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TWO SUFFICIENT CONDITIONS

FOR RECTIFIABLE MEASURES

MATTHEW BADGER AND RAANAN SCHUL

(Communicated by Tatiana Toro)

Abstract. We identify two sufficient conditions for locally finite Borel mea-
sures on Rn to give full mass to a countable family of Lipschitz images of Rm.
The first condition, extending a prior result of Pajot, is a sufficient test in
terms of Lp affine approximability for a locally finite Borel measure μ on Rn

satisfying the global regularity hypothesis

lim sup
r↓0

μ(B(x, r))/rm < ∞ at μ-a.e. x ∈ Rn

to be m-rectifiable in the sense above. The second condition is an assumption
on the growth rate of the 1-density that ensures a locally finite Borel measure
μ on Rn with

lim
r↓0

μ(B(x, r))/r = ∞ at μ-a.e. x ∈ Rn

is 1-rectifiable.

1. Introduction

In the treatise [Fed69] on geometric measure theory, Federer supplies the follow-
ing general notion of rectifiability with respect to a measure. Let 1 ≤ m ≤ n − 1
be integers. Let μ be a Borel measure on Rn, i.e., a Borel regular outer measure
on Rn. Then Rn is countably (μ,m) rectifiable if there exist countably many Lip-
schitz maps fi : [0, 1]

m → Rn such that μ assigns full measure to the images sets
fi([0, 1]

m), i.e.,

μ

(
Rn \

∞⋃
i=1

fi([0, 1]
m)

)
= 0.

When m = 1, each set Γi = fi([0, 1]) is a rectifiable curve. Below we shorten
Federer’s terminology, saying that μ is m-rectifiable if Rn is countably (μ,m) rec-
tifiable.

Two well-studied subclasses of rectifiable measures are Hausdorff measures on
rectifiable sets and absolutely continuous rectifiable measures. Given any Borel
measure μ on Rn and Borel set E ⊆ Rn, define the measure μ E (“μ restricted
to E”) by the rule μ E(F ) = μ(E ∩ F ) for all Borel sets F ⊆ Rn. We call a
Borel set E ⊆ Rn an m-rectifiable set if Hm E is an m-rectifiable measure, where
Hm denotes the m-dimensional Hausdorff measure on Rn. One may think of an
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m-rectifiable set E as an m-rectifiable measure by identifying E with the measure
Hm E. More generally, we say that an m-rectifiable measure μ on Rn is absolutely
continuous if μ � Hm, i.e., μ(E) = 0 whenever E ⊂ Rn and Hm(E) = 0.

It is a remarkable fact that rectifiable sets and absolutely continuous rectifiable
measures can be identified by the asymptotic behavior of the measures on small
balls.

Definition 1.1 (Hausdorff density). Let B(x, r) denote the closed ball in Rn with
center x ∈ Rn and radius r > 0. For each positive integer m ≥ 1, let ωm =
Hm(Bm(0, 1)) denote the volume of the unit ball in Rm. For all locally finite Borel
measures μ on Rn, we define the lower Hausdorff m-density Dm(μ, ·) and upper

Hausdorff m-density D
m
(μ, ·) by

Dm(μ, x) := lim inf
r→0

μ(B(x, r))

ωmrm
∈ [0,∞]

and

D
m
(μ, x) := lim sup

r→0

μ(B(x, r))

ωmrm
∈ [0,∞]

for all x ∈ Rn. If Dm(μ, x) = D
m
(μ, x) for some x ∈ Rn, then we write Dm(μ, x)

for the common value and call Dm(μ, x) the Hausdorff m-density of μ at x.

Theorem 1.2 ([Mat75]). Let 1 ≤ m ≤ n − 1. Suppose E ⊂ Rn is Borel and
μ = Hm E is locally finite. Then μ is m-rectifiable if and only if the Hausdorff
m-density of μ exists and Dm(μ, x) = 1 at μ-a.e. x ∈ Rn.

Theorem 1.3 ([Pre87]). Let 1 ≤ m ≤ n− 1. If μ is a locally finite Borel measure
on Rn, then μ is m-rectifiable and μ � Hm if and only if the Hausdorff m-density
of μ exists and 0 < Dm(μ, x) < ∞ at μ-a.e. x ∈ Rn.

Remark 1.4. For any locally finite Borel measure μ on Rn:

μ � Hm ⇐⇒ D
m
(μ, x) < ∞ at μ-a.e. x ∈ Rn; and,

μ is m-rectifiable =⇒ Dm(μ, x) > 0 at μ-a.e. x ∈ Rn.(1.1)

See [Mat95, Chapter 6] and [BS15, Lemma 2.7].

There are several other characterizations of rectifiable sets and absolutely con-
tinuous rectifiable measures (e.g. in terms of projections or tangent measures); see
Mattila [Mat95] for a full survey of results through 1993. Further investigations on
rectifiable sets and absolutely continuous rectifiable measures include [Paj96,Paj97,
Lég99, Ler03, Tol12, CGLT14, TT14, Tol14, ADT15, BL14, Bue14, ADT14, AT15],
[Tol15].

The first result of this note is an extension of Pajot’s theorem on rectifiable
sets [Paj97] to absolutely continuous rectifiable measures. To state these results,
we must recall the notion of an Lp beta number from the theory of quantitative
rectifiability.

Definition 1.5 (Lp beta numbers). Let 1 ≤ m ≤ n − 1 and let 1 ≤ p < ∞. For
every locally finite Borel measure μ on Rn and bounded Borel set Q ⊂ Rn, define

β
(m)
p (μ,Q) by

(1.2) β(m)
p (μ,Q)p := inf

�

∫
Q

(
dist(x, �)

diamQ

)p
dμ(x)

μ(Q)
∈ [0, 1],
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where � in the infimum ranges over all m-dimensional affine planes in Rn. If μ(Q) =

0, then we interpret (1.2) as β
(m)
p (μ,Q) = 0.

Remark 1.6. Beta numbers (of sets) were introduced by Jones [Jon90] to charac-
terize subsets of rectifiable curves in the plane and are now often called Jones beta
numbers. The Lp variant in Definition 1.5 originated in the fundamental work of
David and Semmes on uniformly rectifiable sets [DS91,DS93] with the normaliza-

tion appearing in (1.3). The normalization of β
(m)
p (μ,Q) presented in Definition

1.5 is not new; see e.g. [Ler03].
When Q = B(x, r), some sources (e.g. [DS91,DS93,Paj97]) define Lp beta num-

bers using the alternate normalization

(1.3) β̃(m)
p (μ,B(x, r))p := inf

�

∫
B(x,r)

(
dist(x, �)

r

)p
dμ(x)

rm
∈ [0,∞),

where � in the infimum again ranges over all m-dimensional affine planes in Rn.

However, β
(m)
p (μ,B(x, r)) and β̃

(m)
p (μ,B(x, r)) are quantitatively equivalent at lo-

cations and scales where μ(B(x, r)) ∼ rm. We have freely translated beta numbers
in theorem statements quoted from other sources to the convention of Definition
1.5, which is better suited for generic locally finite Borel measures.

Theorem 1.7 ([Paj97]). Let 1 ≤ m ≤ n− 1 and let

(1.4)

{
1 ≤ p < ∞ if m = 1 or m = 2,
1 ≤ p < 2m/(m− 2) if m ≥ 3.

Assume that K ⊂ Rn is compact and μ = Hm K is a finite measure. If
Dm(μ, x) > 0 at μ-a.e. x ∈ Rn and

(1.5)

∫ 1

0

β(m)
p (μ,B(x, r))2

dr

r
< ∞ at μ-a.e. x ∈ Rn,

then μ is m-rectifiable.

In §2, we note the following extension of Pajot’s theorem. Also, see Theorem
2.1.

Theorem A. Let 1 ≤ m ≤ n − 1 and let 1 ≤ p < ∞ satisfy (1.4). Assume that
μ is a locally finite Borel measure on Rn such that μ � Hm. If Dm(μ, x) > 0 at
μ-a.e. x ∈ Rn and (1.5) holds, then μ is m-rectifiable.

In a forthcoming paper, Tolsa [Tol15] proves that (1.5) is a necessary condition
for an absolutely continuous measure to be rectifiable. Together with Theorem
A and (1.1), this result provides a full characterization of absolutely continuous
rectifiable measures in terms of the beta numbers and lower Hausdorff density of a
measure.

Theorem 1.8 ([Tol15]). Let 1 ≤ m ≤ n− 1 and let 1 ≤ p ≤ 2. If μ is m-rectifiable
and μ � Hm, then (1.5) holds.

Corollary 1.9. Let 1 ≤ m ≤ n− 1 and let 1 ≤ p ≤ 2. If μ is a locally finite Borel
measure on Rn such that μ � Hm, then the following are equivalent:

• μ is m-rectifiable;
• Dm(μ, x) > 0 at μ-a.e. x ∈ Rn and (1.5) holds.
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In a companion paper to [Tol15], Azzam and Tolsa [AT15] prove that in the case
p = 2, Theorem A holds with the hypothesis Dm(μ, x) > 0 at μ-a.e. x ∈ Rn on the

lower density replaced by a weaker assumption D
m
(μ, x) > 0 at μ-a.e. x ∈ Rn on

the upper density.
For general m-rectifiable measures that are allowed to be singular with respect

to Hm, the following basic problem in geometric measure theory is still open.

Problem 1.10. For all 1 ≤ m ≤ n− 1, find necessary and sufficient conditions in
order for a locally finite Borel measure μ on Rn to be m-rectifiable. (Do not assume
that μ � Hm.)

Partial progress on Problem 1.10 has recently been made in [GKS10,BS15,AM15]
in the case m = 1. In [GKS10], Garnett, Killip, and Schul exhibit a family
(νδ)0<δ≤δ0 of self-similar locally finite Borel measures on Rn, which are

• doubling : 0 < νδ(B(x, r)) ≤ Cδ νδ(B(x, r/2)) < ∞ for all x ∈ Rn and
r > 0;

• badly linearly approximable: β
(1)
2 (νδ, B(x, r)) ≥ cδ > 0 for all x ∈ Rn and

r > 0;
• singular : D1(νδ, x) = ∞ at νδ-a.e. x ∈ Rn (hence νδ ⊥ H1); and,
• 1-rectifiable: νδ(R

n \
⋃

i Γi) = 0 for some countable family of rectifiable
curves Γi.

In [BS15], Badger and Schul identify a pointwise necessary condition for an arbitrary
locally finite Borel measure μ on Rn to be 1-rectifiable.

Theorem 1.11 ([BS15, Theorem A]). Let n ≥ 2 and let Δ be a system of closed or
half-open dyadic cubes in Rn of side length at most 1. If μ is a locally finite Borel
measure on Rn and μ is 1-rectifiable, then∑

Q∈Δ

β
(1)
2 (μ, 3Q)2

diamQ

μ(Q)
χQ(x) < ∞ at μ-a.e. x ∈ Rn.

The second result of this note is a sufficient condition for a measure μ with
D1(μ, x) = ∞ at μ-a.e. x ∈ Rn to be 1-rectifiable.

Theorem B. Let n ≥ 2 and let Δ be a system of half-open dyadic cubes in Rn of
side length at most 1. If μ is a locally finite Borel measure on Rn and

(1.6)
∑
Q∈Δ

diamQ

μ(Q)
χQ(x) < ∞ at μ-a.e. x ∈ Rn,

then μ is 1-rectifiable, and moreover, there exist a countable family of rectifiable
curves Γi and Borel sets Bi ⊆ Γi such that H1(Bi) = 0 for all i ≥ 1 and
μ (Rn \

⋃∞
i=1 Bi) = 0.

Together Theorem 1.11 and Theorem B provide a full characterization of 1-
rectifiability of measures with “pointwise large beta number” (1.7). Examples of
measures that satisfy this beta number condition include the measures (νδ)0<δ≤δ0

from [GKS10], or more generally, any doubling measure μ on Rn whose support is
Rn.



TWO SUFFICIENT CONDITIONS FOR RECTIFIABLE MEASURES 2449

Corollary 1.12. Let n ≥ 2 and let Δ be a system of half-open dyadic cubes in Rn

of side length at most 1. If μ is a locally finite Borel measure such that

(1.7) lim inf
Q∈Δ,x∈Q

diamQ→0

β
(1)
2 (μ, 3Q) > 0 at μ-a.e. x ∈ Rn,

then μ is 1-rectifiable if and only if (1.6) holds.

Finally, we note that in a recent work Azzam and Mourgoglou [AM15] give a
weaker condition for 1-rectifiability of a doubling measure with connected support.

Theorem 1.13 ([AM15]). Let μ be a doubling measure whose support is a topo-
logically connected metric space X and let E ⊆ X be compact. Then μ E is
1-rectifiable if and only if D1(μ, x) > 0 for μ-a.e. x ∈ E.

When applied to a doubling measure μ on Rn whose support is Rn, Corollary
1.12 and Theorem 1.13 imply that if D1(μ, x) > 0 at μ-a.e. x ∈ Rn, then (1.6)
holds.

The remainder of this note is split into two sections. We prove Theorem A in §2
and we prove Theorem B in §3.

2. Proof of Theorem A

We show how to reduce Theorem A to Theorem 1.7 using standard geometric
measure theory techniques; see Chapters 1, 2, 4, and 6 of [Mat95] for general
background. In fact, we will establish the following “localized version” of Theorem
A.

Theorem 2.1. Let 1 ≤ m ≤ n− 1 and let

(2.1)

{
1 ≤ p < ∞ if m = 1 or m = 2,
1 ≤ p < 2m/(m− 2) if m ≥ 3.

If μ is a locally finite Borel measure on Rn such that

Jp(μ, x) :=

∫ 1

0

β(m)
p (μ,B(x, r))2

dr

r
< ∞ at μ-a.e. x ∈ Rn,

then μ
{
x ∈ Rn : 0 < Dm(μ, x) ≤ D

m
(μ, x) < ∞

}
is m-rectifiable.

Proof. Without loss of generality, we assume for the duration of the proof that Hm

is normalized so that ωm = Hm(Bm(0, 1)) = 2m. This is the convention used in
[Mat95].

Suppose that 1 ≤ m ≤ n − 1, let p belong to the range (2.1), and let μ be a
locally finite Borel measure on Rn such that Jp(μ, x) < ∞ at μ-a.e. x ∈ Rn. Define

A :=
{
x ∈ Rn : 0 < Dm(μ, x) ≤ D

m
(μ, x) < ∞

}
.

Also, for each pair of integers j, k ≥ 1, define

A(j, k) :=
{
x ∈ B(0, 2k) : 2−jrm ≤ μ(B(x, r)) ≤ 2jrm for all 0 < r ≤ 2−k

}
.

Then A(j, k) is compact and A(j, k) ⊆ A(j + 1, k + 1) for all j, k ≥ 1. Also note
that

A =

∞⋃
j,k=1

A(j, k) =

∞⋃
j,k=1

A(j, k).
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Thus, to prove that μ A is m-rectifiable, it suffices to verify that μ A(j, k) is
m-rectifiable for all j, k ≥ 1.

Fix any j, k ≥ 1 and set K := A(j, k), ν := μ K, and σ := Hm K. In order
to prove that ν is m-rectifiable, it is enough to show that ν � σ � ν and σ is
m-rectifiable. By Theorem 6.9 in [Mat95], since 2−j−1−m ≤ D

m
(μ, x) ≤ 2j+1−m

for all x ∈ K, we have

(2.2) ν(B(x, r)) = μ(K ∩B(x, r)) ≤ 2j+1Hm(K ∩B(x, r)) = 2j+1σ(B(x, r))

and

(2.3) σ(B(x, r)) = Hm(K∩B(x, r)) ≤ 2j+1+mμ(K∩B(x, r)) = 2j+1+mν(B(x, r))

for all x ∈ Rn and r > 0. Note that

σ(Rn) = σ(B(0, 2k)) ≤ 2j+1+mμ(B(0, 2k)) < ∞,

since μ is locally finite. That is, σ is a finite measure. Thus, ν and σ are mutually
absolutely continuous by (2.2), (2.3), and Lemma 2.13 in [Mat95]. Now,
(2.4)

σ(B(x, r)) ≤ 2j+1+mμ(B(x, r)) ≤ 22j+2+mrm for all x ∈ K and 0 < r ≤ 2−k−1.

On the other hand, let K ′ denote the set of x ∈ K such that

2ν(B(x, r)) = 2μ(K ∩B(x, r)) ≥ μ(B(x, r)) for all 0 < r ≤ rx

for some rx ≤ 2−k−1. Then σ(Rn \K ′) = 0, because ν(Rn \K ′) = μ(K \K ′) = 0,
and

(2.5) σ(B(x, r)) ≥ 2−j−2μ(B(x, r)) ≥ 2−2j−3rm for all x ∈ K ′ and 0 < r ≤ rx.

In particular, Dm(σ, x) ≥ c(m, j) > 0 at σ-a.e. x ∈ Rn. To conclude that σ is m-
rectifiable using Theorem 1.7, it remains to verify Jp(σ, x) < ∞ at σ-a.e. x ∈ Rn.

By (2.4) and (2.5), there exists a constant C = C(m, j) < ∞ such that

C−1 ≤ ν(B(x, r))

σ(B(x, r))
≤ C for all 0 < r ≤ rx at σ-a.e. x ∈ Rn.

Thus, by differentiation of Radon measures, we can write dν = f dσ, where f ∈
L1
loc(dσ) and C−1 ≤ f(x) ≤ C at σ-a.e. x ∈ Rn. Therefore, at σ-a.e. x ∈ Rn, for

every 0 < r ≤ rx and for every m-dimensional affine plane �,∫
B(x,r)

(
dist(y, �)

diamB(x, r)

)p
dσ(y)

σ(B(x, r))
≤ C2

∫
B(x,r)

(
dist(y, �)

diamB(x, r)

)p
dν(y)

ν(B(x, r))

≤ 2C2

∫
B(x,r)

(
dist(y, �)

diamB(x, r)

)p
dμ(y)

μ(B(x, r))
.

Thus, β
(m)
p (σ,B(x, r))2 ≤

(
2C2

)2/p
β
(m)
p (μ,B(x, r))2 for all 0 < r ≤ rx at σ-a.e. x ∈

Rn. Since Jp(μ, x) < ∞ at μ-a.e. x ∈ Rn and σ � μ, it follows that Jp(σ, x) < ∞ at
σ-a.e. x ∈ Rn. Finally, since K is compact, σ = Hm K is finite, and Dm(σ, x) > 0
and Jp(σ, x) < ∞ at σ-a.e. x ∈ Rn, we conclude that σ is m-rectifiable by Theorem

1.7. As noted above, this implies that ν = μ A(j, k) ism-rectifiable for all j, k ≥ 1,
and therefore, μ A is m-rectifiable. �
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3. Proof of Theorem B

For every Borel measure μ on Rn, define the quantity

S(μ, x) :=
∑
Q∈Δ

diamQ

μ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn,

where Δ denotes any system of half-open dyadic cubes in Rn of side length at most
1. Theorem B is a special case of the following statement.

Theorem 3.1. Let n ≥ 2. If μ is a locally finite Borel measure on Rn, then

ρ := μ {x ∈ Rn : S(μ, x) < ∞}
is 1-rectifiable. Moreover, there exists a countable family of rectifiable curves Γi ⊂
Rn and Borel sets Bi ⊆ Γi such that H1(Bi) = 0 for all i ≥ 1 and ρ(Rn\

⋃∞
i=1 Bi) =

0.

We start with a lemma, which will be used to organize the proof of Theorem 3.1.

Lemma 3.2. Let n ≥ 1 and let μ be a locally finite Borel measure on Rn. Given
Q0 ∈ Δ such that η := μ(Q0) > 0 and N < ∞, let

A := {x ∈ Q0 : S(μ, x) ≤ N}.
For all 0 < ε < 1/η, the set of dyadic cubes Q ⊆ Q0 can be partitioned into good
cubes and bad cubes with the following properties:

(1) every child of a bad cube is a bad cube;
(2) the set B := A\

⋃
{Q : Q ⊆ Q0 is a bad cube} satisfies μ(B) ≥ (1−εη)μ(A);

(3)
∑

diamQ < N/ε, where the sum ranges over all good cubes Q ⊆ Q0.

Proof. Suppose that n, μ, Q0, η, N , and A are given as above and let ε > 0. If
μ(A) = 0, then we may declare every dyadic cube Q ⊆ Q0 to be a bad cube and
the conclusion of the lemma hold trivially. Thus, suppose that μ(A) > 0. Declare
that a dyadic cube Q ⊆ Q0 is a bad cube if there exists a dyadic cube R ⊆ Q0 such
that Q ⊆ R and μ(A∩R) ≤ εμ(A)μ(R). We call a dyadic cube Q ⊆ Q0 a good cube
if Q is not a bad cube. Property (1) is immediate. To check property (2), observe
that

μ(A\B) ≤
∑

maximal bad Q⊆Q0

μ(A∩Q) ≤ εμ(A)
∑

maximal bad Q⊆Q0

μ(Q) ≤ εμ(A)μ(Q0),

where the last inequality follows because the maximal bad cubes are pairwise dis-
joint (since Δ is composed of half-open cubes). Recalling μ(Q0) = η, it follows
that

μ(B) = μ(A)− μ(A \B) ≥ (1− εη)μ(A).

Thus, property (2) holds. Finally, since S(μ, x) ≤ N for all x ∈ A,

Nμ(A) ≥
∫
A

S(μ, x) dμ(x) ≥
∑

Q⊆Q0

diamQ
μ(A ∩Q)

μ(Q)
> εμ(A)

∑
good Q⊆Q0

diamQ,

where we interpret μ(A ∩ Q)/μ(Q) = 0 if μ(Q) = 0. Because μ(A) > 0, it follows
that ∑

good Q⊆Q0

diamQ <
N

ε
.

This verifies property (3). �
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Lemma 3.3. Let n ≥ 2 and let μ be a locally finite Borel measure on Rn. If

μ({x ∈ Q0 : S(μ, x) ≤ N}) > 0 for some Q0 ∈ Δ and N < ∞,

then for all 0 < ε < 1/μ(Q0) the set B = B(μ,Q0, N, ε) described in Lemma 3.2
lies in a rectifiable curve Γ with H1(Γ) < N/2ε and H1(B) = 0.

Proof. Let n ≥ 2 and let μ be a locally finite Borel measure on Rn. Suppose
μ(A) > 0 for some Q0 ∈ Δ and N < ∞, where A = {x ∈ Q0 : S(μ, x) ≤ N}. Then
η := μ(Q0) > 0, as well. Given any 0 < ε < 1/η, let B = B(μ,Q0, N, ε) denote the
set from Lemma 3.2. Since ε is small enough such that μ(B) ≥ (1 − εη)μ(A) > 0,
the cube Q0 is a good cube. Construct a connected set T ⊂ Rn by drawing a
(closed) straight line segment �Q from the center of each good cube Q � Q0 to the

center of its parent, which is also a good cube. Let T denote the closure of T . For
all δ > 0,

T ⊆
⋃

good Q�Q0
diamQ>δ

�Q ∪
⋃

good Q⊆Q0
diamQ≤δ

Q,

whence

H1
δ(T )≤

∑
good Q�Q0
diamQ>δ

diam �Q+
∑

good Q⊆Q0
diamQ≤δ

diamQ =
∑

good Q�Q0
diamQ>δ

1

2
diamQ+

∑
good Q⊆Q0
diamQ≤δ

diamQ.

Here we used the fact that any straight line segment � can be subdivided into finitely

many line segments �′1, . . . , �
′
k such that diam �′i ≤ δ for all i and

∑k
i=1 diam �′i =

diam �. Since
∑

good Q⊆Q0
diamQ < N/ε, it follows that

H1(T ) = lim
δ↓0

H1
δ(T ) ≤

1

2

∑
good Q�Q0

diamQ <
N

2ε
.

Now,

B ⊆ Q0 \
⋃

bad Q⊂Q0

Q

=
⋃{ ∞⋂

i=0

Qi : Q0 ⊇ Q1 ⊇ · · · is a chain of good cubes, lim
i→∞

diamQi = 0

}(3.1)

⊆
{
lim
i→∞

xi : xi ∈ �Qi
for some good cubes Q0 ⊇ Q1 ⊇ · · · , lim

i→∞
diamQi = 0

}
.

(3.2)

Thus, B ⊆ T by (3.2). Moreover, refining (3.1), we obtain B ⊆
⋂∞

j=1 Gj , where

Gj =
⋃⎧⎨⎩

∞⋂
i=j

Q′
i : Q

′
j � Q′

j+1 � · · · is a chain of good cubes, diamQ′
j ≤ 2−j

⎫⎬⎭ .

Since
∑

good Q⊆Q0
diamQ < ∞, we have H1

2−j (Gj) → 0, which implies H1(B) = 0.

Finally, because T is a continuum in Rn with H1(T ) < ∞, T coincides with the
image Γ = f([0, 1]) of some Lipschitz map f : [0, 1] → Rn; e.g. see [DS93, Theorem
I.1.8] or [Sch07, Lemma 3.7]. �
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The proof of Theorem 3.1 uses Lemmas 3.2 and 3.3 repeatedly over a suitable,
countable choice of parameters.

Proof of Theorem 3.1. Suppose n ≥ 2 and let μ be a locally finite Borel measure
on Rn. Our goal is to show that μ {x ∈ Rn : S(μ, x) < ∞} is 1-rectifiable. It
suffices to prove that μ {x ∈ Q0 : S(μ, x) ≤ N} is 1-rectifiable for all Q0 ∈ Δ
and for all integers N ≥ 1.

Fix Q0 ∈ Δ and N ≥ 1. Let A = {x ∈ Q0 : S(μ, x) ≤ N}. If μ(A) = 0, then
there is nothing to prove. Thus, assume μ(A) > 0. Then η = μ(Q0) > 0, as well.
Pick any sequence (εi)

∞
i=1 such that 0 < εi < 1/η for all i ≥ 1 and εi → 0 as i → ∞.

By Lemmas 3.2 and 3.3, there exist a Borel set Bi = B(μ,Q0, N, εi) ⊆ A and a
rectifiable curve Γi ⊇ Bi such that H1(Bi) = 0 and μ(A \Bi) ≤ εiημ(A). Hence

μ

(
A \

∞⋃
i=1

Γi

)
≤ μ

(
A \

∞⋃
i=1

Bi

)
≤ inf

j≥1
μ(A \Bj) ≤ ημ(A) inf

j≥1
εj = 0.

Therefore, μ A is 1-rectifiable, and moreover, μ A (Rn \
⋃∞

i=1 Bi) = 0. �
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[Paj96] Hervé Pajot, Sous-ensembles de courbes Ahlfors-régulières et nombres de Jones

(French, with English summary), Publ. Mat. 40 (1996), no. 2, 497–526, DOI
10.5565/PUBLMAT 40296 17. MR1425633 (98c:28004)
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