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(Communicated by Michael Hitrik)

Abstract. We order the lowest mixed Dirichlet-Neumann eigenvalues of right
triangles according to which sides we apply the Dirichlet conditions. It is gen-
erally true that the Dirichlet condition on a superset leads to larger eigenvalues,
but it is nontrivial to compare e.g. the mixed cases on triangles with just one
Dirichlet side. As a corollary we also classify the lowest Neumann and Dirichlet
eigenvalues of rhombi according to their symmetry/antisymmetry with respect
to the diagonals.

Furthermore, we give an order for the mixed Dirichlet-Neumann eigenvalues

on arbitrary triangle, assuming two Dirichlet sides. The single Dirichlet side
case is conjectured to also have the appropriate order, following the right
triangular case.

1. Introduction

Laplace eigenvalues are often interpreted as frequencies of vibrating membranes.
In this context, the natural (Neumann) boundary condition corresponds to a free
membrane, while Dirichlet condition indicates a membrane is fixed in place on the
boundary. Intuitively, mixed Dirichlet-Neumann conditions should mean that the
membrane is partially attached, and the larger the attached portion, the higher the
frequencies. Heat equation provides another convenient interpretation in which the
Neumann conditions represent perfectly insulated walls and the Dirichlet conditions
represent un-insulated windows; see e.g. [11].

Note that the mixed Dirichlet-Neumann conditions are also known in literature
as the Zaremba problem [36]. This problem can be highly singular, in particular
when a transition between the Dirichlet and Neumann conditions happens in the
middle of a side of a polygon. However, we only treat the cases with transitions at
vertices, which pose no problems. For more details see [8, 27].

Using the variational characterization of the frequencies (see Section 2) one can
easily conclude that enlarging the attached portion leads to increased frequencies.
In this paper we investigate a harder, yet still intuitively clear case of imposing
Dirichlet conditions on various combinations of the sides of a triangle. Imposing
the Dirichlet condition on one side gives smaller eigenvalues than imposing it on
that side and one more. However, is it true that imposing the Dirichlet condition
on a shorter side leads to a smaller eigenvalue than the Dirichlet condition on a
longer side?
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Note that one can also think about eigenvalues as related to the survival proba-
bility of the Brownian motion on a triangle, reflecting on the Neumann boundary,
and dying on the Dirichlet part. In this context, it is clear that enlarging the
Dirichlet part leads to a shorter survival time. It is also reasonable, that having
the Dirichlet condition on one long side gives a larger chance of dying, than having
a shorter Dirichlet side. However, this case is far from obvious to prove, especially
that the difference might be very small for nearly equilateral triangles.

Let L, M and S denote the lengths of the sides of a triangle T , so that L ≥ M ≥
S. Let the smallest eigenvalue corresponding to the Dirichlet conditions applied
to a chosen set of sides be denoted by λset

1 . E.g. λLS
1 would correspond to the

Dirichlet conditions imposed on the longest and shortest sides. Let also μ2 and λ1

denote the smallest nonzero pure Neumann and pure Dirichlet eigenvalues of the
same triangle.

Theorem 1.1. For any right triangle with the smallest angle satisfying π/6 < α <
π/4

0 = μ1 < λS
1 < λM

1 < μ2 < λL
1 < λMS

1 < λLS
1 < λLM

1 < λ1.

When α = π/6 (half-of-equilateral triangle) we have λM
1 = μ2, and for α = π/4

(right isosceles triangle) we have S = M and λL
1 = μ2. All other inequalities stay

sharp in these cases.
Furthermore for arbitrary triangle

min{λS
1 , λ

M
1 , λL

1 } < μ2 ≤ λMS
1 < λLS

1 < λLM
1 ,

as long as the appropriate sides have different lengths. However, it is possible that
μ2 > λL

1 (for any small perturbation of the equilateral triangle) or μ2 < λM
1 (for

right triangles with α < π/6).

Note that for arbitrary polygonal domains it is not always the case that a longer
restriction leads to a higher eigenvalue (see Remark 3.3). The theorem also asserts
that a precise position of the smallest nonzero Neumann eigenvalue in the ordered
sequence is an exception, rather than a rule (even among triangles). Neverthe-
less, we conjecture that mixed eigenvalues of triangles can be fully ordered. More
precisely, we conjecture that all cases missing in the above theorem are still true:

Conjecture 1.2. For an arbitrary triangle

λS
1 < λM

1 < λL
1 < λMS

1 ,

as long as appropriate sides have different lengths.

Even though right triangles are a rather special case, they are of interest in study-
ing other polygonal domains. In particular, a recent paper by Nitsch [26] studies
regular polygons via eigenvalue perturbations on right triangles. A similar approach
is taken in the author’s upcoming collaboration [25]. Finally, right triangles play
the key role in the recent progress on the celebrated hot-spots conjecture. A newly
discovered approach due to Miyamoto [23, 24] led to new partial results for acute
triangles [32] (see also Polymath 7 project polymathprojects.org/tag/polymath7/).
The acute cases rely on eigenvalue comparisons of triangles, which were first con-
sidered by Miyamoto on right triangles.

Eigenvalue problems on right triangles were also used to establish symmetry (or
antisymmetry) of the eigenfunction for the smallest nonzero Neumann eigenvalue

http://polymathprojects.org/tag/polymath7/


ON MIXED DIRICHLET-NEUMANN EIGENVALUES OF TRIANGLES 2481

of kites (Miyamoto [23] and the author of the present paper [32]) and isosceles
triangles [20] (in collaboration with Richard Laugesen). It is almost trivial to
conclude that the eigenfunctions can be assumed symmetric or antisymmetric with
respect to a line of symmetry of a domain. It is however very hard to establish
which case actually happens. This problem is also strongly connected to the hot-
spots conjecture, given that many known results assume enough symmetry to get
a symmetric eigenfunction, e.g., Jerison-Nadirashvili [18] or Bañuelos-Burdzy [3].
As a particular case, the latter paper implies that the smallest nonzero Neumann
eigenvalue of a narrow rhombus is antisymmetric with respect to the short diagonal.
In order to claim the same for all rhombi one needs to look at the very important
hot-spots result due to Atar and Burdzy [1]. Their Corollary 1, part ii) can be
applied to arbitrary rhombi, but it requires a very sophisticated stochastic analysis
argument and a solution of a more complicated hot-spots conjecture to achieve the
goal.

As a consequence of the ordering of mixed eigenvalues of right triangles we order
first four Neumann (and two Dirichlet) eigenvalues of rhombi, depending on their
symmetry/antisymmetry. We achieve more than the above-mentioned papers, using
elementary techniques.

Our result applies to all rhombi not narrower than the “equilateral rhombus”
composed of two equilateral triangles. This particular case, as well as the square,
are interesting boundary cases due to the presence of multiple eigenvalues.

Corollary 1.3. For rhombi with the smallest angle 2α > π/3 we have

• μ2, μ3, μ4 and λ2 are simple,
• μ4 < λ1,
• the eigenfunction for μ2 is antisymmetric with respect to the short diagonal,
• the eigenfunction for μ3 is antisymmetric with respect to the long diagonal,
• the eigenfunction for μ4 is doubly symmetric,
• the eigenfunction for λ2 is antisymmetric with respect to the short diagonal.

Furthermore, if 2α < π/3, then the doubly symmetric mode belongs to μ3, and the
mode antisymmetric with respect to the long diagonal can have an arbitrarily high
index (as α → 0).

Perhaps the most interesting case of our result about rhombi is that the fourth
Neumann eigenvalue of a nearly square rhombus is smaller than its smallest Dirich-
let eigenvalue (and is doubly symmetric). This strengthens many classical eigen-
value comparison results: Payne [28], Levine-Weinberger [22], Friedlander [15] and
Filonov [14]. In general, the second Neumann eigenvalue is not larger than the
first Dirichlet eigenvalue, while on convex domains the same applies to the third
Neumann eigenvalue (with strict inequality for strictly convex domains). This type
of eigenvalue comparison is traditionally used to derive some conclusions about the
nodal set of the Neumann eigenfunction, e.g., an eigenfunction for μ2 cannot have
a nodal line that forms a loop. Recent progress on hot-spots conjecture due to
Miyamoto [23] and the author [32] relies on such eigenvalue comparisons and simi-
lar nodal line considerations. Furthermore, the author’s forthcoming collaboration
[25] leverages the improved fourth eigenvalue comparison on rhombi in studying
regular polygons.

Our proofs for mixed eigenvalues on triangles are short and elementary, yet a
very broad spectrum of techniques is actually needed. Even though the comparisons
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look mostly the same, their proofs are strikingly different. Depending on the case,
we use: variational techniques with explicitly or implicitly defined test functions,
polarization (a type of symmetrization) applied to mixed boundary conditions,
nodal domain considerations, or the unknown trial function method (see [20, 21]).

2. Variational approach and auxiliary results

The mixed Dirchlet-Neumann eigenvalues of the Laplacian on a right triangle T
with sides of length L ≥ M ≥ S can be obtained by solving

Δu = λDu, on T,

u = 0 on D ⊂ {L,M, S},
∂νu = 0 on ∂T \D.

The Dirichlet condition imposed on D can be any combination of the triangle’s
sides, as mentioned in the introduction. For simplicity we denote λ = λLMS (the
purely Dirichlet eigenvalue) and μ = λ∅ (the purely Neumann eigenvalue).

The same eigenvalues can also be obtained by minimizing the Rayleigh quotient

R[u] =

´
T
|∇u|2´
T
u2

.

In particular

λD
1 = inf

u∈H1(T ),u=0 on D
R[u],(1)

μ2 = inf
u∈H1(T ),

´
T
u=0

R[u],(2)

For an overview of the variational approach we refer the reader to Bandle [2] or
Blanchard-Brüning [4].

For each kind of the mixed boundary conditions we have an orthonormal sequence
of eigenfunctions and

0 < λD
1 < λD

2 ≤ λD
3 ≤ · · · → ∞,

as long as D is not empty. When D is empty (the purely Neumann case) we have

0 = μ1 < μ2 ≤ μ3 ≤ μ4 ≤ · · · → ∞.

The sharp inequality μ2 < μ3 for all nonequilateral triangles was recently proved
by the author [32]. A similar result (λ2 < λ3) should also hold for purely Dirichlet
eigenvalues, but this remains an open problem.

The fact that λD
1 < λD

2 is a consequence of the general smallest eigenvalue
simplicity:

Lemma 2.1. Let Ω be a domain with the Dirichlet condition on D �= ∅ and the
Neumann condition on ∂Ω \ D. Then 0 < λD

1 < λD
2 and the eigenfunction u1

belonging to λD
1 can be taken nonnegative.

Proof. Suppose u1 is changing sign. Then |u1| is a different minimizer of the
Rayleigh quotient. Any minimizer of the Rayleigh quotient is an eigenfunction
(see [2] or a more recent exposition [19, Chapter 9]). But Δ|u1| = −λ1|u1| ≤ 0,
hence the minimum principle ensures u1 cannot equal zero at any inside point of
the domain, giving contradiction. Therefore u1 has a fixed sign. If there were two
eigenfunctions for λD

1 , we could make a linear combination that changes sign, which



ON MIXED DIRICHLET-NEUMANN EIGENVALUES OF TRIANGLES 2483

is not possible. Hence the smallest eigenvalue is simple. Finally, λD
1 = 0 would im-

ply that |∇u1| = 0 a.e., hence the eigenfunction is constant. But it equals 0 on D,
hence u1 ≡ 0, which is impossible. �

If D1 ⊂ D2, then (1) implies that λD1
1 ≥ λD2

1 . Indeed, any test function u that

satisfies u = 0 on D2, can be used in the minimization of λD1
1 . However, the relation

between e.g. λL
1 and λM

1 is not clear.
In the second part of the paper we will consider rhombi R created by reflecting

a right triangle T four times.

Lemma 2.2. Let u belong to λD
1 (T ) or μ2(T ). Let ū be the extension of u to

R, which is symmetric with respect to the sides of T with Neumann condition and
antisymmetric with respect to the Dirichlet sides. Then ū is an eigenfunction of R.
Furthermore, if v is another eigenfunction of R with the same symmetries as ū,
then v belongs to a higher eigenvalue than ū, or v = Cū for some constant C.

Proof. Suppose v is an eigenfunction of R with the same symmetries as u. Its
restriction to T satisfies Dirichlet and Neumann conditions on the same sides as u.
It also satisfies the eigenvalue equation pointwise on T . Hence v is an eigenfunction
on T . However, λD

1 and μ2 are simple, hence v = Cu, or v belongs to a higher
eigenvalue on T .

The extension ū has the same Rayleigh quotient on R, as on T (due to symme-
tries). Hence ū can be used as a test function for the lowest eigenvalue on R with
the symmetries of ū. Therefore that eigenvalue of R must be smaller or equal to
the eigenvalue of u on T . However, it cannot be smaller by the argument from the
previous paragraph. �

In particular, this lemma implies that

λ1(R) = λL
1 (T ).

We can also claim that μ2(T ) equals the smallest Neumann eigenvalue of the rhom-
bus with a doubly symmetric eigenfunction. However, this eigenvalue might not
be second on R, due to the presence of possibly lower antisymmetric modes (corre-
sponding to λM

1 (T ) or λS
1 (T )).

3. Inequalities between the mixed eigenvalues of right triangles

In this section we prove Theorem 1.1. We split the proof into several sections,
each treating one or two inequalities. Each section introduces a different technique
of proving eigenvalue bounds.

Before we proceed we wish to make a few remarks.

Remark 3.1. All eigenvalues of the right isosceles triangle can be explicitly cal-
culated using the eigenfunctions of the square. Obviously S = M in this case,
hence some eigenvalue inequalities from Theorem 1.1 become obvious equalities.
Furthermore μ2 = λL

1 , as can be seen by taking two orthogonal second Neumann
eigenfunctions of the unit square with the diagonal nodal lines. One corresponds
to μ2 on the right triangle, the other to λL

1 .

Remark 3.2. Similarly, some of the mixed eigenvalues of the half-of-equilateral
triangle can be calculated explicitly using the eigenfunctions of the equilateral tri-
angle. In particular λM

1 = μ2, since the corresponding equilateral triangle has
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B

1

D

A = (0, sinα)

E = (0, 0)
C = (cosα, 0)

β

α

Figure 1. The obtuse isosceles triangle O(β) = ABC and the
acute isosceles triangle A(α) = ADC.

double second Neumann eigenvalue. On the other hand, any mixed case that leads
to a mixed case on the equilateral triangle cannot be explicitly calculated. In
particular, the value of λLS

1 on the half-of-equilateral triangle corresponds to the
equilateral triangle with the Dirichlet condition on two sides. The eigenfunction
is not trigonometric (as all other known cases), and to the best of our knowledge
there is no closed formula for the eigenvalue.

For a thorough overview of the explicitly computable cases and the geometric
properties of the Laplace eigenfunctions we refer the reader to [16] and the references
therein.

Remark 3.3. Note that for the trapezium with vertices (−3, 0), (3, 0), (3, 2) and
(0, 2), imposing the Dirichlet condition on the sloped side leads to a smaller eigen-
value than imposing it on the shorter top side. Hence the length of a side of a
polygon is not a deciding factor for mixed eigenvalue comparisons on a general
polygon. This remark is based on numerical computations, which could be made
rigorous using a newly developed method of obtaining validated lower bounds for
Dirichlet [9] and mixed [25] eigenvalues.

3.1. For nonisosceles right triangles λS
1 < λM

1 : The unknown trial function
method for isosceles triangles. Assume α < π/4 and β = π/2− α > π/4. Let
O(β) be an obtuse isosceles triangle with equal sides of length 1 and aperture angle
2β, with vertices A,B,C equal (0, sinα), (± cosα, 0), respectively. Let A(α) be
the acute isosceles triangle with vertices A,D,C equal (0,± sinα), (cosα, 0) (the
aperture angle 2α). See Figure 1 for both triangles. Note that their intersection is
the right triangle T = AEC. We need to show that putting the Dirichlet condition
on AE leads to a smaller eigenvalue of T than putting it on EC. This is equivalent
to proving μ2(O(β)) < μa(A(α)), where μa is the smallest eigenvalue with an an-
tisymmetric mode. Indeed, the second Neumann eigenfunction on obtuse isosceles
triangles is antisymmetric ([20, Theorem 3.2]), and we can try to compare it with
μa, which might not be second on an acute isosceles triangle.
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We need the following three auxiliary results.

Lemma 3.4. For β > π/4

μ2(O(β)) <
π2

sin2(2β)
.

The bound saturates for the right isosceles triangle (β = π/4).

Proof. Note that sin2 α < 1/2. Take the second Neumann eigenfunction for the
right isosceles triangle (0, 1), (±1, 0) and deform it linearly to fit O(β). That is,
take

ϕ = sin(πx/2) cos(πy/2)

and compose it with the linear transformation L(x, y) = (x/ cosα, y/ sinα). The
resulting function can be used as a test function for μ2(O(β))

μ2(O(β)) ≤
´
O(β)

|∇(ϕ ◦ L)|2´
O(β)

|ϕ ◦ L|2 =
π2 + 16 sin2 α− 8

4 sin2 α cos2 α
<

π2

4 sin2 α cos2 α
.

�

Lemma 3.5. Let u be any antisymmetric function on A(α) (so that u(x,−y) =
−u(x, y)). Then

ˆ
A(α)

u2
y >

π2

4 sin2 α

ˆ
A(α)

u2.

Proof. Note that for a fixed x the function u(x, ·) is odd, hence it can be used as a
test function for the second Neumann eigenvalue on any vertical interval contained
in the triangle A(α). Let [−cx, cx] denote the family of vertical cross-sections of
A(α). We get the largest interval [− sinα, sinα] when x = 0. Hence

ˆ
[−cx,cx]

u2
y(x, y) dy ≥ μ2([−cx, cx])

ˆ
[−cx,cx]

u2(x, y) dy

≥ π2

4 sin2 α

ˆ
[−cx,cx]

u2(x, y) dy.

Integrate over x to get the result. �

A special case of [20, Corollary 5.5] can be stated as

Lemma 3.6. Let u be an antisymmetric eigenfunction belonging to μa(A(α)). Then
μ2(O(β)) < μa(A(α)) if

´
A(α)

u2
y´

A(α)
u2
x

> cot2 α.(3)

Due to a rather complicated form of [20, Corollary 5.5] we present a simplified
proof of the above lemma.
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Proof. Note that the linear map T (x, y) = (y cotα, x tanα) transforms O(β) into
A(α). Therefore u◦T can be used as a test function for μ2(O(β)) (it is antisymmetric
hence orthogonal to the constant function). We get

μ2(O(β)) ≤
´
O(β)

|∇(u ◦ T )|2´
O(β)

|u ◦ T |2 =
tan2α

´
A(α)

u2
y + cot2α

´
A(α)

u2
x´

O(β)
u2

<

´
A(α)

u2
x +

´
A(α)

u2
y´

A(α)
u2

= μa(A(α)),

where in the last inequality we used the assumption equation (3). �

Suppose the condition (3) is false (hence we cannot conclude that μ2(O(β)) <
μa(A(α))). That is, ˆ

A(α)

u2
y ≤ cot2 α

ˆ
A(α)

u2
x.

Then

μa(A(α)) =

´
A(α)

u2
x + u2

y´
A(α)

u2
≥

(
1 + tan2 α

)
´
A(α)

u2
y´

A(α)
u2

>
1

cos2 α

π2

4 sin2 α

=
π2

sin2(2α)
> μ2(O(β)),

where the last inequality in the first line follows from Lemma 3.5, while the inequal-
ity in the second line follows from Lemma 3.4.

Therefore, regardless if we can apply Lemma 3.6 or not (condition (3) is true or
false), we get

μ2(O(β)) < μa(A(α)).

Since O(β) is obtuse and isosceles, [20, Theorem 3.2] implies that λS
1 (T ) =

μ2(O(β)). The eigenfunction for λM
1 (T ) extends to an antisymmetric eigenfunction

on A(α), hence μa(A(α)) ≤ λM
1 (T ).

Therefore we proved that λS
1 < λM

1 for any nonisosceles right triangle.

3.2. For right triangles λM
1 < μ2 if and only if α > π/6: Comparison of

Neumann eigenfunctions of an isosceles triangle. In this section we will use
the notation introduced in [20, Section 3]. All isosceles triangles can be split into
equilateral, subequilateral (with the angle between equal sides less than π/3), and
superequilateral (with the angle above π/3).

Note that α = π/6 means that we are working with a half of an equilateral
triangle. The eigenvalues are explicit and λM

1 = μ2.
Mirroring a right triangle along the middle side M gives a superequilateral trian-

gle if and only if α > π/6. Any superequilateral triangle has antisymmetric second
Neumann eigenfunction [20, Theorem 3.2] and simple second eigenvalue [23] equal
to λM

1 (T ). This proves that λM
1 (T ) < μ2(T ).

At the same time any subequilateral triangle has symmetric second eigenfunction
[20, Theorem 3.1], with simple eigenvalue [23] equal to μ2(T ). Hence λM

1 > μ2(T )
if α > π/6.
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3.3. For right triangles μ2 < λL
1 < λMS

1 : Variational approach and domain
monotonicity. Assume that the right triangle T has vertices (0, 0), (1, 0) and
(0, b). We can use four such right triangles to build a rhombus R. Then λL

1 = λ1(R),
since reflected eigenfunction for λL

1 is nonnegative and satisfies Dirichlet boundary
condition on R (see Lemma 2.2). Hooker and Protter [17] proved the following
lower bound for the ground state of rhombi:

λL
1 = λ1(R) ≥ π2(1 + b)2

4b2
.(4)

We need to prove an upper bound for μ2 that is smaller than this lower bound.
Consider two eigenfunctions of the right isosceles triangle with vertices (0, 0),

(1, 0) and (0, 1)

ϕ1(x, y) = cos(πy)− cos(πx),

ϕ2(x, y) = cos(πy) cos(πx).

The first one belongs to μ2 and is antisymmetric, the second belongs to μ3 and
is symmetric. In fact all we need is that these functions integrate to 0 over the
right isosceles triangle. Consider a linear combination of the linearly deformed
eigenfunctions

f(x, y) = ϕ1(x, y/b)− (1− b)ϕ2(x, y/b),

where 0 < b < 1. This function integrates to 0 over the right triangle T , hence it
can be used as a test function for μ2 in (2). As a result we get the following upper
bound:

μ2 ≤ 3π2((b− 1)2 + 2)(b2 + 1)− 64(b− 1)2(b+ 1)

3b2((b− 1)2 + 4)
.(5)

Note that when b = 1 bounds (4) and (5) reduce to the same value. In fact λL
1 = μ2

in this case (the right isosceles triangle).
Moreover

3π2((b− 1)2 + 2)(b2 + 1)− 64(b− 1)2(b+ 1)

3b2((b− 1)2 + 4)
− π2(1 + b)2

4b2

=
(b− 1)2

12b2((b− 1)2 + 4)
(9π2b2 − (256 + 6π2)b+ 21π2 − 256),

and the quadratic expression in b is negative for b ∈ (0, 1). Therefore μ2 < λL
1 .

For right triangles, λL
1 is the same as λ1 for a rhombus built from four triangles,

while λMS
1 is the same as λ1 of a kite built from two right triangles. The sharpest

angle of the kite is the same as the acute angle of the rhombus. We can put the kite
inside of the rhombus by putting the vertex of the sharpest angle at the vertex of
the rhombus. Therefore λL

1 < λMS
1 by domain monotonicity (take the eigenfunction

of the kite, extend with 0, and use as a trial function on the rhombus).

3.4. For arbitrary triangle min{λS
1 , λ

M
1 , λL

1 } < μ2 ≤ λMS
1 : Nodal line con-

siderations and eigenvalue comparisons. To get a lower bound for μ2 we will
define a trial function for a mixed eigenvalue problem based on the Neumann eigen-
function, without knowing its exact form. Note that the eigenfunction of μ2 has
exactly two nodal domains, by Courant’s nodal domains theorem ([10, Sec. V.5,
VI.6]) and orthogonality to the first constant eigenfunction. Hence the closure of
at least one of these nodal domains must have empty intersection with the interior
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Figure 2. The acute isosceles triangle (thick line) and the obtuse
isosceles triangle (thin line) generated by the same right triangle
(their intersection). We show the two possible cases of the con-
tinuous Steiner symmetrization based on the shape of the acute
isosceles triangle: subequilateral on the left, superequilateral on
the right.

of one of the sides (nodal line might end in a vertex, but the eigenfunction must
have a fixed sign on at least one side). Let us call this side D and consider λD

1 .
Let u be the eigenfunction of μ2 restricted to the nodal domain not intersecting
D. Extend u with 0 to the whole triangle T . We get a valid trial function for λD

1 .
Hence min{λS

1 , λ
M
1 , λL

1 } ≤ λD
1 < μ2.

Note that we already proved that for right triangles λS
1 < λM

1 , μ2 < λL
1 , and

λM
1 < μ2 if and only if smallest angle α > π/6. Hence for right triangles the

minimum can be replaced by λS
1 , or even λM

1 if α > π/6.
Note also that the result of this section generalizes to arbitrary polygons.

Lemma 3.7. The smallest nonzero Neumann eigenvalue on a polygon with 2n+1
or 2n+ 2 sides is bounded below by the minimum of all mixed Dirichlet-Neumann
eigenvalues with Dirichlet condition applied to at least n consecutive sides.

Furthermore, for arbitrary domain, the Neumann eigenvalue is bounded below
by the infimum over all mixed eigenvalue problems with half of the boundary length
having Dirichlet condition applied to it.

As in the previous section, λMS
1 equals λ1 of a kite built from two right trian-

gles. The Neumann eigenfunction for μ2 extended to the kite gives a symmetric
eigenfunction of that kite. Given that μ2 and μ3 of the kite together can have at
most one antisymmetric mode (see [32, Lemma 2.1]), we conclude that μ2 of the
triangle is no larger than μ3 of the kite. Levine and Weinberger [22] proved that
λ1 ≥ μ3 for any convex polygon, including kites, giving us the required inequality.

3.5. For any triangle λLS
1 < λLM

1 : Symmetrization of isosceles triangles.
To prove this inequality we will use a symmetrization technique called the con-
tinuous Steiner symmetrization, introduced by Pólya and Szegö [29, Note B], and
studied by Solynin [33, 35] and Brock [5]. The author also used this technique for
bounding Dirichlet eigenvalues of triangles in [31]. See Section 3.2 in the last refer-
ence for a detailed explanation. The most important feature of the transformation
is that if one can map one domain to another using that transformation, then the
latter has smaller Dirichlet eigenvalue.
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Note that mirroring a right triangle along the middle side shows that λLS
1 of the

triangle equals λ1 of an acute isosceles triangle. Similarly, λLM
1 equals λ1 for an ob-

tuse isosceles triangle. We need to show that the acute isosceles triangle has smaller
Dirichlet eigenvalue. Figure 2 shows both isosceles triangles. Position the isosceles
triangles as on the figure, and perform the continuous Steiner symmetrization with
respect to the line perpendicular to the common side.

If the acute isosceles triangle is subequilateral (vertical side is the shortest, the
left picture on Figure 2), then before we fully symmetrize the obtuse triangle, we
will find the acute one. The arrow on the figure shows how far we should continu-
ously symmetrize. Therefore the acute isosceles triangle has smaller eigenvalue.

If the acute isosceles triangle is superequilateral (vertical side is the longest,
the right picture on Figure 2), then we first reflect the acute triangle across the
symmetrization line, then perform continuous Steiner symmetrization. Again, we
get that the acute isosceles triangle has smaller eigenvalue.

Note that this proof seems similar to Section 3.1. However, we can use sym-
metrization technique due to enough Dirichlet boundary, while in the other section
we had to use a less powerful, but more broadly applicable, the unknown trial
function method.

3.6. For arbitrary triangles λMS
1 < λLS

1 < λLM
1 : Polarization with mixed

boundary conditions. For this inequality we use another symmetrization tech-
nique called the polarization. It was used by Dubinin [13], Brock and Solynin
[6, 7, 34, 35], Draghici [12], and the author [31] to study various aspects of spectral
and potential theory of the Laplacian. As with other kinds of symmetrization, if
one can map a domain to some other domain, then the latter has smaller eigenvalue.

Polarization involves a construction of a test function for the lowest Dirichlet
eigenvalue of the transformed domain from the nonnegative eigenfunction of the
original domain. We choose to deemphasize the geometric transformation involved,
and focus on the transplanted eigenfunction. In fact we transform a triangle into
itself, but with changed boundary conditions.

Note that unlike in other applications of polarization mentioned above, we ap-
ply it to mixed boundary conditions. We showed in Lemma 2.1 that the lowest
mixed eigenvalue is simple and has a nonnegative eigenfunction. We will use this
eigenfunction to create an eigenfunction on a transformed domain.

Let T be a triangle. We apply the Dirichlet conditions on two sides. Without loss
of generality let us assume we do this on L and S (see the left picture on Figure 3).
Let the eigenfunction for λLS

1 equal u, v and w on the parts of the domain shown on
the figure. Let ū and v̄ be the symmetric extensions of u and v along the bisector
of their common angle (the dotted line). We rearrange the parts to fit the dashed
triangle, as on the right picture of the same figure.

We need to check that the rearranged trial function is continuous on the right
triangle, and it satisfied the Dirichlet conditions on correct sides. It is crucial in
this step that u snd v are nonnegative.

On the dotted line ū = u = v = v̄, due to continuity of the original eigenfunction.
On the dashed line max(ū, v̄) = v̄, since u satisfies the Dirichlet condition there.
Hence the test function is continuous on the dashed line due to continuity of the
original eigenfunction on the interface of v and w.

On the long sloped side of the triangle min(ū, v̄) = v = 0. On the part of the
short sloped side to the right of the dashed line we have w = 0. Finally, the part
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0

A

B

w

v

u
w

min(ū, v̄)

max(ū, v̄)

Figure 3. A triangle with the Dirichlet conditions on two sides
(OA and AB), and the same triangle reflected along the bisector
of the angle AOB (with the Dirichlet conditions on solid lines).
The eigenfunction from the left picture can be rearranged into a
test function on the right picture, preserving boundary conditions,
as long as |OB| < |OA|.

to the left satisfies min(ū, v̄) = u = 0. Therefore the trial function satisfied the
Dirichlet boundary condition on the middle and short sides of the right triangle.

We polarized the left triangle into the right triangle (same shape), but the Dirich-
let conditions moved from LS to MS, as we needed. In fact there is an additional
part of the third side with the Dirichlet condition applied, ensuring strict inequality
in our result.

The only assumptions we needed in the construction is that the |OB| > |OA|
and the Dirichlet condition on AB. The same conditions can be enforced in the
comparison of λLM

1 and λLS
1 .

4. Proof of Corollary 1.3

Four copies of the same right triangle can be used to build a rhombus. Let R
denote the rhombus, and T the right triangle that can be used to build R (see
Figure 4). The order of eigenfunctions that is claimed in the theorem follows from
the order of the eigenvalues for the triangle, Theorem 1.1. We only need to show
that there are no other eigenfunctions intertwined with the ones listed. All eigen-
functions can be taken symmetric or antisymmetric with respect to each diagonal.

By [32, Lemma 2.1], the eigenspace S of μ2(R) and μ3(R) can contain at most
one eigenfuncion antisymmetric with respect to a given diagonal. Therefore if there
are more than two eigenfunctions in S, the extra ones must be doubly symmetric.
But the lowest doubly symmetric mode belongs to μ2(T ) and it is larger than
λM
1 and λS

1 (these two eigenvalues generate antisymmetric eigenfunctions on R).
Therefore μ2(R) and μ3(R) are simple.

Suppose an antisymmetric mode belongs to μ4(R). Then it belongs to one of the
following eigenvalues on T : λMS

1 , λS
k or λM

k with k ≥ 2. But these are larger than
μ2(T ). Hence μ4(R) consists of only doubly symmetric modes. On the other hand
μ2(T ) is simple, hence μ4(R) is also simple. Finally, λ1(R) = λL

1 > μ2(T ) = μ4(R).

Remark 4.1. If 2α = π/3, then the rhombus has antisymmetric μ2. But then there
is a double eigenvalue μ3 which equals to μ2 for the equilateral triangle. Hence
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μ2(R) = λS
1 (T ) μ3(R) = λM

1 (T ) μ4(R) = μ2(T ) λ2(R) = λLS
1 (T )

Figure 4. The Neumann eigenfunctions for nearly square rhombi
(solid lines - antisymmetry/nodal line, dashed lines - symmetry).
Note that μ2, μ3 and λ2 correspond to the mixed eigenvalues on
the right triangle, while μ4 corresponds to the Neumann mode on
the same triangle (the position of the nodal arcs for μ4 is based on
numerical computations).

the above theorem fails for α ≤ π/6. When α < π/6, the argument involving
subequilateral triangles shows that μ3 is doubly symmetric. When α is very small
the mode antisymmetric with respect to the long diagonal may have arbitrarily
high index.

Remark 4.2. Numerical results suggest that the eigenfunction for μ5 is either doubly
antisymmetric for nearly square rhombi (same as λMS

1 ), or antisymmetric along
the short diagonal with one more nodal line in each half (same as λS

2 ). The second
doubly symmetric mode is always larger than the latter, but can be smaller than
the former. The eigenfunction for λ3 is either antisymmetric with respect to the
long diagonal, or doubly symmetric. The numerical experiments suggest that the
first case holds.

Remark 4.3. Pütter [30] showed that the nodal line for the second Neumann eigen-
function for certain doubly symmetric domains is on the shorter axis of symmetry.
However, rhombi do not satisfy the conditions required for these domains.
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an optimal Poincaré inequality, J. Differential Equations 249 (2010), no. 1, 118–135, DOI
10.1016/j.jde.2010.02.020. MR2644129 (2011f:35238)

[21] Richard Snyder Laugesen and Bart�lomiej Andrzej Siudeja, Dirichlet eigenvalue sums on
triangles are minimal for equilaterals, Comm. Anal. Geom. 19 (2011), no. 5, 855–885, DOI
10.4310/CAG.2011.v19.n5.a2. MR2886710

[22] Howard A. Levine and Hans F. Weinberger, Inequalities between Dirichlet and Neumann
eigenvalues, Arch. Rational Mech. Anal. 94 (1986), no. 3, 193–208, DOI 10.1007/BF00279862.
MR846060 (87k:35186)

[23] Yasuhito Miyamoto, A planar convex domain with many isolated “hot spots” on the bound-
ary, Jpn. J. Ind. Appl. Math. 30 (2013), no. 1, 145–164, DOI 10.1007/s13160-012-0091-z.
MR3022811

[24] Yasuhito Miyamoto, The “hot spots” conjecture for a certain class of planar convex do-
mains, J. Math. Phys. 50 (2009), no. 10, 103530, 7, DOI 10.1063/1.3251335. MR2572703
(2010j:35088)

[25] N. Nigam, B. Siudeja and B. Young, Nearly radial Neumann eigenfunctions on symmetric
domains, ArXiv:1508.07019.

[26] Carlo Nitsch, On the first Dirichlet Laplacian eigenvalue of regular polygons, Kodai Math.
J. 37 (2014), no. 3, 595–607, DOI 10.2996/kmj/1414674611. MR3273886

[27] Katharine A. Ott and Russell M. Brown, The mixed problem for the Laplacian in Lips-
chitz domains, Potential Anal. 38 (2013), no. 4, 1333–1364, DOI 10.1007/s11118-012-9317-6.
MR3042705

[28] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal.
4 (1955), 517–529. MR0070834 (17,42a)

[29] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Math-
ematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR0043486

[30] Rolf Pütter, On the nodal lines of second eigenfunctions of the free membrane problem, Appl.
Anal. 42 (1991), no. 3-4, 199–207, DOI 10.1080/00036819108840041. MR1124959 (92g:35156)

http://www.ams.org/mathscinet-getitem?mr=1284808
http://www.ams.org/mathscinet-getitem?mr=1284808
http://www.ams.org/mathscinet-getitem?mr=3246802
http://www.ams.org/mathscinet-getitem?mr=0065391
http://www.ams.org/mathscinet-getitem?mr=0065391
http://www.ams.org/mathscinet-getitem?mr=1492097
http://www.ams.org/mathscinet-getitem?mr=1492097
http://www.ams.org/mathscinet-getitem?mr=2705198
http://www.ams.org/mathscinet-getitem?mr=1223435
http://www.ams.org/mathscinet-getitem?mr=1223435
http://www.ams.org/mathscinet-getitem?mr=2068346
http://www.ams.org/mathscinet-getitem?mr=2068346
http://www.ams.org/mathscinet-getitem?mr=1143438
http://www.ams.org/mathscinet-getitem?mr=1143438
http://www.ams.org/mathscinet-getitem?mr=3124880
http://www.ams.org/mathscinet-getitem?mr=0127610
http://www.ams.org/mathscinet-getitem?mr=0127610
http://www.ams.org/mathscinet-getitem?mr=1775736
http://www.ams.org/mathscinet-getitem?mr=1775736
http://www.ams.org/mathscinet-getitem?mr=2644129
http://www.ams.org/mathscinet-getitem?mr=2644129
http://www.ams.org/mathscinet-getitem?mr=2886710
http://www.ams.org/mathscinet-getitem?mr=846060
http://www.ams.org/mathscinet-getitem?mr=846060
http://www.ams.org/mathscinet-getitem?mr=3022811
http://www.ams.org/mathscinet-getitem?mr=2572703
http://www.ams.org/mathscinet-getitem?mr=2572703
http://www.ams.org/mathscinet-getitem?mr=3273886
http://www.ams.org/mathscinet-getitem?mr=3042705
http://www.ams.org/mathscinet-getitem?mr=0070834
http://www.ams.org/mathscinet-getitem?mr=0070834
http://www.ams.org/mathscinet-getitem?mr=0043486
http://www.ams.org/mathscinet-getitem?mr=1124959
http://www.ams.org/mathscinet-getitem?mr=1124959


ON MIXED DIRICHLET-NEUMANN EIGENVALUES OF TRIANGLES 2493

[31] Bart�lomiej Siudeja, Isoperimetric inequalities for eigenvalues of triangles, Indiana Univ.
Math. J. 59 (2010), no. 3, 1097–1120, DOI 10.1512/iumj.2010.59.3744. MR2779073
(2011m:35254)

[32] Bart�lomiej Siudeja, Hot spots conjecture for a class of acute triangles, Math. Z. 280 (2015),
no. 3-4, 783–806, DOI 10.1007/s00209-015-1448-1. MR3369351

[33] A. Yu. Solynin, Continuous symmetrization of sets (Russian), Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) 185 (1990), no. Anal. Teor. Chisel i Teor. Funktsii. 10,

125–139, 186, DOI 10.1007/BF01374083; English transl., J. Soviet Math. 59 (1992), no. 6,
1214–1221. MR1097593 (92k:28012)

[34] A. Yu. Solynin, Polarization and functional inequalities (Russian, with Russian summary),
Algebra i Analiz 8 (1996), no. 6, 148–185; English transl., St. Petersburg Math. J. 8 (1997),
no. 6, 1015–1038. MR1458141 (98e:30001a)

[35] A. Yu. Solynin, Continuous symmetrization via polarization, Algebra i Analiz 24 (2012),
no. 1, 157–222, DOI 10.1090/S1061-0022-2012-01234-3; English transl., St. Petersburg Math.
J. 24 (2013), no. 1, 117–166. MR3013297

[36] S. Zaremba, Sur un probleme toujours possible comprenant, a titre de cas particuliers, le
probleme de Dirichlet et celui de Neumann, J. math. pures et appl. 6 (1927), pp. 127–163.

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

E-mail address: siudeja@uoregon.edu

http://www.ams.org/mathscinet-getitem?mr=2779073
http://www.ams.org/mathscinet-getitem?mr=2779073
http://www.ams.org/mathscinet-getitem?mr=3369351
http://www.ams.org/mathscinet-getitem?mr=1097593
http://www.ams.org/mathscinet-getitem?mr=1097593
http://www.ams.org/mathscinet-getitem?mr=1458141
http://www.ams.org/mathscinet-getitem?mr=1458141
http://www.ams.org/mathscinet-getitem?mr=3013297

	1. Introduction
	2. Variational approach and auxiliary results
	3. Inequalities between the mixed eigenvalues of right triangles
	3.1. For nonisosceles right triangles 𝜆₁^{𝑆}<𝜆₁^{𝑀}: The unknown trial function method for isosceles triangles
	3.2. For right triangles 𝜆₁^{𝑀}<𝜇₂ if and only if 𝛼>𝜋/6: Comparison of Neumann eigenfunctions of an isosceles triangle
	3.3. For right triangles 𝜇₂<𝜆₁^{𝐿}<𝜆₁^{𝑀𝑆}: Variational approach and domain monotonicity
	3.4. For arbitrary triangle min{𝜆₁^{𝑆},𝜆₁^{𝑀},𝜆₁^{𝐿}}<𝜇₂\le𝜆₁^{𝑀𝑆}: Nodal line considerations and eigenvalue comparisons
	3.5. For any triangle 𝜆₁^{𝐿𝑆}<𝜆₁^{𝐿𝑀}: Symmetrization of isosceles triangles
	3.6. For arbitrary triangles 𝜆₁^{𝑀𝑆}<𝜆₁^{𝐿𝑆}<𝜆₁^{𝐿𝑀}: Polarization with mixed boundary conditions

	4. Proof of \autoref{cor:rhombus}
	References

