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ON LINEAR PROJECTIONS OF QUADRATIC VARIETIES

MARKUS BRODMANN AND EUISUNG PARK

(Communicated by Lev Borisov)

Abstract. We study simple outer linear projections of projective varieties
whose homogeneous vanishing ideal is defined by quadrics which satisfy the
condition K2. We extend results on simple outer linear projections of rational
normal scrolls.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of arbitrary
characteristic. We denote by Pr the projective r-space over k.

For a non-degenerate irreducible projective variety X ⊂ Pr and a closed point
q ∈ Pr outside of X, let πq : X → Pr−1 be the linear projection of X from q
and consider the subvariety Xq = πq(X) ⊂ Pr−1. One can naturally expect that
algebraic and geometric properties of Xq may be described precisely in terms of
those of X and the relative location of q with respect to X. For example, let
fq : X → Xq be the map induced by πq and consider the coherent sheaf F :=
(fq)∗OX/OXq

on Xq. Then the support of F is exactly the singular locus

Sing(fq) := {x ∈ Xq | length
(
f−1
q (x)

)
≥ 2}

of the morphism fq : X → Xq. Classically, the set Join
(
Sing(fq), q

)
with the

reduced scheme structure is called the secant cone of X at q and is denoted by
Secq(X). Also Σq(X), the scheme-theoretic intersection of X and Secq(X), is
called the secant locus (or entry locus) of X at q. These notions are related in
an elementary way to the morphism fq : X → Xq as follows:

(i) fq : X → Xq is an isomorphism if and only if Σq(X) is empty.
(ii) fq : X → Xq is birational if and only if Σq(X) is a proper subset of X.

In this paper we study the projected variety Xq ⊂ Pr−1 in the case where X
satisfies condition K2, that is, it is scheme-theoretically cut out by some quadratic
equations and the trivial syzygies among them are generated by linear syzygies
(cf. Definition and Remark 3.1). Our main result in the present paper shows that
various important properties of Xq are governed by the integer s(q) defined as

s(q) := h0(Pr, IX(2))− h0(Pr−1, IXq
(2))− 1.

Thus we can say that s(q) reflects the relative location of q with respect to X.
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Theorem 1.1. Let X ⊂ Pr be a non-degenerate irreducible projective variety sat-
isfying condition K2, and let q ∈ Pr be a closed point outside of X. Then

(a) s(q) > 0 and the morphism fq : X → Xq is birational.
(b) The secant cone Secq(X) ⊂ Pr and the singular locus Λ := Sing(fq) ⊂ Pr−1

are linear subspaces of dimension (r− s(q)) and (r− s(q)− 1), respectively.
(c) The secant locus Σq(X) is a quadratic hypersurface in Secq(X).
(d) Let AX , AXq

and AΛ be respectively the homogeneous coordinate ring of

X ⊂ Pr, Xq ⊂ Pr−1 and Λ ⊂ Pr−1. Then there is an exact sequence of
graded AXq

-modules

(1.1) 0 −→ AXq
−→ AX −→ AΛ(−1) −→ 0.

(e) The sheaf (fq)∗OX/OXq
is isomorphic to OΛ(−1).

We also illustrate this theorem by means of various simple exterior projections
of the rational normal 3-fold scroll S(1, 1, 4) ⊂ P8.

Remark 1.2. (A) The statements of Theorem 1.1 are proved in [3] when X is a
variety of minimal degree, in [5] when X is a projective normal variety satisfying
condition N2,2 and in [1] when X satisfies condition N2,2. See Definition and
Remark 3.1 for the definition of condition K2 and condition N2,2.

(B) The sequence (1.1) allows us to compare algebraic properties of Xq and X. For
example, the local properties of X and Xq are compared on use of this sequence.
See Corollary 3.4.

(C) To the authors’ best knowledge, there is no example of a variety X ⊂ Pr which
satisfies condition K2 but does not satisfy condition N2,2. Nevertheless, the proof of
Theorem 1.1 itself is interesting because it uses directly the definition of condition
K2. So, the rich structure of Xq stated in Theorem 1.1 and Corollary 3.4 is a direct
consequence of condition K2 of X.

(D) It seems natural to ask about the sets Φt := {q ∈ Pr | s(q) = t}. Theorem
1.1(b) says that s(q) ≤ r − 1 if and only if the map fq : X → Xq is singular. Thus
Φt is contained in the secant variety of X whenever t ≤ r− 1. This means that the
Φt’s for t ≤ r − 1 constitute a stratification of the secant variety of X. When X is
a smooth rational normal scroll, this stratification is understood very well (cf. [2]).

2. Quadratic varieties

Convention 2.1. (A) We write S := k[x0, x1, · · · , xr] for the homogeneous coor-
dinate ring of Pr. If a ⊆ S is a graded ideal and F1, . . . , Fn ∈ S are homogeneous
polynomials, we write

V(a) := Proj(S/a) and V(F1, . . . , Fn) := V(

n∑
i=1

SFi).

(B) Let X ⊂ Pr be a non-degenerate irreducible projective variety whose homoge-
neous vanishing ideal is IX ⊂ S. Assume that the point q = [0, 0, . . . , 0, 1] ∈ Pn is
outside of X. Then the linear projection map πq : Pr \{q} → Pr−1 corresponds to
the obvious inclusion of the homogeneous coordinate ring S′ := k[x0, x1, . . . , xr−1]
of Pr−1 into S. Moreover, we always write

Xq := Proj(S′/IX ∩ S′) and IXq
:= IX ∩ S′
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where IXq
is the homogeneous vanishing ideal of Xq. In addition, we consider the

induced finite projection morphism

fq : X → Xq, [x0, x2, . . . , xr] 	→ [x0, x1, . . . , xr−1].

(C) Let V be a k-vector subspace of
(
IX

)
2
whose common zero locus does not

contain q. Let Vq := V ∩S′ ⊆
(
IXq

)
2
and write dimk V = t+1 and dimk Vq = t−s.

Then we can choose a basis {Q0, Q1, . . . , Qt} of V such that

(†)

⎧⎪⎨
⎪⎩
1. Q0 = G0 +H0xr + x2

r,

2. Qi = Gi + xixr for 1 ≤ i ≤ s, and

3. Qi = Gi for s+ 1 ≤ i ≤ t

where H0 ∈ S′ and G0, G1, . . . , Gt ∈ S′ are forms of degree 1 and 2 respectively.

Lemma 2.2. Let the notation and hypotheses be as in Convention 2.1 (A), (B)
and (C). Suppose that V cuts out X scheme-theoretically. Then

(a) For each closed point p ∈ Xq it holds

length
(
f−1
q (p)

)
=

{
1, if p /∈ V(x1, . . . , xs) and

2, if p ∈ V(x1, · · ·xs).

(b) Sing(fq) = Xq ∩ V′(x1, . . . , xs) and Σq(X) = X ∩ V(x1, . . . , xs).

(c) Assume that IX is generated by V and s = 0. Then IXq
=

∑t
i=1 S

′Qi.

Proof. For any point p ∈ Xq, consider the line 〈p, q〉 = {λp+μq | [λ, μ] ∈ P1}. Note
that q /∈ X ∩ 〈p, q〉 and so X ∩ 〈p, q〉 is an affine subscheme of A1 = 〈p, q〉 \ {q} =
Spec(k[μ]). Moreover, X ∩ 〈p, q〉 in A1 is defined by the s+ 1 polynomials

μ2 +H0(p)μ+G0(p), x1(p)μ+G1(p), . . . , xs(p)μ+Gs(p) ∈ k[μ]

since V cuts out X scheme-theoretically and the quadratic forms Qs+1, · · · , Qt

vanish on the line 〈p, q〉. Therefore it holds that

length
(
f−1
q (p)

)
= length

(
X ∩ 〈p, q〉

)
=

{
1, if xi(p) �= 0 for some i ≥ 1, and

2, if x1(p) = · · · = xs(p) = 0.

This proves statement (a). The first part of (b) now follows by the definition
of the singular locus Sing(fq) of fq. Then we can see that Secq(X) is equal to
Join(X, q) ∩ V(x1, . . . , xs). Therefore Σq(X) is the scheme-theoretical intersection
X ∩ Secq(X) = X ∩ V(x1, . . . , xs). In order to prove statement (d), we write

I := IXq
= IX ∩ S′ and J :=

∑t
i=1 S

′Qi and we show, by induction, that Id = Jd
for all integers d ≥ 2. For d = 2 this is clear by our choice of Q0, Q1, . . . , Qt.
Moreover Jd ⊆ Id for all d ≥ 3. So, let F ∈ I be a homogeneous form of degree
d ≥ 3. Since F ∈ IX , we have

F = Q0L0 +Q1L1 + · · ·+QtLt.

For each form L = L(x0, . . . , xr−1, xr) ∈ Sd−2 we write L′ := L(x0, . . . , xr−1, 0) ∈
S′
d−2. Writing Q0 = G0 +H0xr + x2

r and observing that F,G0, Q1, . . . , Qt ∈ S′ we
thus get F = G0L

′
0 + Q1L

′
1 + · · · + QtL

′
t. It remains to show that G0L

′
0 ∈ J . As

F,Q1, . . . Q1 ∈ I, we have G0L
′
0 ∈ Id. As I is a prime containing no linear form, we

have H0xr + x2 /∈ I, hence G0 /∈ I and therefore L′
0 ∈ I. As L′

0 ∈ S′
d−2 it follows

by induction that L′
0 ∈ J , so that indeed G0L

′
0 ∈ J. �
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As an immediate application of the previous lemma, we get the following result.

Proposition 2.3. Let the notation and hypotheses be as in Lemma 2.2. Then

(a) The morphism fq : X → Xq is birational if and only if s > 0.
(b) Assume that IX is generated by V and s = 0. Then Xq is a quadratic

variety and X is the intersection of the cone Join(q,Xq) and a quadric.
Furthermore, the morphism fq : X → Xq is a double covering.

3. The condition K2

Definition and Remark 3.1. (A) Let the notation and hypotheses be as in
Convention 2.1 and let Q := (Q0, Q1, · · · , Qt) ∈ St+1

2 be a family of k-linearly
independent quadratic forms. We consider the module of syzygies

Syz(Q) := {(F0, F2, . . . , Ft) ∈ St+1 |
∑
i=0

FiQi = 0}

of the family Q, furnished with its natural grading as a submodule of St+1. By a
linear syzygy of Q we mean a homogeneous element of degree 1 in Syz(Q), hence
an element of Syz(Q)1. We also introduce the graded submodule

Syzlin(Q) :=
∑

F∈Syz(Q)1

SF
(
⊆ Syz(Q)

)
generated by all linear syzygies of Q.

For each i ∈ {0, 1, . . . , t}, let ei := (0, . . . , 0, 1, 0, . . . 0) = (δi,j)
t
j=0 denote the i-th

canonical basis element of the S-module St+1. Whenever 0 ≤ i < j ≤ t we call the
element

Ti,j := Qjei −Qiej = (0, . . . , 0, Qj , 0 . . . , 0,−Qi, 0, . . . 0) ∈ Syz(Q)2

a trivial syzygy and we introduce the graded submodule

Syztriv(Q) :=
∑

0≤i<j≤t

STi,j

(
⊆ Syz(Q)

)
generated by the trivial syzygies. Observe that Syz(Q) = 0 if t = 0.

(B) Let V be the k-vector space spanned by {Q0, Q1, · · · , Qt}. If {Q′
0, Q

′
1, · · · , Q′

t}
is a basis for V , then there is a regular matrix A := [ai,j | 0 ≤ i, j ≤ t] ∈
k(t+1)×(t+1) for which Qi =

∑t
j=0 αi,jQ

′
j for all i ∈ {0, . . . , t}. Then the fam-

ily Q′ := (Q′
0, Q

′
1, · · · , Q′

t) ∈ St+1
2 and the automorphism φ : St+1

∼=→ St+1,

ei 	→
∑t

j=0 αi,jej for all i ∈ {0, . . . , t}, induced by A have the property that

φ
(
Syz(Q)

)
=Syz(Q′), φ

(
Syzlin(Q)

)
=Syzlin(Q

′) and φ
(
Syztriv(Q)

)
=Syztriv(Q

′).

As a consequence, the two conditions

(K2) : Syztriv(Q) ⊆ Syzlin(Q) and (N2,2) : Syzlin(Q) = Syz(Q)

do not depend on the choice of a basis for V and hence are intrinsic properties of
V . Obviously, both conditions are satisfied if t = 0.
(C) Let X ⊂ Pr be the closed subscheme defined by a homogeneous ideal I ⊆ S.
Following [6] we say that X satisfies condition K2 if it is scheme-theoretically cut
out by a subspace V ⊂ I2 which satisfies condition K2. Also, following [4] we
say that X satisfies condition N2,2 if I2 generates I and satisfies condition N2,2.
Observe X satisfies condition K2 if it satisfies condition N2,2.
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Lemma 3.2. Keep the notation and hypotheses as in Convention 2.1 and Definition
and Remark 3.1. Then

(a) If (F0, F1, · · · , Ft) ∈ Syz(Q)1, then F0 ∈
∑s

i=1 kxi.
(b) Suppose that V cuts out X scheme-theoretically and satisfies the condition

K2. Then
(1) Q1, . . . , Qt ∈

∑s
i=1 S1xi;

(2) t > 0 =⇒ s > 0;
(3) Σq(X) = V(Q0, x1, . . . , xs), Secq(X) = V(x1, . . . , xs) and Sing(fq) =

V′(x1, . . . , xs).

Proof. (a): Writing Fi =
∑r

j=0 ai,jxj with ai,j ∈ k for all 0 ≤ i ≤ t, we have

(3.1) F0Q0 + F1Q1 + · · ·+ FtQt = 0.

Also the left hand side of the equation (3.1) may be rewritten as

t∑
i=0

FiQi = a0,rx
3
r + (F0 + a0,rH0 + a1,rx1 + . . .+ as,rxs)x

2
r +Qxr + F

for some Q ∈ S′
2 and some F ∈ S′

3. Therefore the equation (3.1) implies that
a0,r = 0 and F0 + a1,rx1 + . . .+ as,rxs = 0, which completes the proof.

(b): Let i ∈ {1, . . . , t}. By condition K2 we find some n ∈ N, forms Lj ∈ S1 and

linear syzygies
∑t

k=1 Fj,kek ∈ Syz(Q)1, (j = 1, . . . , n) such that

T0,i=Qie0−Q0ei=
n∑

j=1

Lj

t∑
k=1

Fj,kek=
t∑

k=1

( n∑
j=1

LjFj,k

)
ek, whence Qi=

n∑
j=1

LjFj,0.

According to (a), we have Fj,0 ∈
∑s

l=1 Sxl, so that Qi ∈
∑s

l=1 S1xl. This proves
claim (1). The remaining claims (2) and (3) now follow easily from the use of
Lemma 2.2 (b), (c). �

Notation and Remark 3.3. Let the notation and hypotheses be as in Convention 2.1.
We consider the homogeneous coordinate rings

AXq
:= S′/IXq

= S′/(IX ∩ S′) and AX = S/IX

of Xq and of X, as well as the canonical map

• : S → AX , given by F 	→ F := F + IX .

As S = S′[xr], xr
2 + H0xr + G0 = Q0 = 0, xixr = xixr = Qi −Gi = Gi for all

i ∈ {1, . . . , s}, and H0, G0, . . . , Gs(q) ∈ AXq
, we obtain:

(a) AX = AXq
[xr] = AXq

+ xrAXq
, with xr ∈

(
AX

)
1
\AXq

, and

(b) xiAX ⊆ AXq
for all i ∈ {1, . . . , s}.

Proof of Theorem 1.1. Statement (a) follows immediately from Lemma 3.2 (b)(2)
and Proposition 2.3 (a). Statement (b) is a consequence of Lemma 3.2 (b)(3).
Statement (c) is immediate by Lemma 3.2 (b)(3). To prove statement (d), we
set s := s(q) and write Λ := Sing(fq). We may assume that the notation and
hypotheses are as in Convention 2.1 and Notation and Remark 3.3. Then, by
Lemma 3.2 (b)(3) we have

Λ = V′(x1, . . . , xs) = Proj(k[x0, xs+1, . . . , xr]) = Pr−s−1 ⊂ Pr−1,
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and the homogeneous vanishing ideal IΛ of Λ in S′ and the homogeneous coordinate
ring AΛ of Λ satisfy

IXq
⊂ IΛ =

s∑
i=1

S′ and AΛ = S′/IΛ.

According to statement (a) of Notation and Remark 3.3 we have

AX/AXq
∼=

[
S′/annS′(AX/AXq

)
]
(−1).

So, it remains to show that annS′(AX/AXq
) = IΛ. According to statement (b) of

Notation and Remark 3.3 it holds IΛ ⊆ annS′(AX/AXq
). As

V′(IΛ) = Λ = Sing(fq) = Supp
Pr−1

(
(fq)∗OX/OXq

)
= Supp

Pr−1

(
˜AX/AXq

)
= V′(annS′(AX/AXq

)
)
,

it holds √
annS′(AX/AXq

) =
√
IΛ.

As IΛ is a prime ideal, it follows annS′(AX/AXq
) ⊆ IΛ, and this proves our claim.

Now, (e) follows immediately from statement (d) as (fq)∗OX/OXq
= ˜AX/AXq

.
�

As an application of Theorem 1.1 we obtain the following result, in which

Nor(Z), CM(Z) and S2(Z)

respectively denote the locus of normal, Cohen-Macaulay and S2-points of a locally
Noetherian scheme Z.

Corollary 3.4. Let X ⊂ Pr and Xq ⊂ Pr−1 be as in Theorem 1.1. Then

(a) Each closed point in Sing(fq) is a non-normal point of Xq. Therefore

Nor(Xq) = fq(Nor(X) \ Σq(X)) = fq(Nor(X)) \ Sing(fq).
In particular, if X is normal, then fq : X → Xq is the normalization of
Xq.

(b) Assume that X is locally Cohen-Macaulay and dim
(
Σq(X)

)
< dim(X)− 1.

Then, the generic point η ∈ Xq of Sing(fq) is a Goto point and

CM(Xq) = S2(Xq) = Xq \ Sing(fq).

Proof. (a): Let x ∈ Sing(fq). Then, the ring
(
(fq)∗OX

)
x
is a finite birational

integral extension of OXq,x such that
(
(fq)∗OX

)
x
/OX,x

∼= OΛ,x �= 0 by (1.1).
Therefore OX,x fails to be normal.
(b): Recall that η ∈ Xq is said to be a Goto point if dim(OXq,η) > 1 and

Hi
mXq,η

(OXq,η) =

{
0 if i �= 1, dim(OXq,η), and

κ(η) if i = 1.

In our case, we have dim(OXq,η) > 1, since we assume that dim
(
Σq(X)

)
< dim(X)−

1. Localizing the exact sequence (1.1) at η, we get the following exact sequence of
OXq,η-modules:

0 → OXq,η →
(
(fq)∗OX

)
η
→ κ(η) → 0.
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Since X is locally Cohen-Macaulay, OX,y is a Cohen-Macaulay local ring for each
y ∈ π−1

q (η). Therefore
(
(fq)∗OX

)
η
is a Cohen-Macaulay OXq,η-module. So, the

above exact sequence shows that

H1
mXq,η

(OXq,η)
∼= κ(η) and Hi

mXq,η
(OXq,η) = 0 for all i �= 1, dim(OXq,η).

As η ∈ Xq is not an S2-point, each y ∈ Λ fails to be an S2-point and a Cohen-
Macaulay point of Xq. �

4. Examples

Example 4.1. Let X ⊂ P8 be the standard rational normal scroll S(1, 1, 4) defined
by the vanishing of the 2× 2-minors of the matrix

M =

(
x0 x2 x4 x5 x6 x7

x1 x3 x5 x6 x7 x8

)
.

Thus X is a quadratic variety and its homogeneous vanishing ideal is generated by
the following set of 15 K-linearly independent quadrics:

{Qi,j | 1 ≤ i < j ≤ 6}

where Qi,j is the determinant of the 2 × 2 matrix consisting of the i-th and j-th
columns of M . We consider the following four points qi ∈ P8 \X, (i = 1, . . . , 4) :

q1 = [0, 0, 0, 0, 0, 0, 1, 0, 0], q2 = [0, 0, 0, 0, 0, 1, 0, 0, 0],

q3 = [0, 0, 0, 1, 1, 0, 0, 0, 0], q4 = [0, 1, 1, 0, 0, 0, 0, 0, 0].

Let Xqi ⊂ P7 denote the image of X ⊂ P8 under the linear projection πqi : P8 \
{qi} → P7.

(A) When i = 1, the homogeneous vanishing ideal of q1 is generated by all homo-
geneous coordinates of P8 except x6. Also, among the above 15 quadrics, exactly
the following 9 quadrics contain x6:

Q1,4, Q1,5, Q2,4, Q2,5, Q3,4, Q3,5, Q4,5, Q4,6, Q5,6.

This shows that h0(P7, IXq1
(2)) = 15− 9 = 6 and Σq1(X) is empty since

Σq1(X) = VP8(x0, x1, x2, x3, x4, x5, x7, x8, Q4,5).

(B) When i = 2, the homogeneous vanishing ideal of q2 is generated by all homo-
geneous coordinates of P8 except x5. Also, among the above 15 quadrics, exactly
the following 8 quadrics contain x5:

Q1,3, Q1,4, Q2,3, Q2,4, Q3,4, Q3,5, Q3,6, Q4,6.

This shows that h0(P7, IXq2
(2)) = 15 − 8 = 7 and Σq2(X) is a double point in P1

since

Σq2(X) = VPr(x0, x1, x2, x3, x6, x7, x8, Q3,4).

(C) When i = 3, let 2y = x3 − x4 and 2z = x3 + x4. Then the homogeneous
vanishing ideal of p3 is generated by {x0, x1, x2, y, x5, x6, x7, x8}. Also, among the
above 15 quadrics, essentially the following 7 quadrics contain z since Q2,5 +Q3,4

and Q2,6 +Q3,5 are free with respect to z:

Q2,3, Q1,2, Q1,3, Q2,4, Q2,5, Q2,6, Q3,6.
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This shows that h0(P7, IXq3
(2)) = 15− 7 = 8 and Σq3(X) is the union of two lines

in P2 since
Σq3(X) = VP8(x0, x1, x5, x6, x7, x8, Q2,3).

(D) When i = 4, let 2y = x1 − x2 and 2z = x1 + x2. Then the homogeneous
vanishing ideal of p4 is generated by {x0, y, x3, x4, x5, x6, x7, x8}. Also, among the
above 15 quadrics equations, essentially the following 6 quadrics contain z since
Q1,4 +Q2,3, Q1,5 +Q2,4, and Q1,6 +Q2,5 are free with respect to z:

Q1,2, Q1,3, Q1,4, Q1,5, Q1,6, Q2,6.

This shows that h0(P7, IXq4
(2)) = 15 − 6 = 9 and Σq4(X) is a smooth quadric in

P3 since
Σq4(X) = VPr (x4, x5, x6, x7, x8, Q1,2).
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