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ABSTRACT. It is shown that there are infinitely many primitive cusp forms
f of weight 2 with the property that for all X large enough, every interval
(X, X +¢X1/%), where ¢ > 0 depends only on the form, contains an integer n
such that the n-th Fourier coefficient of f is nonzero.

1. INTRODUCTION

The question about the lacunarity of the sequence of Fourier coefficients of a
nonzero elliptic cusp form seems to have originated in Serre’s seminal paper [Se81].
Following his notation, given a modular form

o
f — Z ay (n)eQWinz,
n=1

which is not a linear combination of forms with complex multiplication, one defines
for any positive integer n, the quantity is(n) by,
ir(n) = max{i | ap(n+4) =0, 0<j<i},

and the question is to estimate the magnitude of this quantity as n grows; expecting
it to be small most of the time. For example, Serre [Se81] showed that

if(n) g n,
and asked the question whether one has
(1.1) if(n) <y n®, for somed < 1.

From the Rankin-Selberg theory, one knows that (1) holds with § = 3/5. Several
results on this topic have appeared in the literature in recent years. For example A.
Balog and K. Ono [BOO01] prove for a cusp form on I'g(N), not a linear combination
of CM-forms, that for any € > 0,

if (n) <fe n17/41+6.

E. Alkan has many interesting results in this direction; see, e.g., the works [AI03],
[AIO5], [AZOS8] where he proves (among many other related results) that for almost
all n or for n is a set of positive natural density,

if(n) <r ¢(n),
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where ¢(n) is any monotonically increasing function satisfying ¢(2n) < ¢(n). If f
arises from an elliptic curve E/Q, he proves the bound

(1.2) if(n) g n0/169%

for any € > 0, by exploiting a result of N. Elkies [EIk92] on distribution of super-
singular primes.

For holomorphic nonCM cusp forms f on general congruence groups the bound
due to Kowalski, Robert and Wu [KRWQ7] is currently the strongest result uniform
for all n and gives

ir(n) < n"/1TrE
Almost all of the works cited above use some variant of the machinery of %-free
numbers, sieve techniques, bounds on exponential sums and the result of Serre
which states that for any € > 0 and f a newform on I'g(N) without CM, one has

X
#{p<z|ap(p) =0} <y log(z)3/2—<"

which follows by considering the 2-dimensional Galois representations attached to
f and an effective Chebotarev’s density theorem; for more details see [Se&1].

In a recent work [DGI4], it was shown that if f is a holomorphic cusp form for
the modular group SL(2,7Z) of weight k > 12, one has the bound

zf(n) <Lk nl/4.

This result was proved by utilizing certain congruences due to Hatada [Hat79] for
Hecke eigenvalues of cusp forms for the group SL(2,Z); and is simpler in the sense
that it avoids all of the aforementioned methods in the previous paragraphs. It is
not clear to us whether one can prove similar congruences for forms on congruence
groups of higher levels and use them to improve on the bound of Kowalski, Robert
and Wu in full generality.

The purpose of this note is to prove that the bound is(n) = O(n'/%) holds for
an infinite family of cusp forms that are not of level one. This family comes from
certain elliptic curves over Q.

Theorem 1. Let E/Q be an elliptic curve having a rational point of exact order
4. Then the associated primitive form fg satisfies the bound
. (n) <E n'/4,
By showing that there are infinitely many distinct isogeny classes of such elliptic
curves, we obtain the following corollary.

Corollary 1. There are infinitely many primitive forms f of weight 2 and level
larger than one that satisfies the bound

zf(n) <y n1/4.

Note that 69/169 ~ 0.41, so our result also improves upon that of Alkan in (I2))
for those elliptic curves which have a point of order 4 over Q.

The basic idea of the proof is that by considering the mod 4 Galois representation
associated to E as above, we obtain certain congruences satisfied by the coefficients
ap of the modular form fg at primes p that are coprime to the conductor Ng of
FE. Using these congruences we are able to prove that a, # 0 if n is a sum of two
squares and (n,2Ng) = 1. The rest of the proof is to show that such n can be
found in reasonably short intervals; namely, between X and X + cX/* for all X
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sufficiently large, ¢ being a positive constant depending on E. The possibility of
extending the idea of this proof to forms of higher weights remains to be explored.

2. PROOFS

2.1. Proof of the theorem. We follow the notation of [Sil86]. We first recall that
the Galois group Gal(Q/Q) acts on the set E[N] of N-torsion points of E and gives
rise to a representation

pe.N : Gal(Q/Q) — GL2(Z/NZ).

The proof begins with the following observation that was pointed out to the authors
by B. Gross. If an elliptic curve F/Q has a rational point of exact order N, then
the image of the associated Galois representation pg n is contained in a Borel
subgroup. This can be seen as follows. Suppose P € E(Q) is of exact order N.
Since E[N]| 2 (Z/NZ) x (Z/NZ), we can find another point Q@ € E[N] such that
{P,Q} is a basis for E[N]. Since o(P) = P for any o € Gal(Q/Q), if we represent
p(c) for some o € Gal(Q/Q) as a matrix with respect to the ordered basis (P, Q),
it will look like (§ ¥).

Remark 1. In fact there is a necessary and sufficient condition for the image of
pE,~N to be contained in a Borel subgroup; see [Rid10, Prop. 2.1].

Now we apply this observation to the case N = 4 and ¢ = o), the Frobenius
element at an odd prime p. We shall see later that the choice N = 4 is admissible;
i.e., there are elliptic curves over Q that admit rational points of exact order 4.

Thus we have,
(0,) = (1 *)
PE,4\0p 0 ﬁp )

where 8, and * are elements in Z/47Z. There is a primitive form (i.e., a newform)
fE of weight 2 and level Ng associated to the elliptic curve E. Suppose a,, denotes
the n-th normalized (i.e. a; = 1) Hecke eigenvalue of fr. We know that a,, € Z for
all n and from the theory of ¢-adic representations (see, e.g., [Sil86l §5]), we also
know that the Hecke eigenvalues a, of fr at odd primes p satisfy the congruences

1+8,=a, (mod4)
and

By =p*>~! (mod 4).
Therefore, we obtain the relation
(2.1) ap=p+1 (mod4).

Next, as in [DG14], we observe that a,, # 0 for all odd integers n that are sums
of two squares and are coprime to Ng. We sketch an argument below. See [DG14]
for more details.

For showing a, # 0, it is enough to show that ay« # 0 for all prime factors p of
n, where « is the exponent of p occurring in the prime factorization of n. Now, if n
is a sum of two squares, then the prime factors of n that are = 3 (mod 4) must oc-
cur with an even exponent. From (21 it follows using Hecke’s recurrence relation
that a,» = 1 (mod 4) for p = 3 (mod 4) and n even. For primes p = 1 (mod 4)
that divide n, we see, again from (21, that a, = 2 (mod 4). Now, a lemma
in the paper by Kowalski, Robert and Wu (see [KRWQT7, Lemma 2.2]) applied
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to our situation (modular form with integer coefficients and with trivial nebenty-
pus) implies that if a, # 0, then a,m # 0 for all m > 1 as long as (p, Ng) = 1.

Now we come to the last part of the proof. An elementary technique stated in
[BC47)] allows us to show that every interval of the form (X, X + 7X'/*) contains
a sum of two squares as soon as X > 1154. We can modify this technique (see,
for example, the proof of Thm. 1 in [DG14]) to ensure that we can also obtain an
integer that is coprime to 2Ng and is a sum of two squares in an interval of type
(X, X +cX'/*), where X > 1154 and ¢ > 0 is a constant that depends only on Ng.

2.2. Proof of the corollary. We have shown that if an elliptic curve E/Q has
a rational point of exact order 4, then we have the bound if,(n) < n/4. Now,
by the famous Modularity Theorem, every isogeny class of elliptic curves over Q
with conductor N (and it is necessary that N > 1) corresponds to a primitive cusp
form of weight 2 and level N. Moreover, this primitive form is uniquely determined
since, according to a theorem of Faltings [Fa83], the L-function of an elliptic curve
determines the curve up to isogeny. Therefore, the corollary will follow once we show
that there are infinitely many isogeny classes of elliptic curves, each containing a
rational point of exact order 4.

This comes from the theory of modular curves, in particular, from considering
modular curves as moduli spaces classifying elliptic curves with some extra struc-
tures up to isomorphism. We first recall (see [Sil86, §13, Appendix C]) that there
is a bijection between points on the complex curve Y;(N) = H/T'y(N) and iso-
morphism classes of pairs (E, P) of elliptic curves E/C and a point P € E(C) of
exact order N. This moduli interpretation can be extended to elliptic curves over
number fields as well if N > 4. A theorem (see [DI95, Thm. 8.2.1]) says that for
N >4, Y1(N) is a fine moduli space for the moduli problem of classifying isomor-
phism classes of pairs (E, P) where P € E(Q) is of exact order N. This means,
in particular, that the rational points on the modular curve Y;(NN) are in bijection
with the isomorphism classes of pairs (F, P) where E is an elliptic curve over Q
and P € F(Q) is of exact order N. See [DI95| §8.2] for a discussion on this result.
Now, it is known that X;(4) is a smooth algebraic curve of genus zero and hence
is rational and that it has a rational point. Therefore, X;(4) has infinitely many
rational points and hence so does Y71 (4) and, by the above result, there are infinitely
many isomorphism classes of pairs (E, P), where P € F(Q) is of exact order 4. Now
we recall the fact (see [Sil86, §IX.6, Cor. 6.2]) that given an elliptic curve E over Q
there can be only finitely many elliptic curves over Q that are isogenous to E. Since
on a fixed elliptic curve there can be only a finite number of rational points of exact
order 4, we see from the infinitude of isomorphism classes of pairs (E, P) described
above that there are infinitely many isogeny classes of elliptic curves E/Q, each of
which contains a rational point of exact order 4.
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