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RAMSEY SHADOWING AND MINIMAL POINTS
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(Communicated by Nimish Shah)

Abstract. We say that a dynamical system X has the Ramsey shadowing

property if an arbitrary sequence of points in X can be shadowed on a set that
is “large” in the sense of Ramsey theory. Our main theorem states that this
property is equivalent to the existence of a dense set of minimal points.

1. Introduction

In a recent paper [6], Meddaugh, Raines, and the author proved that, under cer-
tain circumstances, an arbitrary sequence in a dynamical system can be shadowed
on a set that is “large” in the sense of Ramsey theory. The aim of this paper is to
make a more thorough investigation of this property.

By a dynamical system we mean a pair (X, f), whereX is a compact Hausdorff
space and f is a continuous map from X to itself. We freely abuse notation by
writing X for (X, f) when the map f either has already been specified or need not
be specified. A metric dynamical system, or simply a metric system, is a
dynamical system (X, f) where X is metrizable.

Let X be a metric system (with some fixed metric d) and let ξ = 〈xn : n ∈ N〉
be a sequence of points in X. If ε > 0 and x ∈ X, we say that x ε-shadows ξ on
a set A ⊆ N if

{n ∈ N : d(fn(x), xn) < ε} ⊇ A.

In other words, x ε-shadows ξ on A whenever the orbit of x is a good approximation
to ξ on the members of A.

A Furstenberg family, or simply a family, is a collection F of subsets of N
that is closed under taking supersets: if A ∈ F and A ⊆ B, then B ∈ F . A family
F has the Ramsey property if whenever A ∈ F and A =

⋃
i≤n Ai, then there is

some i ≤ n with Ai ∈ F .
A metric system X has the Ramsey shadowing property if for any ε > 0

and any family F with the Ramsey property, any sequence of points of X can be
ε-shadowed on a set in F .

In a sense, Ramsey-type theorems like van der Waerden’s Theorem or Hind-
man’s Theorem tell us that there are no “completely random” finite partitions of
N: every finite partition will contain sets with nice structural properties. The
Ramsey shadowing property tells us something similar about sequences in certain
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dynamical systems: they cannot be “completely random”, but must always be close
(in an appropriate sense) to the orbit of some point. In [6] it is shown that every
chain transitive system with shadowing has Ramsey shadowing.

The main theorem of this paper is that the Ramsey shadowing property is equiv-
alent to the existence of a dense set of minimal points. Section 2 will contain a
review of the standard material needed for this result: families and filters, ultrafil-
ters, and minimality. In Section 3 we prove that the Ramsey shadowing property
is equivalent to a local version of the same property. This will allow us to define
Ramsey shadowing in arbitrary (not necessarily metric) systems naturally, without
using the sometimes awkward language of uniformities. It will also facilitate the
proof of the main result in Section 4.

2. Preliminaries

A filter is a family F with the additional property that if A,B ∈ F , then
A ∩ B ∈ F . An ultrafilter is a maximal filter, i.e., a filter that is not properly
contained in any other filter. Equivalently, a filter F is an ultrafilter if and only if
for every A ⊆ N either A ∈ F or N \A ∈ F .

A subset of N is thick if it contains arbitrarily long intervals, and is syndetic
if it has bounded gaps. That is, A ⊆ N is syndetic if there is some k ∈ N such that
every interval of length k contains a point of A. A ⊆ N is piecewise syndetic if
it is the intersection of a thick set and a syndetic set.

If F is a family, then the dual of F , denoted F∗, is the family of all sets that
meet every element of F . For example, the thick sets are dual to the syndetic sets,
and every ultrafilter is dual to itself. The following simple but elegant result of
Glasner establishes a correspondence between filters on N and families with the
Ramsey property:

Proposition 2.1. A family F has the Ramsey property if and only if F∗ is a filter.

Proof. See [7, Proposition 1.2]. �
Corollary 2.2. If F is a family with the Ramsey property, then there is an ultra-
filter p such that every element of p is in F .

Proof. By the previous proposition, F∗ is a filter. Let p be any ultrafilter extending
F∗. If A ∈ p, then A meets every member of F∗, so A ∈ F∗∗ = F . �

The set of all ultrafilters on N is denoted βN, and it has a natural topology
making it a compact Hausdorff space. This topology is generated by the sets of
the form A = {p ∈ βN : A ∈ p}. N is naturally included in βN if we are willing to
identify each n ∈ N with the principal ultrafilter {A ⊆ N : n ∈ A}. The topology of
βN is a rich and subtle area of research that we do not go deeply into here; a good
introduction can be found in [9].

As usual, we write A + n for {m+ n : m ∈ A}. For each p ∈ βN, define σ(p)
to be the unique ultrafilter generated by {A+ 1: A ∈ p}. This is called the shift
map on βN, and whenever we speak of βN as a dynamical system it is understood
that we are talking about the shift map. The shift map is the unique continuous
extension to βN of the map on N given by n 	→ n+ 1.

For a given p ∈ βN and a sequence 〈xn : n ∈ N〉 of points in some dynamical
system X, we say that p-limn∈N xn = y if and only if for every open U � y we have
{n : xn ∈ U} ∈ p.
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For a fixed x ∈ X, the map p 	→ p-limn∈N xn is a quotient map (also known as a
semi-conjugation) from βN \ N to ω(x) (see Section 2 of [5] for details). This fact
will not be used directly in what follows (Proposition 2.3 will be enough), but it
does serve to motivate our use of ultrafilter limits in the proof of the main theorem.

Recall that a dynamical system is minimal if it admits no proper subsystem. A
point x ∈ X is a minimal point if it belongs to some minimal subsystem of X. By
a straightforward application of Zorn’s Lemma, every dynamical system contains
minimal subsystems, and hence minimal points. If p is a minimal point of βN, we
say that p is a minimal ultrafilter.

For any two subsets U and V of a dynamical system X, define N(U, V ) =
{n ∈ N : fn(U) ∩ V �= ∅}. If x ∈ X and U ⊆ X define N(x, U) = N({x}, U) =
{n ∈ N : fn(x) ∈ U}. For a given point x, we think of x as having strong recurrence
properties whenever N(x, U) is “large” in some sense for every neighborhood U of
x. The following proposition says that minimal points enjoy very strong recurrence
properties:

Proposition 2.3. Let X be any dynamical system. The following are equivalent:

(1) x is minimal.
(2) N(x, U) is syndetic for every neighborhood U of x.
(3) There is a minimal ultrafilter p with p-limn∈N fn(x) = x.
(4) There is some y∈X and some minimal ultrafilter p such that p-limn∈N fn(y)

= x.

Proof. It is well known that (1) ⇒ (2); see, e.g., Exercise 5 in [4]. (2) ⇒ (3) is
given in Theorem 19.23 of [8]. (3) ⇒ (4) is trivial. That (4) ⇒ (1) follows from
Theorem 3.5 in [4] (which in turn is adapted from [3]). �

3. A local version of the Ramsey shadowing property

Let us say that a metric system X has local Ramsey shadowing if for every
family F with the Ramsey property, every ε > 0, and every x ∈ X, the constant
sequence 〈x, x, x, . . . 〉 can be ε-shadowed on a set in F . In other words, this is
the definition of Ramsey shadowing, but we have replaced arbitrary sequences with
constant sequences.

Theorem 3.1. Ramsey shadowing is equivalent to local Ramsey shadowing in any
metric system.

Proof. The forward implication is obvious.
Let X be a metric system with local Ramsey shadowing. Let ξ = 〈xn : n ∈ N〉

be a sequence in X, let ε > 0, and let F be any family with the Ramsey property.
By Corollary 2.2, there is an ultrafilter p with p ⊆ F . Let {yi : i ≤ n} be a finite
set of points in X such that every point of X is within ε

2 of some yi (such a set
exists because X is compact). Because p is an ultrafilter, there is some i such that

A =
{
m ∈ N : d(xm, yi) <

ε

2

}
∈ p.

By assumption, there is some x ∈ X that ε
2 -shadows the sequence 〈yi, yi, yi, . . . 〉 on

a set in p. That is,

B =
{
m ∈ N : d(fm(x), yi) <

ε

2

}
∈ p.
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Because p is a filter, A ∩B ∈ p. Since

A ∩B ⊆ {m ∈ N : d(fm(x), xm) < ε} ,

x ε-shadows ξ on a set in p. Since p ⊆ F , x ε-shadows ξ on a set in F . �

Observe now that the definition of local Ramsey shadowing does not require the
mention of constant sequences or a metric:

Proposition 3.2. A metric system X has Ramsey shadowing if and only if for
every open U ⊆ X and any family F with the Ramsey property, there is some
x ∈ X such that N(x, U) ∈ F .

We take Proposition 3.2 as a definition of Ramsey shadowing for arbitrary dy-
namical systems. Explicitly, a dynamical system X has Ramsey shadowing if for
every nonempty open set U and every family F with the Ramsey property, there
is a point x ∈ X such that N(x, U) ∈ F .

At this point, the reader may object that there is already an obvious way to define
Ramsey shadowing in arbitrary systems: simply replace the notion of a metric with
the notion of a uniformity in the original (non-local) definition. The following
proposition asserts that the definition obtained in this manner is equivalent to the
one we have chosen. In other words, generalizing the local (rather than the global)
definition of Ramsey shadowing is simply a matter of convenience.

Proposition 3.3. The following are equivalent:

(1) X has Ramsey shadowing.
(2) Let ξ be an arbitrary sequence in X, let U be any open cover of X, and let

F be a family with the Ramsey property. There is a point x ∈ X such that

{n ∈ N : for some U ∈ U , fn(x) ∈ U and xn ∈ U} ∈ F .

Proof. To see (1) ⇒ (2), let ξ be an arbitrary sequence in X, U an open cover
of X, and F a family with the Ramsey property. Let p be an ultrafilter with
p ⊆ F . Because X is compact, there is a finite subcover U ′ of U . Because U ′ is
finite, there is some U ∈ U ′ such that A = {n ∈ N : xn ∈ U} ∈ p. Because X has
Ramsey shadowing and p has the Ramsey property, there is some x ∈ X such that
N(x, U) = {n ∈ N : fn(x) ∈ U} ∈ p. Clearly,

B = {n ∈ N : for some U ∈ U , fn(x), xn ∈ U} ⊇ A ∩N(x, U) ∈ p,

so that B ∈ F and (2) is satisfied.
To see (2) ⇒ (1), suppose X satisfies (2) and let U be any nonempty open subset

ofX. BecauseX is T3, there is a nonempty open set V such that V ⊆ U . Let y ∈ V ,
and apply (2) with ξ = 〈y, y, y, . . . 〉, U = {U,X \ V }, and F any family with the
Ramsey property. The point x guaranteed by (2) clearly satisfies N(x, U) ∈ F . �

4. A dense set of minimal points

In this section we prove that the Ramsey shadowing property is equivalent to
the existence of a dense set of minimal points. First we need a lemma about the
syndetic sets. Roughly, it states that, while the family of syndetic sets does not
have the Ramsey property, nor does its dual, this family is nonetheless very special
with respect to the Ramsey property.
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Lemma 4.1. The following are equivalent for any A ⊆ N:

(1) A is syndetic.
(2) If F is any ultrafilter on N, then there is some n ∈ N such that A−n ∈ F .
(3) If F is any family with the Ramsey property, then there is some n ∈ N such

that A− n ∈ F .

Proof. Clearly (3) implies (2). If A is syndetic, then for some k N =
⋃

n≤k(A− n).

If F has the Ramsey property, it follows that A− n ∈ F for some n ≤ k. Thus (1)
implies (3).

Suppose that A is not syndetic. Then for every k, N \
⋃

n≤k(A− n) �= ∅. By de

Morgan’s Laws,
⋂

n≤k N\(A−n) �= ∅ for all k. In other words, {N \ (A− n) : n ∈ N}
is a filter base. If p is any ultrafilter extending this filter base, there is no n such
that A− n ∈ p. �

Theorem 4.2. Let X be any dynamical system. The following are equivalent:

(1) X has Ramsey shadowing.
(2) X has a dense set of minimal points.
(3) For any open U ⊆ X, there is some x ∈ U such that N(x, U) is syndetic.
(4) For any open U ⊆ X, there is some x ∈ X such that N(x, U) is piecewise

syndetic.

Proof. We will show (2) ⇒ (3) ⇒ (1) ⇒ (4) ⇒ (2).
That (2) ⇒ (3) is easy: simply choose x to be a minimal point in U and apply

Proposition 2.3.
Now suppose (3) holds. Let U be an open subset of X and fix x ∈ U with

N(x, U) syndetic. Let F be a family with the Ramsey property. By Lemma 4.1,
there is some n such that N(x, U)− n ∈ F . Since

N(x, U)− n = {m− n : fm(x) ∈ U} =
{
m : fm+n(x) ∈ U

}

= {m : (fn(x))m(x) ∈ U} = N(fn(x), U),

we have N(fn(x), U) ∈ F . Thus X has Ramsey shadowing, proving that (3) ⇒ (1).
Assume (1). It is well known that the family of piecewise syndetic sets has the

Ramsey property (see, e.g., p. 26 of [2]). It follows from the definition of Ramsey
shadowing that (1) ⇒ (4).

Finally, suppose (4) holds and fix some open U ⊆ X. Since every compact
Hausdorff space is regular, there is an open V ⊆ U such that V ⊆ U . Using (4),
fix x with N(x, V ) piecewise syndetic. By Theorem 2.1 in [4] and Theorem 4.40
in [8], every piecewise syndetic set is a member of some minimal ultrafilter. In
particular, there is some minimal ultrafilter p with N(x, V ) ∈ p. It follows that
p-limn∈N fn(x) ∈ V , from which we get p-limn∈N fn(x) ∈ U . By Proposition 2.3,
p-limn∈N fn(x) is a minimal point. Since U was arbitrary, X has a dense set of
minimal points. Thus (4) ⇒ (1). �

The property (3) in Theorem 4.2 is very close to the following property: for every
open U ⊆ X, N(U,U) is syndetic. It should be noted that these properties are not
equivalent in general. For a counterexample, see Example 8.3 in [11], or see [13].

For a metric system X and δ > 0, a δ-pseudo-orbit in X is a sequence
〈xn : n ∈ N〉 such that d(f(xn), xn+1) < δ for all n. X has the shadowing property
if for every ε there is a δ such that every δ-pseudo-orbit in X can be ε-shadowed
on N.
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Shadowing is an important, well-studied, and ubiquitous property (for a formal-
ization of its ubiquity, see [10] or [12]). Many variations of the shadowing property
(e.g. in [6] or [1]) have the form: if ξ is a pseudo-orbit on a large enough set, then
we can shadow it on a large set. Our Ramsey shadowing property has this form,
with the loosest possible restrictions on ξ, namely none.

A metric system X is chain transitive if for every δ > 0 and every x ∈ X,
there is a nontrivial δ-pseudo-orbit from x to itself (where “nontrivial” means that
the one element sequence 〈x〉 does not count).

Corollary 4.3. Let X be a metric system with shadowing. Then X has Ramsey
shadowing if and only if X is chain recurrent.

Proof. By the previous theorem, it suffices to show that chain recurrence together
with shadowing implies that the set of minimal points is dense, which is well known.
However, a short, direct proof of the corollary is also possible, which we give here
for completeness.

Suppose X is chain recurrent and has shadowing, and let U ⊆ X be open.
If x ∈ U , there is some ε > 0 such that Bε(x) ⊆ U and there is some δ > 0
such that every δ-pseudo-orbit in X can be ε-shadowed. Fix a nontrivial δ-chain
〈x, x1, x2, . . . , xn, x〉 from x to x. Then

ξ = 〈x, x1, x2, . . . , xn, x, x1, x2, . . . , xn, x, x1, x2, . . . , xn, x, . . . 〉

is a δ-pseudo-orbit in X. There is some y ∈ X that ε-shadows ξ. In particular,
d(fm(y), x) < ε whenever m is a multiple of n + 1. It follows that N(y, U) is
syndetic. �

In [6], Meddaugh, Raines, and the author prove that every chain transitive metric
system with shadowing has Ramsey shadowing. Because every chain transitive
system is chain recurrent, Corollary 4.3 strengthens this result.
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[10] Piotr Kościelniak, Marcin Mazur, Piotr Oprocha, and Pawe�l Pilarczyk, Shadowing is
generic—a continuous map case, Discrete Contin. Dyn. Syst. 34 (2014), no. 9, 3591–3609,
DOI 10.3934/dcds.2014.34.3591. MR3190995

[11] Marcin Kulczycki, Dominik Kwietniak, and Piotr Oprocha, On almost specification and aver-
age shadowing properties, Fund. Math. 224 (2014), no. 3, 241–278, DOI 10.4064/fm224-3-4.
MR3194417

[12] Marcin Mazur and Piotr Oprocha, S-limit shadowing is mathcalC0-dense, J. Math. Anal.

Appl. 408 (2013), no. 2, 465–475, DOI 10.1016/j.jmaa.2013.06.004. MR3085044
[13] Brett Stanley, Bounded density shifts, Ergodic Theory Dynam. Systems 33 (2013), no. 6,

1891–1928, DOI 10.1017/etds.2013.38. MR3122156

Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Or-

leans, Louisiana 70118

E-mail address: wbrian.math@gmail.com

http://www.ams.org/mathscinet-getitem?mr=3190995
http://www.ams.org/mathscinet-getitem?mr=3194417
http://www.ams.org/mathscinet-getitem?mr=3085044
http://www.ams.org/mathscinet-getitem?mr=3122156

	1. Introduction
	2. Preliminaries
	3. A local version of the Ramsey shadowing property
	4. A dense set of minimal points
	References

