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CATALYSIS IN THE TRACE CLASS

AND WEAK TRACE CLASS IDEALS

GUILLAUME AUBRUN, FEDOR SUKOCHEV, AND DMITRIY ZANIN

(Communicated by Pamela B. Gorkin)

Abstract. Given operators A,B in some ideal I in the algebra L(H) of all
bounded operators on a separable Hilbert space H, can we give conditions
guaranteeing the existence of a trace-class operator C such that B ⊗ C is
submajorized (in the sense of Hardy–Littlewood) by A⊗C? In the case when
I = L1, a necessary and almost sufficient condition is that the inequalities
Tr(Bp) ≤ Tr(Ap) hold for every p ∈ [1,∞]. We show that the analogous
statement fails for I = L1,∞ by connecting it with the study of Dixmier
traces.

1. Introduction

Let H be an infinite-dimensional separable Hilbert space, L(H) be the algebra
of all bounded operators on H and C0 = C0(H) the set of compact operators.

Given A ∈ C0, we denote by μ(A) := {μ(k,A)}k≥0 the sequence of singular values
of the operator A (that is, eigenvalues of the operator |A|) arranged in decreasing
order and taken with multiplicities (if any). We say that B ∈ C0 is submajorized
by A ∈ C0 in the sense of Hardy–Littlewood (written B ≺≺ A) if for every integer
n

n∑
k=0

μ(k,B) ≤
n∑

k=0

μ(k,A).

If A,B ∈ C0 are such that B ≺≺ A, then B ⊗ C ≺≺ A ⊗ C for every C ∈
C0.1 The converse does not hold, even in the finite-dimensional setting: if A,B,C
are such that μ(A) = (0.5, 0.25, 0.25, 0, · · · ), μ(B) = (0.4, 0.4, 0.1, 0.1, 0, · · · ) and
μ(C) = (0.6, 0.4, 0, · · · ), one checks easily that B ⊗ C ≺≺ A ⊗ C while B is not
submajorized by A. This example appears in [7] and is related to the phenomenon
of catalysis in quantum information theory (the operator C being called a catalyst).
This corresponds to the situation where the transformation of some quantum state
(in that case, B) into another quantum state (in that case, A) is only possible in
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1Suppose first that C ≥ 0 has finite rank. That is, C =

∑n−1
k=0 μ(k,C)pk, where pk, 0 ≤

k < n, are pairwise orthogonal rank one projections. Set Ak = A ⊗ μ(k, C)pk and Bk = B ⊗
μ(k,C)pk. It is immediate that Bk ≺≺ Ak for 0 ≤ k < n. It follows from Lemma 2.3 in [4] that
∑n−1

k=0 Bk ≺≺
∑n−1

k=0 Ak or, equivalently, B ⊗ C ≺≺ A ⊗ C. For an arbitrary C, the assertion

follows by approximation.
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the presence of an extra quantum state (in that case, C), although the latter is not
consumed in the process. It is argued in [7] that this phenomenon can be used to
improve the efficiency of entanglement concentration procedures.

In the following we restrict ourselves to A,B being positive elements in
⋂

p>1 Lp

(Lp denoting the Schatten–von Neumann ideal) and compare the following state-
ments:

(i) There exists a nonzero C ∈ L1 such that B ⊗ C ≺≺ A⊗ C.
(ii) For every p > 1, we have Tr(Bp) ≤ Tr(Ap).

One checks that (i) implies (ii). This follows from the monotonicity of A �→
Tr(Ap) with respect to submajorization and from the formula

Tr(S ⊗ T ) = Tr(S) · Tr(T ), S, T ∈ L1.

There is some hope to reverse the implication (i) ⇒ (ii) if we allow closure of the
set

{B : ∃C ∈ L1 such that B ⊗ C ≺≺ A⊗ C}
with respect to some topology (for the finite-dimensional case, see [1, 9, 15]).

To explain why some closure is needed, we give an example of a pair A,B of
positive operators satisfying (ii) but not (i). Consider positive operators2 with
μ(A) 
= μ(B) and such that Tr(Bp) ≤ Tr(Ap) for p ∈ (1,∞), while Tr(Bp0) =
Tr(Ap0) for some p0 ∈ (1,∞) (such an example exists among finite rank operators).
Note that the norm in Lp0

is strictly monotone with respect to submajorization
(see Proposition 2.1 in [3]). That is, if K ∈ Lp0

(H) and if L ≺≺ K, then either
μ(L) = μ(K) or ‖L‖p0

< ‖K‖p0
. Suppose that (i) holds, i.e. that B ⊗ C ≺≺

A ⊗ C for some nonzero C ∈ L1 (that is, no closure is taken). We then have
Tr((B⊗C)p0) = Tr((A⊗C)p0) and, by strict monotonicity, μ(k,B⊗C) = μ(k,A⊗C)
for all k ≥ 0. Now, taking into account that the sequences μ(B ⊗C) and μ(A⊗C)
coincide with decreasing rearrangements of sequences μ(B)⊗μ(C) and μ(A)⊗μ(C)
respectively, we infer that μ(A) = μ(B).

As we shall see, the choice of the topology plays a crucial role. Prior to stating
the precise question, we recall a few definitions and relevant facts.

There is a remarkable correspondence between sequence spaces and two-sided
ideals in L(H) due to J.W. Calkin [2]. Recall that a linear subspace J in L(H) is
a two-sided ideal if X ∈ J and Y ∈ L(H) imply Y X,XY ∈ J . Every nontrivial
ideal necessarily consists of compact operators. A Calkin space J is a subspace of
c0 (the space of all vanishing sequences) such that x ∈ J and μ(y) ≤ μ(x) imply
y ∈ J , where μ(x) is the decreasing rearrangement of the sequence |x|. The Calkin
correspondence may be explained as follows. If J is a Calkin space, then associate
to it the subset J in L(H),

J := {X ∈ C0 : μ(X) ∈ J}.
Conversely, if J is a two-sided ideal, then associate to it the sequence space

J := {x ∈ c0 : μ(x) = μ(X) for some X ∈ J }.
For the proof of the following theorem we refer to Calkin’s original paper, [2], and
to B. Simon’s book, [13, Theorem 2.5].

2Here is an example of such a couple. Let p0 be a rank 4 projection and let p1 be a rank 1

projection orthogonal to p0. Set A = 2−
1
2 p0 + 2

1
2 p1 and B = p0. It is immediate that ‖A‖pp =

22−
p
2 +2

p
2 and ‖B‖pp = 4 for every p > 0. Thus, ‖B‖p ≤ ‖A‖p for every p > 0 and ‖B‖2 = ‖A‖2.
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Theorem 1 (Calkin correspondence). The correspondence J ↔ J is an inclusion
lattice preserving bijection between Calkin spaces and two-sided ideals in L(H).

In the recent papers [8], [14] this correspondence has been specialised to quasi-
normed symmetrically-normed ideals and quasi-normed symmetric sequence spaces
[10]. We use the notation ‖ · ‖∞ to denote the uniform norm on L(H).

Definition 2. (i) An ideal E in L(H) is said to be symmetrically (quasi)-normed
if it is equipped with a Banach (quasi)-norm ‖ · ‖E such that

‖XY ‖E , ‖Y X‖E ≤ ‖X‖E‖Y ‖∞, X ∈ E , Y ∈ L(H).

(ii) A Calkin space E is a symmetric sequence space if it is equipped with a Banach
(quasi)-norm ‖ · ‖E such that ‖y‖E ≤ ‖x‖E for every x ∈ E and y ∈ c0 such
that μ(y) ≤ μ(x).

For convenience of the reader, we recall that a map ‖ · ‖ from a linear space X
to R is a quasi-norm if for all x, y ∈ X and scalars α the following properties hold:

(i) ‖x‖ � 0, and ‖x‖ = 0 ⇔ x = 0;
(ii) ‖αx‖ = |α|‖x‖;
(iii) ‖x+ y‖ � C(‖x‖+ ‖y‖) for some C � 1.

The couple (X, ‖ · ‖) is a quasi-normed space and the least constant C satisfying
inequality (iii) above is called the modulus of concavity of the quasi-norm ‖ · ‖ and
denoted by CX . A complete quasi-normed space is called quasi-Banach.

It easily follows from Definition 2 that if (E , ‖ · ‖E) is a quasi-Banach ideal and
X ∈ E and Y ∈ L(H) are such that μ(Y ) ≤ μ(X), then Y ∈ E and ‖Y ‖E ≤ ‖X‖E .
In particular, it is easy to see that if E is a Calkin space corresponding to E , then
setting ‖x‖E := ‖X‖E (where X ∈ E is such that μ(x) = μ(X)) we obtain that
(E, ‖ · ‖E) is a quasi-Banach symmetric sequence space. The converse implication
is much harder and follows from Theorem 8.11 in [8] and Theorem 4 in [14].

With these preliminaries out of the way, we are now in a position to formulate
the main question.

Question 3. Let I be a (quasi-)Banach ideal such that I ⊂
⋂

p>1 Lp. Let 0 ≤ A ∈
I. Consider the sets

PM(A, I) =
{
0 ≤ B ∈ I : Tr(Bp) ≤ Tr(Ap) ∀p > 1

}
,

Catal(A, I) =
{
0 ≤ B ∈ I : ∃0 ≤ C ∈ L1 : C 
= 0, B ⊗ C ≺≺ A⊗ C

}
.

Let also Catal(A, I) denote the closure of Catal(A, I) with respect to the quasi-
norm of I. Is it true that PM(A, I) = Catal(A, I)?

Note that PM(A, I) is a closed subset in I. Indeed, let Bn ∈ PM(A, I) and
let Bn → B in I as n → ∞. Observe that it follows from Definition 2 that I is
continuously embedded3 into L(H), and therefore it follows from the Closed Graph
Theorem that for every fixed p > 1, the identity embedding I ⊂ Lp is continuous;

3We have to show that ‖A‖∞ ≤ const·‖A‖I for every A ∈ I. Without loss of generality, A ≥ 0.
Set p = EA{‖A‖∞} (the spectral projection corresponding to the one-point set {‖A‖∞} is nonzero
since A is compact) and let q ≤ p be a rank one projection. Clearly, qA = qpA = q · ‖A‖∞p =
‖A‖∞q and, similarly, Aq = ‖A‖∞q. Thus, A commutes with q and A ≥ qAq = ‖A‖∞q. Therefore,
‖A‖I ≥ ‖A‖∞‖q‖I . Since all rank one projections are unitarily equivalent, it follows that they
have the same norm. This proves the assertion.
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in particular, there exists a constant c(p, I) such that ‖C‖p ≤ c(p, I)‖C‖I , C ∈ I.
Thus, ∣∣∣‖Bn‖p − ‖B‖p

∣∣∣ ≤ ‖B −Bn‖p ≤ c(p, I)‖B −Bn‖I → 0.

Hence,
Tr(Bp) = lim

n→∞
Tr(Bp

n) ≤ Tr(Ap), p > 1.

We also have that Catal(A, I) ⊂ PM(A, I). Indeed, if B ⊗ C ≺≺ A⊗ C, then

Tr(Bp) =
Tr((B ⊗ C)p)

Tr(Cp)
≤ Tr((A⊗ C)p)

Tr(Cp)
= Tr(Ap), p > 1.

Since PM(A, I) is closed, it follows that the inclusion Catal(A, I) ⊂ PM(A, I)
always holds.

In this paper, we show that the answer to Question 3 is positive when I = L1

and negative when I = L1,∞. Recall that L1,∞ is the principal ideal generated by
the element A0 = diag({1, 12 ,

1
3 , · · · }). Equivalently,

L1,∞ = {A ∈ C0 : sup
k≥0

(k + 1)μ(k,A) < +∞}.

It becomes a quasi-Banach space (see e.g. [8, 14]) when equipped with the quasi-
norm

‖A‖1,∞ = sup
k≥0

(k + 1)μ(k,A), A ∈ L1,∞.

Here are our main results. We leave open the question of giving a complete
description of the set Catal(A,L1,∞).

Theorem 4. For every 0 ≤ A ∈ L1, the sets PM(A,L1) and Catal(A,L1) coincide.

Theorem 5. There exists 0 ≤ A ∈ L1,∞ such that the set PM(A,L1,∞) strictly

contains the set Catal(A,L1,∞).

It is actually simple to deduce Theorem 4 from the finite-dimensional considera-
tions from [1], as we explain in Section 2. This is in sharp contrast with Theorem 5,
whose proof is infinite-dimensional in its nature and uses crucially fine properties of
Dixmier traces, which we introduce in Section 3. The heart of the argument behind
Theorem 5 appears in Section 4, where we relegate some needed computations to
Section 5.

2. The case of L1

We derive Theorem 4 from the following result which appears in [15] (see also
Lemma 2 in [1]).

Lemma 6. Let A,B be positive finite rank operators. Assume that for every 1 ≤
p ≤ +∞, we have the strict inequality ‖B‖p < ‖A‖p. Then there exists a nonzero
finite rank operator C such that B ⊗ C ≺≺ A⊗ C.

Proof of Theorem 4. Let us show the nontrivial inclusion, i.e. that every B ∈
PM(A,L1) belongs to Catal(A,L1).

Let pk, k ≥ 0, be a rank one eigenprojection of the operator A which corresponds
to the eigenvalue μ(k,A). Similarly, let qk, k ≥ 0, be a rank one eigenprojection of
the operator B which corresponds to the eigenvalue μ(k,B). We have

A =
∞∑
k=0

μ(k,A)pk, B =
∞∑
k=0

μ(k,B)qk.
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Without loss of generality, μ(0, A) = 1. It follows that

(1− (1− ε)p)Tr(Ap) ≥ (1− (1− ε)p)μ(0, A)p = 1− (1− ε)p ≥ εp.

The latter readily implies

Tr(Ap)− εp ≥ (1− ε)pTr(Ap), p ≥ 1, ε ∈ (0, 1).

Now, fix ε ∈ (0, 1) and select n such that
∞∑

k=n

μ(k,A) < ε,

∞∑
k=n

μ(k,B) < ε.

Set

An =

n−1∑
k=0

μ(k,A)pk, Bn =

n−1∑
k=0

μ(k,B)qk.

It is clear that

Tr(Ap
n) = Tr(Ap)−

∞∑
k=n

μ(k,A)p ≥ Tr(Ap)− (
∞∑

k=n

μ(k,A))p

> Tr(Ap)− εp ≥ (1− ε)pTr(Ap), p ≥ 1.

Therefore,

(1− ε)pTr(Bp
n) ≤ (1− ε)pTr(Bp) ≤ (1− ε)pTr(Ap) < Tr(Ap

n), p ≥ 1.

Since both An and Bn are finite rank operators, it follows from Lemma 6 and the
first footnote that there exists a finite rank operator Cn such that

(1− ε)Bn ⊗ Cn ≺≺ An ⊗ Cn ≺≺ A⊗ Cn.

In particular, we have that (1−ε)Bn ∈ Catal(A,L1). Observing that ‖B−Bn‖1 ≤ 1,
we further obtain

‖B − (1− ε)Bn‖1 ≤ ε‖B‖1 + (1− ε)‖B −Bn‖1 ≤ ε(‖B‖1 + 1).

Since ε is arbitrarily small, it follows that B ∈ Catal(A,L1). �

3. Dixmier traces

The crucial ingredient in the proof is the notion of a Dixmier trace on L1,∞.
Let �∞ stand for the Banach space of all bounded sequences x = (xn)n≥0 equipped
with the usual norm ‖x‖∞ := supn≥0 |xn|. A generalized limit is any positive linear
functional on �∞ which equals the ordinary limit on the subspace c of all convergent
sequences.

Remark 7. Given a sequence (xn)n≥0 ∈ �∞, there is a generalized limit ω such that
ω((xn)) = lim supn→∞ xn.

Proof. Fix x = (xn) ∈ �∞ and let the sequence (nk)k≥0 be such that limk→∞ xnk
=

lim supn→∞ xn. Consider the set of functionals (ϕnk
)k≥0 on �∞ defined by ϕnk

(yn)
:= ynk

, y = (yn) ∈ �∞, k ≥ 0. The set (ϕnk
)k≥0 belongs to the unit ball B of

the Banach dual �∗∞. The set B is compact in the weak∗ topology σ(�∗∞, �∞), and
therefore the set (ϕnk

)k≥0 possesses a cluster point ω ∈ �∗∞ in that topology. The
fact that ω is a generalized limit on �∞ such that ω((xn)) = lim supn→∞ xn follows
immediately from the definition of the weak∗ topology. �

The Dixmier traces are defined as follows.
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Theorem 8. Let ω be a generalized limit. The mapping Trω : L+
1,∞ → R

+ defined
for 0 ≤ A ∈ L1,∞ by setting

Trω(A) := ω

({
1

log(N + 2)

N∑
k=0

μ(k,A)

}∞

N=0

)

is additive and, therefore, extends to a positive unitarily invariant linear functional
on L1,∞ called a Dixmier trace.

Note that the positivity of generalized limits implies that

(1) |Trω(A)| ≤ ‖A‖1,∞
for every Dixmier trace Trω and A ∈ L1,∞.

Let us comment on how additivity is proved in Theorem 8. This is usually
achieved under the extra assumption that ω is scale invariant (see Theorem 1.3.1 in
[11]), i.e. that ω ◦ σk = ω for all positive integers k, where σk : �∞ → �∞ is defined
as

σk(x1, x2, . . . , xn, . . . ) = (x1, . . . , x1︸ ︷︷ ︸
k times

, x2, . . . , x2︸ ︷︷ ︸
k times

, . . . , xn, . . . , xn︸ ︷︷ ︸
k times

, . . . ).

Under this extra assumption the map Trω is actually additive on the larger ideal
M1,∞ (we refer to [11, Example 1.2.9] for the definition of the latter ideal and to
[11, Section 6.8 ] for historical background). In the form presented here, Theorem
8 follows from Theorem 17 in [12]. For the reader’s convenience we reproduce the
argument here.

Proof of Theorem 8. Given A ∈ L1,∞, consider the sequence (xN (A))∞N=0 defined
by

xN (A) =
1

log(N + 2)

N∑
j=0

μ(j, A).

It is not hard to check that for all positive integers k,

(2) lim
N→∞

xN (A)− xkN (A) = 0.

Let E ⊂ �∞ be the subspace

E = span {σk({xN (A)}) : k ≥ 1, A ∈ L1,∞} .
It follows from (2) that the equation ω ◦ σk(x) = ω(x) is satisfied for x ∈ E. By a
version of the Hahn–Banach theorem (see [6], Theorem 3.3.1), the linear functional
ω|E can be extended to a generalized limit ω′ : �∞ → R which is scale-invariant.
The usual argument ([11], Theorem 1.3.1) implies that Trω′ (which coincides with
Trω on L1,∞) is additive on L1,∞. �

We also need a version of Fubini’s theorem for Dixmier traces.

Theorem 9. For every A ∈ L1,∞ and for every C ∈ L1, we have A ⊗ C ∈ L1,∞
and

(3) ‖A⊗ C‖1,∞ ≤ ‖A‖1,∞‖C‖1.
Moreover, for every Dixmier trace Trω on L1,∞, we have

(4) Trω(A⊗ C) = Trω(A)Tr(C).
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Proof. We may assume ‖A‖1,∞ = 1. Recall that A0 = diag({1, 12 ,
1
3 , · · · }). We

have for all k ≥ 0,

μ(k,A⊗ C) ≤ μ(k,A0 ⊗ C) ≤ 1

k + 1

k∑
j=0

μ(j, C) ≤ ‖C‖1
k + 1

,

where the second inequality follows from Proposition 3.14 in [5]. This proves (3).
Observe that both sides of (4) depend linearly on A and C (thanks to Theorem

8). Thus, we can assume without loss of generality that A,C ≥ 0. When C is a rank
one projection, (4) follows from Theorem 8 since in that case μ(k,A⊗C) = μ(k,A)
for all k ≥ 0. Again appealing to linearity of Dixmier traces, we infer the result for
the finite rank operator C and when A ∈ L1,∞ is arbitrary. Now consider a general
C ∈ L1 and let (Cn) be a sequence of finite rank operators such that ‖C−Cn‖1 → 0.
We have

|Trω(A⊗ Cn)− Trω(A⊗ C)| ≤ ‖A⊗ (C − Cn)‖1,∞ ≤ ‖A‖1,∞‖C − Cn‖1,
and this quantity tends to 0 as n goes to infinity. Consequently,

Trω(A⊗ C) = lim
n→∞

Trω(A⊗ Cn) = lim
n→∞

Trω(A)Tr(Cn) = Trω(A)Tr(C). �

As a corollary, we obtain that Dixmier traces give necessary conditions for catal-
ysis.

Corollary 10. Let 0 ≤ A ∈ L1,∞ and 0 ≤ B ∈ Catal(A,L1,∞). Then for every
Dixmier trace Trω, one has

(5) Trω(B) ≤ Trω(A).

Proof. We know from (1) that Dixmier traces are continuous on L1,∞, and therefore
we may assume that B ∈ Catal(A,L1,∞). By definition of the latter set (see
Question 3), there exists a nonzero positive C in L1 with the property thatB⊗C ≺≺
A⊗C. Combining the definition of Hardy-Littlewood submajorization ≺≺ and the
positivity from the definition of a Dixmier trace Trω (see Theorem 8), we infer
that the inequality Trω(B ⊗ C) ≤ Trω(A ⊗ C) holds for every Dixmier trace Trω.
Inequality (5) now follows from (4) and from the fact that Tr(C) > 0. �

4. The case of L1,∞: The main argument

Here is the main technical result used in the proof of Theorem 5. In the lemma
below, we tacitly identify a sequence in the space �∞ with the corresponding diago-
nal operator. For I ⊂ N, we note by χI the sequence defined by χI(n) = 1 if n ∈ I
and χI(n) = 0 otherwise.

Lemma 11. Let I be the subset of N defined as

I =
⋃
n≥0

[22n, 22n+1).

Consider the operator4

B =
⊕
m∈I

2−mχ[0,2m).

4In the subsequent formulas, the symbol ⊕ stands for the direct sum of operators.
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Then B ∈ L1,∞. Moreover,

(6) lim sup
s→0+

sTr(B1+s) ≤ 5

9 log 2
<

2

3 log 2
≤ lim sup

N→∞

1

logN

N∑
k=0

μ(k,B).

Let us postpone the proof of Lemma 11 and show how it implies the result
stated in Theorem 5. Consider B as in Lemma 11 and fix a number α such that

5
9 log 2 < α < 2

3 log 2 . Recall that A0 = diag({1, 12 ,
1
3 , · · · }). Since

lim
s→0+

sTr((αA0)
1+s) = lim

s→0+
sζ(s)α1+s = α,

it follows from (6) that there exists δ > 0 such that the inequality

(7) Tr(B1+s) ≤ Tr((αA0)
1+s)

holds whenever 0 < s ≤ δ. Define the operator A = αA0 ⊕ ‖B‖1+δp, where p is a
rank one projection. We claim that B ∈ PM(A,L1,∞): indeed, for s > δ we may
write

Tr(B1+s) = Tr
(
(B1+δ)

1+s
1+δ

)
≤

(
Tr(B1+δ)

) 1+s
1+δ = ‖B‖1+s

1+δ ≤ Tr(A1+s),

while for 0 < s ≤ δ the inequality Tr(B1+s) ≤ Tr(A1+s) follows immediately from
(7).

We now assume by contradiction that B belongs to the set Catal(A,L1,∞). We
know from Corollary 10 that Trω(B) ≤ Trω(A) for every Dixmier trace Trω. Ob-
serving that any such trace vanishes on finite rank operators, we see that the value
Trω(A) coincides with Trω(αA0) and hence is equal to α for for every Dixmier trace
Trω (see the definition given in Theorem 8). On the other hand, we may choose a
generalized limit ω such that

Trω(B) = lim sup
N→∞

1

logN

N∑
k=0

μ(k,B)

and obtain from (6) that 2
3 log 2 ≤ α, a contradiction.

We note that the Dixmier trace considered in the proof does not behave in a
monotone way with respect to trace of powers: we have Tr(Bp) ≤ Tr(Ap) for every
p > 1, but Trω(B) > Trω(A).

5. Proof of Lemma 11

Let I and B be as defined in Lemma 11, and denote by EB the spectral measure
of B. First, note that for every integer m,

(8) Tr(EB(2
−m,∞)) ≤

∑
l<m

2l ≤ 2m.

Hence, for every positive integer n, writing 2m ≤ n < 2m+1, we infer

(9) Tr(EB(
1

n
,∞)) ≤ Tr(EB(2

−m−1,∞)) ≤ 2m+1 ≤ 2n.

Recall also (e.g., see [11, Chapter 2, Section 2.3]) that μ(k,B), k ≥ 0, can be
computed via the formula

μ(k,B) = inf{s ≥ 0 : Tr(E|B|(s,∞)) ≤ k}.
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Hence, it follows from (9) that μ(k,B) ≤ 2
k+1 for every k ≥ 0 and, in particular,

B ∈ L1,∞. We now prove the right inequality in (6). For a given n, let N =

Tr(EB(2
−22n+1

,∞)). We know from (8) that N ≤ 22
2n+1

. Therefore,

N−1∑
k=0

μ(k,B) = Tr(BEB(2
−22n+1

,∞)) = card(I ∩ [0, 22n+1]) =
2

3
· 22n+1 − 1

3
.

Hence, for N as above, we have

1

log(N)

N−1∑
k=0

μ(k,B) ≥ 1

log(222n+1)
·
(2
3
· 22n+1 − 1

3

)
=

2

3 log(2)
+ o(1),

as needed.
We now focus on the left inequality in (6) and use the following summation

formula, whose proof we postpone. For a given sequence (xn) ∈ �∞ and for a given
s > 0, we have that

(10)
∞∑

m=0

(
m∑

k=0

k∑
l=0

xl

)
2−ms = (1− 2−s)−2

∞∑
l=0

xl2
−ls.

Note that Tr(B1+s) =
∑

m∈I 2
−ms =

∑
m≥0 χI(m)2−ms (here, χI(0) = 0).

Applying (10) to x = χI , we obtain, for every M > 0,

lim sup
s→0+

s
∑
l≥0

χI(l)2
−ls = lim sup

s→0+
s(1− 2−s)2

∑
m≥0

(

m∑
k=0

k∑
l=0

χI(l))2
−ms

= lim sup
s→0+

s(1− 2−s)2
∑

m≥M

( 1

(m+ 1)2

m∑
k=0

k∑
l=0

χI(l)
)
· (m+ 1)22−ms

≤
(

sup
m≥M

1

(m+ 1)2

m∑
k=0

k∑
l=0

χI(l)
)

·
(
lim sup
s→0+

s(1− 2−s)2
∑

m≥M

(m+ 1)22−ms
)
.

Passing M → ∞, we infer that

lim sup
s→0+

s
∑
l≥0

χI(l)2
−ls ≤ C lim sup

s→0+
s(1− 2−s)2

∑
m≥0

(m+ 1)22−ms,

where

C := lim sup
m→∞

1

(m+ 1)2

m∑
k=0

k∑
l=0

χI(l).

An elementary computation gives

∞∑
m=0

(m+ 1)22−ms =
1 + 2−s

(1− 2−s)3
.

It follows that

lim sup
s→0+

sTr(B1+s) ≤ 2C

log 2
.
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It remains to show that C ≤ 5/18 (we actually show C = 5/18). To that end,
we think of χI as an element of L∞(0,∞) and define z ∈ L∞(0,∞) by setting
z = χ⋃

n∈Z
[22n,22n+1). Observe that χI ≤ z. Therefore,

C ≤ lim sup
t→∞

1

t2

∫ t

0

∫ s

0

z(u) duds.

Since z(4t) = z(t) for every t > 0, applying Fubini’s theorem we have

C ≤ sup
t∈(1,4)

1

t2

∫ t

0

z(u)(t− u) du.

However,

1

t2

∫ t

0

z(u)(t− u) du =

{
1
2 − 2

3t +
2
5t2 , 1 ≤ t ≤ 2,

4
3t −

8
5t2 , 2 ≤ t ≤ 4.

Hence, the latter supremum is, in fact, a maximum which is attained at t = 12
5 and

equal to 5
18 .

Proof of (10). Write

∑
m≥0

(
m∑

k=0

k∑
l=0

xl)2
−ms =

∑
m≥k≥0

(
k∑

l=0

xl)2
−ms =

∞∑
k=0

(
k∑

l=0

xl)
∞∑

m=k

2−ms

= (1− 2−s)−1
∞∑
k=0

(
k∑

l=0

xl)2
−ks = (1− 2−s)−1

∑
k≥l≥0

xl2
−ks

= (1− 2−s)−1
∞∑
l=0

xl

∞∑
k=l

2−ks = (1− 2−s)−2
∞∑
l=0

xl2
−ls. �
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