. Let S be the set of all finite se-
quences of natural numbers. For a family {As : s ∈ S} we put A{As : s ∈ S} =⋃

σ∈NN

⋂∞
n=0 Aσ�n. We say that a family F is a Suslin family if AF = F , where

AF = {A{As : s ∈ S} : As ∈ F for s ∈ S}.
By (X, d), we always understand a metric space. A metric space which is a

continuous image of a Polish space is called a Suslin space. Each Suslin space is
separable. For Y ⊂ X, by Y we mean the closure of Y in X. For X = Rk or
X = Ik, the symbol d denotes the Euclidean metric. For a closed set B ⊂ X, we
use the standard notation: d(x,B) = inf{d(x, y) : y ∈ B}.

For σ-algebras Σ1 and Σ2, by Σ1 ⊗ Σ2 we mean their product σ-algebra. The
symbol B(X) denotes the σ-algebra of Borel sets in X. If X1, X2 are separable,
then B(X1 × X2) = B(X1) ⊗ B(X2). For a complete measure space (Ω,Σ, μ), we
denote N (Ω) = {A ⊂ Ω: μ(A) = 0}. For Ω = Rk or Ω = Ik, the symbol L(Ω)
denotes the σ-algebra of Lebesgue measurable sets on Ω.

We naturally identify a relation ϕ ⊂ A × B with a map ϕ : A → P(B), where
P(B) stands for all subsets of B. If we want to emphasize the properties of ϕ as a
subset of A×B, we use the notion of a graph Γϕ, where Γϕ = {(a, b) ∈ A×B : b ∈
ϕ(a)}. Furthermore, if Γϕ ⊂ (A × B) × C, i.e. ϕ : A × B → P(C), then for any
x ∈ A, we define the relation ϕx = ϕ(x, ·). A multivalued map ϕ : A � B is
a relation with nonempty values, i.e., ϕ : A → P(B) \ {∅}. For single valued maps,
we identify a map f : A → B with the multivalued map with one-element values
fulfilling the condition ϕ(x) = {f(x)}, for every x ∈ A.

By a superposition of a map f : B → C with a relation ϕ ⊂ A × B, we mean
the relation f ◦ ϕ ⊂ A × C, defined by f ◦ ϕ(a) = f(ϕ(a)), for a ∈ A. By a prod-
uct of relations Fi ⊂ A × B for i ∈ I, we mean the relation

∏
i∈I Fi defined by

(
∏

i∈I Fi)(a) =
∏

i∈I Fi(a), for a ∈ A.
We denote by

ϕ−(B) = {ω ∈ Ω: ϕ(ω) ∩B 
= ∅}
the large preimage of the set B ⊂ X under the relation ϕ ⊂ Ω × X. A relation
ϕ ⊂ Ω × X is called measurable if ϕ−(F ) ∈ Σ, for every closed F ⊂ X. It is
called weakly measurable if ϕ−(G) ∈ Σ, for every open G ⊂ X. The paper [14]
contains a thorough analysis of the notion of a measurable relation. We shall state
several facts from that paper here. Every measurable relation is weakly measurable
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(see [14, Proposition 2.1]). If Σ is complete and X is a Suslin space, the notions
of measurability, weak measurability and a measurable graph coincide for a rela-
tion with closed values (see [14, Theorem 3.5]). The countable sum of measurable
relations is measurable (see [14, Proposition 2.3(i)]). If a codomain is separable,
then the product of at most countably many weakly measurable relations is weakly
measurable (see [14, Proposition 2.3(ii)]). For a weakly measurable multivalued
map ϕ : Ω � R, the map defined by f(ω) = inf ϕ(ω), for ω ∈ Ω, is measurable
(see [14, Theorem 5.8]). The superposition of a continuous map with a weakly
measurable relation is weakly measurable (which is clear from the definition).

Assume that X and Y are metric spaces. A relation ϕ ⊂ X × Y is called upper
semicontinuous (u.s.c.) if ϕ−(F ) is closed in X, for every closed F ⊂ Y . It is called
lower semicontinuous (l.s.c.) if ϕ−(G) is open in X, for every open G ⊂ Y . If ϕ is
both l.s.c. and u.s.c., then it is called continuous.

We call a map f : Ω → X a selection of a multivalued map ϕ : Ω � X and
write f ⊂ ϕ if f(ω) ∈ ϕ(ω), for each ω ∈ Ω. We shall use a generalization of
the Aumann-von Neumann selection theorem which is a simple consequence of
Corollary to Theorem 7 in the article [17] by Leese. We state it as follows:

Lemma 2.1. Assume that Σ is a Suslin family and X is a Suslin space. Let
ϕ : Ω � X have a measurable graph, i.e. Γϕ ∈ Σ⊗B(X). Then it has a measurable
selection f ⊂ ϕ.

Another fact is a simple consequence of [17, Lemma 3].

Lemma 2.2. Assume that Σ is a Suslin family and X is a Suslin space. Then
every ϕ : Ω � X with a measurable graph is measurable.

A sequence (xi)
k−1
i=0 ∈ Ak is called a k-orbit of the multivalued map ϕ : A � A

if xi+1 ∈ ϕ(xi), for i < k − 1, x0 ∈ ϕ(xk−1), and there is no m < k such that m|k
and xsm+i = xi, for i < m and s < k

m .
We recall the Sharkovsky ordering of natural numbers [20]:

3 � 5 � 7 � 9 � . . .
2 · 3 � 2 · 5 � 2 · 7 � 2 · 9 � . . .
22 · 3 � 22 · 5 � 22 · 7 � 22 · 9 � . . .

...
. . . � 23 � 22 � 2 � 1.

We state here a simple fact about this ordering (cf. [8, Lemma 4.1]):

Lemma 2.3. If LCM{ij : j < l} = n and k � n, then there is j′ < l such that
k � ij′ .

We also recall here some generalizations of Sharkovsky’s Theorem which are
simple corollaries of Theorem 6 from [3] and Theorem 2 form [7], respectively.

Proposition 2.4. Let ϕ : R � R be an l.s.c. multivalued map with compact and
convex values. If ϕ has an n-orbit, then ϕ has a k-orbit, for every k � n.

Proposition 2.5. Let ϕ : R � R be a u.s.c. multivalued map with compact and
convex values. Suppose that ϕ has an n-orbit (n = 2mq, where q is odd), and n is
the maximal number in the Sharkovsky ordering with that property.

(1) If q > 3, then ϕ has a k-orbit for every k � n, except possibly for k = 2m+2.
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(2) If q = 3, then at least one of the following two cases occurs:
(i) ϕ has a k-orbit for every k � n, except possibly for k = 2m+1 · 3, 2m+2,
(ii) ϕ has a k-orbit for every k � n, except possibly for k = 2m+1.

(3) If q = 1, then ϕ has a k-orbit for every k � n.

We recall here the definition of a random operator after [1].

Definition 2.6. Let ϕ : Ω×X � X be a multivalued map with closed values. We
say that ϕ is a random operator if it is weakly measurable with respect to σ-algebra
Σ⊗ B(X). We call it an l.s.c. (u.s.c.) random operator if ϕω, i.e., ϕ(ω, ·), is l.s.c.
(u.s.c., respectively), for almost all ω ∈ Ω.

Remark 2.7. For the definition of a random operator, it is usually still required that
ϕ be compact-valued (cf. [13]), and ϕ(ω, ·) : X � X to be u.s.c. (cf. again [13]) or
Hausdorff-continuous (cf. [15, Chapter 5.6]), for almost all ω ∈ Ω. We omit these
additional assumptions and introduce here a more general approach.

For a random operator ϕ : Ω × X � X and k,m ∈ N, we define the function
dϕ,k,m : Ω×Xk → [0,+∞) as follows (cf. [1]):

dϕ,k,m
(
ω, (xi)

k−1
i=0

)
= d

(
(xi)

k−1
i=0 , ϕ(ω, xm−1)× ϕ(ω, x0)× . . .× ϕ(ω, xm−2)

× ({x0} × {x1} × . . .× {xm−1})
k
m−1

)
,

and the function Dϕ,k,m : Ω×Xk → [0,+∞)1+d(m) as follows:

Dϕ,k,m =
(
dϕ,k,m, (dϕ,k,p)p∈D(m)

)
.

Moreover, for ω ∈ Ω, we denote dϕ,k,m,ω = dϕ,k,m(ω, ·) and
Dϕ,k,m,ω = Dϕ,k,m(ω, ·) =

(
dϕ,k,m,ω, (dϕ,k,p,ω)p∈D(m)

)
.

We also define the relation Oϕ,k,m ⊂ Ω×Xk as follows:

Oϕ,k,m(ω) =

{
(xi)

k−1
i=0 ∈ Xk : (xi)

m−1
i=0 is an m-orbit of ϕω ∧ ∀s< k

m
i<m

xsm+i = xi

}
,

and set Δϕ,k = {ω ∈ Ω: ϕω has a k-orbit}.
The following simple facts from the paper (cf. [8, Lemmas 3.1 and 3.2]) will be

useful.

Lemma 2.8. Assume that X is separable. Let ϕ : Ω × X � X be a random
operator. Then, for every k,m ∈ N such that m|k, the function dϕ,k,m (and as
a result Dϕ,k,m) is measurable with respect to σ-algebra Σ⊗ B(Xk).

Lemma 2.9. Let ϕ : Ω ×X � X be a random operator and let k,m ∈ N be such
that m|k. Then

Oϕ,k,m(ω)=

{
(xi)

k−1
i=0 ∈ Xk : dϕ,k,m,ω

(
(xi)

k−1
i=0

)
=0 ∧ ∀p<m

p|m
dϕ,k,p,ω

(
(xi)

k−1
i=0

)
> 0

}
,

for all ω ∈ Ω.

Remark 2.10. Equivalently we can write:

Oϕ,k,m(ω) = D−1
ϕ,k,m,ω

(
{0} × (0,+∞)d(m)

)
,

or simply:

ΓOϕ,k,m
= D−1

ϕ,k,m

(
{0} × (0,+∞)d(m)

)
.
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As a result:
ΓOϕ,k,m

∈ Σ⊗ B(Xk).

Thus, if Σ is a Suslin family and X is a Suslin space, then, by Lemma 2.2, Oϕ,k,m is
measurable, and its domain O−

ϕ,k,m(Rk) ∈ Σ. In particular, Δϕ,k = O−
ϕ,k,k(R

k) ∈ Σ.

Now, we can state the crucial definition of a random orbit.

Definition 2.11. Let ϕ : Ω × X � X be a random operator. A sequence of
measurable functions (ξi)

k−1
i=0 , where ξi : Ω → X, for i = 0, . . . , k − 1, is called a

random k-orbit of the operator ϕ if

(a) Ω \ {ω ∈ Ω: ∀i<k−1 ξi+1(ω) ∈ ϕ(ω, ξi(ω)) ∧ ξ0(ω) ∈ ϕ(ω, ξk−1(ω))} ∈ I,
(b) there is no m < k such that m|k and

Ω \ {ω ∈ Ω: ∀s< k
m
∀i<m ξsm+i(ω) = ξi(ω)} ∈ I.

Remark 2.12. If we assume that (Ω,Σ, μ) is a complete measure space, I = N (Ω),
and (X, d) is a Polish space, then the definition of a random orbit coincides with
the definition given in [1], i.e.:

Let ϕ : Ω×X � X be a random operator. A sequence of measurable functions
(ξi)

k−1
i=0 , where ξi : Ω → X, for i = 0, . . . , k − 1, is called a random k-orbit of the

operator ϕ if

(a) ξi+1(ω) ∈ ϕ(ω, ξi(ω)), for i = 0, . . . , k − 2 and ξ0(ω) ∈ ϕ(ω, ξk−1(ω)), for
almost all ω ∈ Ω,

(b) the sequence (ξi)
k−1
i=0 is not formed by going p-times around a shorter sub-

sequence of m consecutive elements (i.e. it is not a concatenation), where
mp = k (for almost all ω ∈ Ω).

Equivalently:

(a) μ (Ω \ {ω ∈ Ω: ∀i<k−1 ξi+1(ω) ∈ ϕ(ω, ξi(ω)) ∧ ξ0(ω) ∈ ϕ(ω, ξk−1(ω))}) = 0,
(b) there is no m < k such that m|k and

μ
(
Ω \ {ω ∈ Ω: ∀s< k

m
∀i<m ξsm+i(ω) = ξi(ω)}

)
= 0.

3. Characterization of operators with random orbits

Lemma 3.1. Assume that X is separable. Let ϕ : Ω × X � X be a random
operator. If ϕ has a random k-orbit, then there exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃
j=0

Ωij ,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• Ω0 ∈ I and Ωij /∈ I for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = k,
• ϕω has an ij-orbit for each ω ∈ Ωij for j < l.

Proof. Let:
Ωm = {ω ∈ Ω: (ξi(ω))

k−1
i=0 ∈ Oϕ,k,m(ω)},

for any m|k. Let {ij : j < l} = {m|k : Ωm /∈ I}, and:

Ω0 = Ω \
l−1⋃
j=0

Ωij .
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The sets Ωm for m = 0, i0, i1, . . . , il−1 are disjoint.
For all m = i0, i1, . . . , il−1, we have:

Ωm =

{
ω ∈ Ω: dϕ,k,m

(
ω, (ξi(ω))

k−1
i=0

)
= 0 ∧ ∀p<m

p|m
dϕ,k,p

(
ω, (ξi(ω))

k−1
i=0

)
> 0

}
.

Let ξ′ =
(
idΩ, (ξi)

k−1
i=0

)
. Then:

Ωm = (Dϕ,k,m ◦ ξ′)−1
(
{0} × (0,+∞)d(m)

)
.

The function Dϕ,k,m is measurable with respect to σ-algebra Σ ⊗ B(Xk). Hence,

D−1
ϕ,k,m({0} × (0,+∞)d(m)) ∈ Σ ⊗ B(Xk). Since X is separable, the σ-algebra

Σ ⊗ B(Xk) is generated by the sets M ×
∏k−1

i=0 Bi, where M ∈ Σ and Bi ∈ B(X)

for i < k. Fix such a set M ×
∏k−1

i=0 Bi. Then:

ξ′−1

(
M ×

k−1∏
i=0

Bi

)
= M ∩

k−1⋂
i=0

ξ−1
i (Bi) ∈ Σ,

because functions ξi, for i < k, are measurable. Thus, ξ′−1(B) ∈ Σ, for any
B ∈ Σ⊗ B(Xk), and subsequently:

Ωm = ξ′−1
(
D−1

ϕ,k,m({0} × (0,+∞)d(m))
)
∈ Σ,

for any m = i0, i1, . . . , il−1. Therefore, Ω0 ∈ Σ. Clearly, Ωij /∈ I, for any j < l. By
the condition (a), we have Ω \

⋃
m|k Ωm ∈ I, and since

Ω0 =

⎛
⎝Ω \

⋃
m|k

Ωm

⎞
⎠ ∪

⋃
{Ωm : Ωm ∈ I ∧m|k},

we get Ω0 ∈ I.
Suppose that k′ = LCM{ij : j < l} < k. Obviously, k′|k. Then ξsm+i(ω) =

ξi(ω), for any s < k
k′ and i < k′, and ω ∈ Ω \ Ω0, which contradicts the condition

(b). Hence, LCM{ij : j < l} = k. �

Proposition 3.2. Assume that Σ is a Suslin family and X is a Suslin space. Let
ϕ : Ω×X � X be a random operator. Then ϕ has a random k-orbit iff there exists
a partition of Ω such that

Ω = Ω0 ∪
l−1⋃
j=0

Ωij ,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• Ω0 ∈ I and Ωij /∈ I for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = k,
• ϕω has an ij-orbit for each ω ∈ Ωij for j < l.

Proof. By Lemma 3.1, it is enough to show the implication to the left. We define
the multivalued map Oϕ,k : Ω → Xk as follows:

Oϕ,k(ω) =

{
Xk for ω ∈ Ω0,
Oϕ,k,ij (ω) for ω ∈ Ωij for j < l and t ∈ N.
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By Remark 2.10, we get ΓOϕ,k
∈ Σ⊗B(Xk). By Lemma 2.1, we receive a measurable

function ξ : Ω → Xk such that ξ ⊂ Oϕ,k.

The sequence (ξi)
k−1
i=0 is a random k-orbit of ϕ. To see this, first observe that each

ξi is measurable, because ξ is measurable and B(X)k = B(Xk). For each ω ∈ Ωij ,
where j < l, we have ξi+1(ω) ∈ ϕ(ω, ξi(ω)), for i < k−1, and ξ0(ω) ∈ ϕ(ω, ξk−1(ω)).
Thus, the condition (a) is fulfilled. Suppose that there is m < k such that m|k and

Ω \ {ω ∈ Ω: ∀s< k
m
∀i<m ξsm+i(ω) = ξi(ω)} ∈ I.

Fix any j < l. Then Ωij ∩ {ω ∈ Ω: ∀s< k
m
∀i<m ξsm+i(ω) = ξi(ω)} 
= ∅, because

Ωij /∈ I. Thus, ij |m, and LCM{ij : j < l} ≤ m < k, a contradiction. Consequently,
the condition (b) is fulfilled. �

Remark 3.3. The above proposition is a generalization of Proposition 2 in [1].

4. Randomized Sharkovsky-type results

Now we can state two randomized versions of the Sharkovsky Theorem, whose
proofs are based on the above Proposition 3.2.

Theorem 4.1. Assume that Σ is a Suslin family, I is a proper σ-ideal, and ϕ : Ω×
R � R is an l.s.c. random operator with compact and connected values. If ϕ has
a random n-orbit, then it has a random k-orbit, for each k � n.

Proof. Suppose that ϕ has a random n-orbit. There is a splitting of Ω as in Propo-
sition 3.2. Fix k � n. By Lemma 2.3, there is j′ < l such that k � ij′ . Moreover,
1�ij for each j < l and j 
= j′. Since ϕω has an ij-orbit, for each ω ∈ Ωij and every
j < l, by Proposition 2.4, ϕω has a k-orbit, for each ω ∈ Ωij′ and a 1-orbit, for each

ω ∈ Ωij and every j < l and j 
= j′. Put Ω′
k = Ωij′ , Ω

′
1 =

⋃
{Ωij : j ≤ l ∧ j 
= j′},

and Ω′
0 = Ω0. As a consequence, we get the following splitting of Ω: Ω = Ω′

0∪Ω′
k if

l = 1, or Ω = Ω′
0∪Ω′

k∪Ω′
1 if l > 1. By Proposition 3.2, ϕ has a random k-orbit. �

As a special single-valued case of Theorem 4.1, we obtain the following random-
ization of the classical Sharkovsky theorem in [20].

Corollary 4.2. Assume that Σ is a Suslin family, I is a proper σ-ideal, and f : Ω×
R → R is a continuous random operator. If f has a random n-orbit, then it has a
random k-orbit, for each k � n.

Theorem 4.3. Assume that Σ is a Suslin family which is nonatomic with respect
to a proper σ-ideal I, and ϕ : Ω×R � R is a u.s.c. random operator with compact
and connected values. Suppose that ϕ has a random n-orbit (n = 2mq, where q is
odd), and n is the maximal number in the Sharkovsky ordering with that property.

(1) If q > 3, then ϕ has a random k-orbit for every k � n, except possibly for
k = 2m+2.

(2) If q = 3, then at least one of the following two cases occurs:
(i) ϕ has a random k-orbit for every k � n, except possibly for k = 2m+2,
(ii) ϕ has a random k-orbit for every k � n, except possibly for k = 2m+1.

(3) If q = 1, then ϕ has a k-orbit for every k � n.

Proof. There is a splitting of Ω as in Proposition 3.2.
Recall that Δϕ,k ∈ Σ, for any k.
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First, fix k � n, k 
= n. Suppose that Δϕ,k /∈ I. Then we can take Ω′
0 = Ω0,

Ω′
k = Δϕ,k \Ω0, and Ω′

1 = Ω \ (Ω′
k ∪Ω′

0), and by Proposition 3.2, we get a random
k-orbit for ϕ which contradicts the maximality of n. Thus, Δϕ,k ∈ I.

Let Ω′′
0 =

⋃
k�nΔϕ,k ∪ Ω0. Then Ω′′

0 ∈ Σ and Ω′′
0 ∈ I. Moreover, ϕω has no

k-orbit with k � n and k 
= n, for every ω ∈ Ω \ Ω′′
0 . Fix j = 0, . . . , l − 1. Since

Ωij \Ω′′
0 
= ∅, ij �n. Furthermore, ij |n. Hence, ij = n or ij = 2mj (where mj ≤ m),

and there is j′ < l such that ij′ = n. Let Ω′′
n = Ωn\Ω′′

0 . Thus, Ω
′′
n ∈ Σ, Ω′′

n /∈ I, and
for every ω ∈ Ω′′

n, ϕω has n-orbit, and n is the maximal number in the Sharkovsky
ordering with that property.

Suppose that q > 3. Fix k � n, k 
= 2m+2. By Proposition 2.5, for every ω ∈ Ωn,
ϕω has a k-orbit. Now, take Ω′

k = Ω′′
n, Ω

′
0 = Ω′′

0 , Ω
′
1 = Ω \ (Ω′

k ∪ Ω′
0). Then by

Proposition 3.2, ϕ has a random k-orbit.
Suppose that q = 3. For k � n, k 
= 2m+1 · 3, k 
= 2m+2, k 
= 2m+1, we

proceed analogously to the previous paragraph. By Proposition 2.5, Ω′′
n ⊂ Δϕ,2m+1∪(

Δϕ,2m+1·3 ∩Δϕ,2m+2

)
. Then Δϕ,2m+1 ∩Ω′′

n /∈ I or
(
Δϕ,2m+1·3 ∩Δϕ,2m+2

)
∩Ω′′

n /∈ I.
Suppose that Δϕ,2m+1 ∩ Ω′′

n /∈ I. Let k = 2m+1. Now, take Ω′
0 = Ω′′

0 , Ω
′
k =(

Δϕ,2m+1 ∩ Ω′′
n

)
\ Ω′

0, Ω′
1 = Ω \ (Ω′

k ∪ Ω′
0). Then, by Proposition 3.2, ϕ has a

random k-orbit. Let k = 2m+1 · 3. For every ω ∈ Ω′′
n, ϕω has an n-orbit, i.e.,

2m·3 -orbit. There is a splitting Δ2m+1∩Ω′′
n=Ω′∪Ω′′ such that Ω′,Ω′′∈Σ, Ω′,Ω′′ /∈I.

Take Ω′
0 = Ω0, Ω

′
2m+1 = Ω′, Ω′

2m·3 = Ω′′, and Ω′
1 = Ω \ (Ω′

2m+1 ∪Ω′
2m·3 ∪Ω′

0). Since
LCM{2m+1, 2m · 3, 1} = 2m+1 · 3 = k, by Proposition 3.2, ϕ has a random k-orbit.

Suppose that
(
Δϕ,2m+1·3 ∩Δϕ,2m+2

)
∩ Ω′′

n /∈ I. Then Δϕ,2m+1·3 ∩ Ω′′
n /∈ I, and

Δϕ,2m+2 ∩ Ω′′
n /∈ I. For k = 2m+1 · 3 and k = 2m+2, we proceed quite analogously

as for k = 2m+1 in the previous paragraph.
The case when q = 1 is analogous to the case, when q > 3. �

Corollary 4.4. Assume that Σ is a Suslin family which is nonatomic with respect
to a proper σ-ideal I, and ϕ : Ω×R � R is a u.s.c. random operator with compact
and connected values. If ϕ has a random n-orbit, then it has a random k-orbit for
each k � n with at most one exception.

Remark 4.5. Observe that in the case (2)(i), unlike in the deterministic Proposition
2.5, we have a larger area for manipulation in the randomized Theorem 4.3. We
can namely divide Ω into two parts (by nonatomicity) and take the period 2m+1

on one side and 2m · 3 on the other one. Thus, the period 2m+1 · 3 occurs by
their combination via Proposition 3.2, and subsequently 2m+1 · 3 is no longer an
exception. In particular, the maximal number of exceptional cases reduces to one,
as stated in Corollary 4.4.

5. Subharmonics of random differential inclusions

Assume that (Ω,Σ, μ) is a complete measure space and I is a proper σ-ideal
on Ω. On R and [0, 1], we use the σ-algebra of Lebesgue measurable sets and the
σ-ideal of null sets. Assume that ϕ : Ω× [0, 1]×R � R is a random u-Carathéodory
map, i.e.:

• ϕ(·, ·, x) : Ω× [0, 1] � R is measurable, for all x ∈ R,
• ϕ(ω, t, ·) : R � R is u.s.c., for almost all (ω, t) ∈ Ω× [0, 1],
• there exists a, b > 0 such that sup{|y| : y ∈ ϕ(ω, t, x)} ≤ a+ b|x|, for almost
all (ω, t) ∈ Ω× [0, 1] and all x ∈ R.
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We extend ϕ to Ω× R× R in the following manner: ϕ(ω, t+ k, x) = ϕ(ω, t, x), for
ω ∈ Ω, t ∈ [0, 1], k ∈ Z, and x ∈ R. Let ϕω(t, x) = ϕ(ω, t, x). We shall consider the
random differential inclusion:

(Iϕ) x′(ω, t) ∈ ϕ(ω, t, x(ω, t)) [≡ ϕ(ω, t+ 1, x(ω, t))]

and a one-parameter family of deterministic differential inclusions:

(Iϕω
) x′(t) ∈ ϕω(t, x(t)) [≡ ϕω(t+ 1, x(t))] .

We say that x : Ω × R → R is a random solution of (Iϕ) if x(ω, ·) is absolutely
continuous, for almost all ω ∈ Ω, x(·, t) is measurable, for each t ∈ R, and the
condition (Iϕ) is fulfilled (where the differentiation is over t), for almost all (ω, t) ∈
Ω × R. For k ∈ N, we say that a solution is a random k-periodic subharmonic
solution if x(ω, t) = x(ω, t+k), for almost all (ω, t) ∈ Ω×R and there is no m ∈ N,
m < k such that x(ω, t) = x(ω, t+m), for almost all (ω, t) ∈ Ω× R.

We say that x : R → R is a solution of (Iϕω
) if, for a fixed ω ∈ Ω, it is absolutely

continuous and the condition (Iϕω
) is fulfilled, for almost all t ∈ R. For k ∈ N,

we say that a solution is a k-periodic subharmonic solution if x(t) = x(t + k), for
almost all t ∈ R, and there is no m ∈ N, m < k such that x(t) = x(t + m), for
almost all t ∈ R. For k = 1, we also speak about (random) harmonic solutions.
Thus, for k > 1, we can speak about pure or nontrivial (random) subharmonics.

We define the (random, cf. [6, Proposition 4.3]) Poincaré operator Pk : Ω× R×
R � R associated with (Iϕ) as follows:

Pk(ω, t0, x0) = {x(t0 + k) : x is a solution of (Iϕω
), x(t0) = x0}.

It is known that Pk = P k
1 . For more details and properties of the random Poincaré

operators, see [5, Chapter III,4,E] and [6]. We shall also use the following notation:
Pk,ω,t0(x0) = Pk(ω, t0, x0) and Pk,t0(ω, x0) = Pk(ω, t0, x0).

We can now draw a diagram of implications between certain sentences. In that
diagram, we assume that n, k > 1. By “∃

⋃m
i Ωi = Ω ∀ωΦ”, we mean that there

exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃
j=0

Ωij ,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij ) > 0 for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = m,
• for i = ij and for all ω ∈ Ωi, Φ.

The implications in the diagram are proved or cited below. Theorem 2 from [2]
will be stated here in the form of the following proposition.

Proposition 5.1. Let ϕ : R � R be a multivalued mapping with nonempty con-
nected values whose margins, i.e., ϕ∗(x) = sup{y : y ∈ ϕ(x)} and ϕ∗(x) =
inf{y : y ∈ ϕ(x)}, are nondecreasing. If ϕ has an n-orbit with n > 1, then it
also has a k-orbit, for every k ∈ N.

Remark 5.2. We know (see [2] and [4]) that the Poincaré operators associated
with (Iϕω

) are u.s.c. maps with compact, connected values and their margins are
nondecreasing. In particular, they satisfy the assumptions of Proposition 5.1.
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∃
⋃n

i Ωi = Ω
∀ω∃ deterministic
i-periodic solution

∃ random
n-periodic solution

∃t0∃
⋃n

i Ωi = Ω
∀ω∃ deterministic

i-orbit for t0

∃t0∃ random
n-orbit for t0

∃t0∃
⋃k

i Ωi = Ω
∀ω∃ deterministic

i-orbit for t0

∃t0∃ random
k-orbit for t0

∃
⋃k

i Ωi = Ω
∀ω∃ deterministic
i-periodic solution

∃ random
k-periodic solution

Prop. 5.3

Prop. 3.2

Lemma 3.1

Prop. 3.2

Lemma 3.1

Prop. 5.3

Lemma 5.4

Prop. 5.1 Prop. 5.1

Lemma 5.4

Prop. 5.5

Prop. 5.5

Figure 1. Diagram of implications among various sentences about
the given inclusion (Iϕ)

Proposition 5.3. If the inclusion (Iϕ) has a random n-periodic subharmonic so-
lution (where n ∈ N, n > 1), then there is a partition of Ω such that

Ω = Ω0 ∪
l−1⋃
j=0

Ωij ,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij ) > 0 for j < l,
• LCM{ij : j < l} = n,
• (Iϕω

) has an ij-periodic solution for each ω ∈ Ωij , j < l.

Proof. Let x be a random n-periodic subharmonic solution of (Iϕ). Let

Ωi = {ω ∈ Ω: xω is i-periodic subharmonic solution of (Iϕω
)},
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for i|n, i ∈ N. Then

Ωi = {ω ∈ Ω: ∀tx(ω, t) = x(ω, t+ i)} \
⋃
j|n
j<i

{ω ∈ Ω: ∀tx(ω, t) = x(ω, t+ j)}

= {ω ∈ Ω: ∀q∈Qx(ω, q) = x(ω, q + i)} \
⋃
j|n
j<i

{ω ∈ Ω: ∀q∈Qx(ω, q) = x(ω, q + j)}

=
⋂
q∈Q

{ω ∈ Ω: x(ω, q) = x(ω, q + i)} \
⋃
j|n
j<i

⋂
q∈Q

{ω ∈ Ω: x(ω, q) = x(ω, q + j)}.

Hence, Ωi ∈ Σ, for any i|n, i ∈ N. Furthermore, μ(Ω \
⋃

i|n Ωi) = 0. Let {ij : j <

l} = {i|n : μ(Ωi) > 0} and Ω0 = Ω \
⋃

j<l Ωij . Clearly, Ω0 ∈ Σ and μ(Ω0) = 0. At

the same time, LCM{ij : j < l} = n, because otherwise LCM{ij : j < l} = k < n,
and for almost all ω ∈ Ω, xω has some period i|k, by which x has some period i|k,
a contradiction. �

Lemma 5.4. If there exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃
j=0

Ωij ,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij ) > 0 for j < l,
• LCM{ij : j < l} = n,
• (Iϕω

) has an ij-periodic solution for each ω ∈ Ωij , j < l,

then there is t0 ∈ [0, n) and a partition of Ω such that

Ω = Ω′
0 ∪ Ω′

1 ∪ Ω′
n,

where:

• Ω′
m ∈ Σ for m = 0, 1, n,

• μ(Ω′
0) = 0 and μ(Ω′

n) > 0,
• P1,ω,t0 has an n-orbit for each ω ∈ Ω′

n.

Proof. Since n > 1, there is j0 < l such that ij0 > 1. Fix ω ∈ Ωji0
. (Iϕω

) has a

ji0-periodic solution xω : R → R. The set Aω = {t : xω(t) 
= xω(t+ 1)} is open and

nonempty, because otherwise n = 1. Take qω ∈ Q ∩ Aω. Then (xω(qω + s))i0−1
s=0

is an orbit of P1,ω,qω or a concatenation of identical orbits of period larger than 1.
Thus, P1,ω,qω has an l-orbit for some l > 1. Let

Ω′′
q = {ω ∈ Ω: P1,ω,q has an l-orbit for some l > 1} ,

for q ∈ Q ∩ [0, n).

Ω′′
q =

∞⋃
p=2

O−
P1,q,p,p

(Rn).

The relation OP1,q,p,p is measurable. Hence, Ω′′
q ∈ Σ. Since

⋃
q∈Q∩[0,n) Ω

′′
q ⊃ Ωij′ ,

there is q0 ∈ Q∩[0, n) such that μ(Ω′′
q0) > 0. Now, take t0 = q0, Ω

′
0 = Ω0, Ω

′
n = Ω′′

q0 ,
Ω′

1 = Ω \ (Ω′
0 ∪ Ω′

n). Then P1,ω,t0 has an n-orbit, for each ω ∈ Ω′
n, by Proposition

5.1. �
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In Proposition 5.6 in [4], we can find the proof of the following fact.

Proposition 5.5. (Iϕ) has a random n-periodic subharmonic solution, provided
P1,t0 has a random n-orbit, for some t0 ∈ [0, 1].

As a result of commutativity of the diagram, we can state the following main
theorem of this section.

Theorem 5.6. If (Iϕ) has a random n-periodic subharmonic solution, for some
n > 1, then it has random k-periodic subharmonic solutions, for all k ∈ N.

Remark 5.7. Although the diagram in Figure 1 does not explicitly contain all im-
plications indicated there by the arrows, it is completely commutative. In other
words, the missing arrows can be completed.
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