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(Communicated by Thomas Schlumprecht)

Abstract. Let W , X, Y and Z be Dedekind complete Riesz spaces. For
A ∈ Lr(Y,Z) and B ∈ Lr(W,X) let MA,B be the two-sided multiplication
operator from Lr(X,Y ) into Lr(W, Z) defined by MA,B(T ) = ATB. We show
that for every 0 ≤ A0 ∈ Lr

n(Y,Z), |MA0,B |(T ) = MA0,|B|(T ) holds for all B ∈
Lr(W,X) and all T ∈ Lr

n(X,Y ). Furthermore, if W , X, Y and Z are Dedekind
complete Banach lattices such thatX and Y have order continuous norms, then
|MA,B | = M|A|, |B| for all A ∈ Lr(Y,Z) and all B ∈ Lr(W,X). Our results
generalize the related results of Synnatzschke and Wickstead, respectively.

1. Introduction

For an algebra A an operator of the form T �→
∑n

i=1 AiTBi, where Ai, Bi are
fixed in A, is referred to as an elementary operator on A. If A, B ∈ A, we denote
by MA,B the operator T �→ ATB. The operator MA,B is called a basic elementary
operator or a two-sided multiplication operator. The literature related to (basic)
elementary operators is by now very large, much of it in the setting of C∗-algebras
or in the Banach space setting. In this direction there are many excellent surveys
and expositions. See, e.g., [4–7, 9].

For the study of two-sided multiplication operators in the setting of Riesz spaces
(i.e., vector lattices), we would like to mention the work of Synnatzschke [10]. The
set of all regular operators (order continuous regular operators, resp.) from a Riesz
space X into a Dedekind complete Riesz space Y will be denoted by Lr(X,Y )
(Lr

n(X,Y ), resp.). When Y = R, we write X∼ and X∼
n respectively instead of

Lr(X,R) and Lr
n(X,R). They are likewise Dedekind complete Riesz spaces. Let

W , X, Y and Z be Dedekind complete Riesz spaces. For all A ∈ Lr(Y, Z) and
B ∈ Lr(W, X), MA,B : T ∈ Lr(X, Y ) �→ ATB ∈ Lr(W, Z) is a regular operator,
and hence the modulus |MA,B| of MA,B exists in Lr

(
Lr(X,Y ), Lr(W,Z)

)
. It is

interesting to know about the relationship of |MA,B| with |A| and |B|. Among
other things, Synnatzschke [10, Satz 3.1] proved the following result:

a) If 0 ≤ B0 ∈ Lr(W, X), then |MA,B0
| = M|A|, B0

, MA,B0
∨ MC,B0

= MA∨C,B0

hold for all A, C ∈ Lr(Y, Z).
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b) If 0 ≤ A0 ∈ Lr
n(Y, Z) and Y ∼

n , Z ∼
n are total, then we have |MA0,B |(T ) =

MA0,|B|(T ) and (MA0, B∨MA0, D)(T ) = MA0, B∨D(T ) for all B, D ∈ Lr(W,X) and
all T ∈ Lr

n(X,Y ).
Hereby Y ∼

n is total if Y ∼
n separates the points of Y . Synnatzschke uesd (a) to

establish (b) by taking adjoints of operators. For his purpose, the hypothesis of
both Y ∼

n and Z ∼
n being total is essential.

Recently, Wickstead [11] showed that if E is an atomic Banach lattice with order
continuous norm and A, B ∈ Lr(E), then |MA,B| = M|A|, |B| and ‖MA,B‖r =
‖A‖r‖B‖r. In his proofs he depended heavily upon the ‘atomic’ condition.

In this paper, we generalize the related results of Synnatzschke and Wickstead,
respectively. We remove the condition of order continuous duals being total in [10,
Satz 3.1(b)] and show that for every 0 ≤ A0 ∈ Lr

n(Y, Z), |MA0,B |(T ) = MA0,|B|(T )
holds for all B ∈ Lr(W,X) and all T ∈ Lr

n(X,Y ). Furthermore, if W , X, Y and Z
are Dedekind complete Banach lattices such that X and Y have order continuous
norms (not necessarily atomic), then |MA,B| = M|A|, |B| and ‖MA,B‖r = ‖A‖r‖B‖r
hold for all A ∈ Lr(Y, Z) and all B ∈ Lr(W,X).

Our notions are standard. For the theory of Riesz spaces and regular operators,
we refer the reader to the monographs [2, 8, 12].

2. The modulus of the two-sided multiplication operator

We start with two examples which serve to illustrate that the order continuous
dual X∼

n of a Dedekind complete Riesz space X need not be total. This justifies
our effort to generalize the result of Synnatzschke [10, Satz 3.1 b)].

Example 2.1. (1) Let (Ω, Σ, μ) be a nonatomic finite measure space. Then the
Dedekind complete Riesz space X = Lp(Ω, Σ, μ) (0 < p < 1) satisfies X∼

n = X∼ =
{0}. This result is due to M. M. Day (cf. [3, Theorem 5.24, p. 128]).

(2) Let K be a compact Hausdorff space. It is well known that C(K) is Dedekind
complete if and only if K is Stonian (i.e., extremally disconnected). A Hausdorff
compact Stonian spaceK such that C(K)∼n is total is called hyper-Stonian. Dixmier
gave a characterization of hyper-Stonian spaces: K is hyper-Stonian if and only if
C(K) is isomorphic to a dual Banach lattice (cf. [8, Theorem 2.1.7]). He also gave
an example of a Dedekind complete C(K)-space which is not isomorphic to a dual
space (see, e.g., [1, p. 99, Problems 4.8 and 4.9] for details). That is, such a C(K)
is Dedekind complete, but C(K)∼n is not total.

Proposition 2.2. Let W , X, Y and Z be Riesz spaces with X, Y and Z Dedekind
complete. Let 0 ≤ A0 ∈ Lr

n(Y, Z). Then we have |MA0,B|(T ) = MA0,|B|(T ) and,
equivalently, MA0, B ∨MA0, D(T ) = MA0, B∨D(T ) for all B, D ∈ Lr(W,X) and all
T ∈ Lr

n(X,Y ).

Proof. For B ∈ Lr(W,X) and 0 ≤ T ∈ Lr
n(X,Y ), we have to prove that |MA0,B |(T )

= MA0,|B|(T ). Clearly we have |MA0,B |(T ) ≤ MA0,|B|(T ), since |MA0,B| ≤ MA0,|B|
holds in Lr

(
Lr(X,Y ), Lr(W,Z)

)
. For the reverse inequality, let w ∈ W+. By a

formula for the modulus of regular operators in [2, Theorem 1.21(3)] or [12, Theorem
20.10(i)] we have(

n∑
i=1

|Bwi| : n ∈ N, 0 ≤ wi ∈ W,
∑
i

wi = w

)
↑ |B|w.



TWO-SIDED MULTIPLICATION OPERATORS ON REGULAR OPERATORS 2497

Since A0 and T are both positive order continuous operators, A0T is likewise an
order continuous positive operator from X into Z. It follows that

MA0, |B|(T )(w) = A0T |B|w

= sup

(
n∑

i=1

A0T |Bwi| : n ∈ N, 0 ≤ wi ∈ W,
∑
i

wi = w

)
.

For each 1 ≤ i ≤ n, let Pi be the order projection from X onto the band generated
by (Bwi)

+ in X and let Qi = Pi−I, where I is the identity operator on X. Clearly,

Pi ⊥ Qi, |Pi|+ |Qi| = I, PiBwi = (Bwi)
+, (Pi +Qi)Bwi = |Bwi|,

and

|TPi|+ |TQi| = T.

Therefore, for each i we have

A0T |Bwi| = (A0TPi +A0TQi)Bwi

≤
(
|A0(TPi)B|+ |A0(TQi)B|

)
wi

≤

⎛
⎝sup

{
m∑
j=1

|A0TjB| : m ∈ N, Tj ∈ Lr(X,Y ),
∑
j

|Tj | = T

}⎞
⎠wi

=

⎛
⎝sup

{
m∑
j=1

|MA0, B(Tj)| : m ∈ N, Tj ∈ Lr(X,Y ),
∑
j

|Tj | = T

}⎞
⎠wi

= |MA0,B |(T )(wi).

Hence, from this it follows that

MA0, |B|(T )(w) = sup

(
n∑

i=1

A0T |Bwi| : n ∈ N, 0 ≤ wi ∈ W,
∑
i

wi = w

)

≤ sup

(
n∑

i=1

|MA0,B |(T )(wi) : n ∈ N, 0 ≤ wi ∈ W,
∑
i

wi = w

)

= |MA0,B |(T )(w),

which implies that |MA0,B|(T ) ≤ MA0,|B|(T ) for all B ∈ Lr(W,X) and all 0 ≤ T ∈
Lr
n(X,Y ). �

In general we cannot expect that |MA0,B | = MA0,|B| holds for all B ∈ Lr(W,X).

That is, the linear operator MA0, · : L
r(W,X) → Lr

(
Lr(X,Y ), Lr(W,Z)

)
is not

necessarily a Riesz homomorphism. In the last section we give a counterexample to
illustrate this. However, for Banach lattices with order continuous norms the situa-
tion is quite different. The next result is a consequence of the above proposition and
the earlier result of Synnatzschke [10, Satz 3.1], which generalizes Theorem 3.1 of
Wickstead [11], recently obtained for atomic Banach lattices with order continuous
norms.

Corollary 2.3. Let W , X, Y and Z be Banach lattices such that X, Y have order
continuous norms and Z is Dedekind complete. Then we have |MA,B| = M|A|, |B|
for all A ∈ Lr(Y, Z) and all B ∈ Lr(W,X).
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Proof. Let M : Lr(Y, Z) × Lr(W,X) → Lr
(
Lr(X,Y ), Lr(W,Z)

)
be the bilinear

operator defined via M(A,B) = MA,B. Clearly, M is positive. Since X and Y are
Banach lattices with order continuous norms, we have Lr

n(X, Y ) = Lr(X, Y ) and
Lr
n(Y, Z) = Lr(Y, Z). From Proposition 2.2 above and the result of Synnatzschke

[10, Satz 3.1], it follows that for every 0 ≤ A0 ∈ Lr(Y, Z) and every 0 ≤ B0 ∈
Lr(W,X), M(A0, ·) and M(· , B0) are both Riesz homomorphisms. Hence, for all
A ∈ Lr(Y, Z) and all B ∈ Lr(W,X) we have

|MA,B | = |M(A,B)|
= |M(A+ −A−, B+ −B−)|
= |M(A+, B+)−M(A+, B−)−M(A−, B+) +M(A−, B−)|
= M(A+, B+) +M(A+, B−) +M(A−, B+) +M(A−, B−)

= M(|A|, |B|) = M|A|, |B|.

Here we are using the fact that the terms M(A+, B+), M(A+, B−), M(A−, B+)
and M(A−, B−) are pairwise disjoint. �

Let W and X be Banach lattices with X Dedekind complete. Recall that
Lr(W, X) is a Dedekind complete Banach lattice under the regular norm ‖B‖r :=
‖|B|‖ for every B ∈ Lr(W, X). Note thatMA,B is a regular operator from Lr(X,Y )
into Lr(W,Z). The following result deals with the regular norms of two-sided mul-
tiplication operators. Its proof is based on Corollary 2.3.

Corollary 2.4. If W , X, Y and Z are Banach lattices such that X, Y have order
continuous norms and Z is Dedekind complete, then ‖MA,B‖r = ‖A‖r‖B‖r for all
A ∈ Lr(Y, Z) and all B ∈ Lr(W,X).

Proof. We first assume that 0 ≤ A ∈ Lr(Y, Z) and 0 ≤ B ∈ Lr(W,X). Since
MA,B ≥ 0, we have ‖MA,B‖r = ‖MA,B‖ ≤ ‖A‖‖B‖ = ‖A‖r‖B‖r. On the other
hand, for every 0 ≤ x′ ∈ X ′ and every 0 ≤ y ∈ Y satisfying ‖x′‖ ≤ 1 and ‖y‖ ≤ 1,
x′ ⊗ y ∈ Lr(X, Y ) and ‖x′ ⊗ y‖r = ‖x′ ⊗ y‖ ≤ 1. Then it follows that

‖MA,B‖r = ‖MA,B‖ ≥ sup
(
‖MA,B(x

′ ⊗ y)‖ : 0 ≤ x′ ∈ BX′ , 0 ≤ y ∈ BY

)
= sup

(
‖(B′x′)⊗Ay‖ : 0 ≤ x′ ∈ BX′ , 0 ≤ y ∈ BY

)
= ‖A‖‖B‖ = ‖A‖r‖B‖r.

This implies that ‖MA,B‖r = ‖A‖r‖B‖r holds for all 0 ≤ A ∈ Lr(Y, Z) and
0 ≤ B ∈ Lr(W,X).

Now, for the general case let A ∈ Lr(Y, Z) and B ∈ Lr(W,X) be arbitrary. Then
by Corollary 2.3 we have

‖MA,B‖r = ‖|MA,B|‖ = ‖M|A|, |B|‖ = ‖M|A|, |B|‖r = ‖A‖r‖B‖r.

�

Wickstead [11] establishes that even in the case of atomic Banach lattices with
order continuous norms, the operator norm of two-sided multiplication operators
need not be equivalent to the regular norm.
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3. A counterexample

Let X and Y be Riesz spaces with Y Dedekind complete. The set of all σ-
order continuous operators in Lr(X,Y ) will be denoted by Lr

c(X,Y ). The disjoint
complement (Lr

c(X,Y ))d of Lr
c(X,Y ) is denoted by Lr

s(X,Y ). Every element of
Lr
s(X,Y ) is called a singular operator. When Y = R, we write X∼ and X∼

s

respectively instead of Lr(X,R) and Lr
s(X,R). The following example illustrates

that |MA0,B| = MA0,|B| does not necessarily hold for all B ∈ Lr(W,X); that is,

the linear operator MA0, · : L
r(W,X) → Lr

(
Lr(X,Y ), Lr(W,Z)

)
is not necessarily

a Riesz homomorphism in general.

Example 3.1. Let W = X = Y = Z = �∞ and let e denote the strong unit
(1, 1, · · · ) of �∞. Let 0 ≤ f ∈ (�∞)∼s be a singular Riesz homomorphism with
f(e) = 1 (one can take, e.g., f equal to a limit over a free ultrafilter). Let B ∈
Lr(�∞) be the rank one operator B = f ⊗ e. Then it is clear that B ∈ Lr

s(�∞) and
I ∧ B = 0, where I is the identity operator on �∞ (and hence order continuous).
We claim that MI, I ∧ MI, B = MI, I∧B = 0. To this end, let 0 ≤ T ∈ Lr(�∞).
Then, by [2, Theorem 1.21(2)] we have{

n∑
i=1

(Ti ∧ TiB) : n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}
↓ (MI, I ∧MI, B)(T ).

From this and [2, Theorem 1.51(2)] it follows that

(MI, I ∧MI, B)(T )(e)

= inf

{
n∑

i=1

(Ti ∧ TiB)(e) : n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}

= inf

{
n∑

i=1

(Ti ∧ (f ⊗ Tie))(e) : n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}

= inf

{
n∑

i=1

inf

(
mi∑
j=1

Tix
(i)
j ∧f(x(i)

j )Tie : x
(i)
j ∧ x

(i)
k =0, j =k,

mi∑
j=1

x
(i)
j =e

)
:

n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}
.

Let us put

G ′ =

{
n∑

i=1

inf

(
mi∑
j=1

Tix
(i)
j ∧ f(x

(i)
j )Tie : x

(i)
j ∧ x

(i)
k = 0, j = k,

mi∑
j=1

x
(i)
j = e

)
:

n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}
,

G ′′ =

{
n∑

i=1

m∑
j=1

Tixj ∧ f(xj)Tie : m ∈ N, xj ∧ xk = 0, j = k,
m∑
j=1

xj = e,

n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}
.
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We claim that inf G ′ = inf G ′′. Indeed, it is clear that inf G ′ ≤ inf G ′′. For
the reverse inequality, let (Ti)

n
1 be a fixed positive partition of T (i.e., Ti ≥ 0,∑

i Ti = T ). For each i let (x
(i)
j )mi

j=1 be an arbitrary positive disjoint partition of e

(i.e., x
(i)
j ∧ x

(i)
k = 0, j = k,

∑mi

j=1 x
(i)
j = e) corresponding to Ti. Following the proof

of [2, Theorem 1.51] we can find a positive disjoint partition (xj)
m
1 of e such that

m∑
j=1

Tixj ∧ f(xj)Tie ≤
mi∑
j=1

Tix
(i)
j ∧ f(x

(i)
j )Tie (i = 1, 2, · · ·, n).

From this it follows that

inf G ′′ ≤
n∑

i=1

m∑
j=1

Tixj ∧ f(xj)Tie ≤
n∑

i=1

mi∑
j=1

Tix
(i)
j ∧ f(x

(i)
j )Tie.

Therefore,

inf G ′′ ≤
n∑

i=1

inf

(
mi∑
j=1

Tix
(i)
j ∧ f(x

(i)
j )Tie : x

(i)
j ∧ x

(i)
k = 0, j = k,

mi∑
j=1

x
(i)
j = e

)
,

which implies that inf G ′′ ≤ inf G ′. Hence, we have (MI, I ∧MI, B)(T )(e) = inf G ′′.
Since f is a Riesz homomorphism, for every positive disjoint partition (xj)

m
1 of

e appearing in G ′′ there exists only one, say xj0 , such that

f(xj) = 0, j = j0, f(xj0) = f(e) = 1,

xj0 ∧
∑
j �=j0

xj = xj0 ∧ (e− xj0) = 0.

It follows that
∑n

i=1

∑m
j=1 Tixj ∧ f(xj)Tie =

∑n
i=1 Tixj0 . On the other hand, for

any x ∈ E+ satisfying x ∧ (e − x) = 0 and f(x) = 1, we must have f(e − x) = 0,
and hence

n∑
i=1

Tix =

n∑
i=1

(
Tix ∧ f(x)Tie+ Ti(e− x) ∧ f(e− x)Tie

)
.

Thus, we have

(MI, I ∧MI, B)(T )(e)

= inf

{
n∑

i=1

m∑
j=1

Tixj ∧ f(xj)Tie : m ∈ N, xj ∧ xk = 0, j = k,
m∑
j=1

xj = e,

n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}

= inf

{
n∑

i=1

Tix : x ∧ (e− x) = 0, f(x) = 1, n ∈ N, Ti ≥ 0,
∑
i

Ti = T

}

= inf

{
Tx : 0 ≤ x ≤ e, x ∧ (e− x) = 0, f(x) = 1

}
.

If we now take T = B = f⊗e, then (MI, I∧MI, B)(f⊗e)(e) = e. So, MI, I∧MI, B =
0.
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