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OF THE p-LAPLACIAN ON A BALL
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Abstract. In this paper, we prove that the second eigenfunctions of the p-
Laplacian, p > 1, are not radial on the unit ball in R

N , for any N ≥ 2. Our
proof relies on the variational characterization of the second eigenvalue and
a variant of the deformation lemma. We also construct an infinite sequence
of eigenpairs {τn,Ψn} such that Ψn is nonradial and has exactly 2n nodal
domains. A few related open problems are also stated.

1. Introduction

Let B1 ⊂ R
N be the open unit ball centred at the origin. We consider the

following eigenvalue problem:

−Δpu = λ|u|p−2u in B1,

u = 0 on ∂B1,(1.1)

where Δpu := div(|∇u|p−2∇u) is the p-Laplace operator with p > 1 and λ is the
spectral parameter. A real number λ for which (1.1) admits a nonzero weak solution

in W 1,p
0 (B1) is called an eigenvalue of (1.1), and corresponding solutions are called

the eigenfunctions associated with λ.
For p = 2, it is well known that the set of all eigenvalues of (1.1) can be arranged

in a sequence

0 < λ1 < λ2 ≤ λ3 . . . → ∞

and the corresponding normalized eigenfunctions form an orthonormal basis for
the Sobolev space W 1,2

0 (B1). Further, using the Courant-Weinstein variational
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principle (Theorem 7.8.14 of [4]), these eigenvalues can be expressed as follows:

λk := inf
{u⊥{u1,...,uk−1},‖u‖2=1}

∫
B1

|∇u|2 dx, k = 1, 2, 3, . . . ,

where ui is an eigenfunction corresponding to λi. For p �= 2, using the Ljusternik-
Schnirelman theorem, an infinite sequence {μn} of eigenvalues of (1.1) is provided in
[8]. Possibly a different sequence {λn} of variational eigenvalues of (1.1) is provided
in [5]. We stress that a complete description of the set of all eigenvalues of (1.1)
for p �= 2 is a challenging open problem. Nevertheless, a complete description of
the set of all radial eigenvalues {γn} (an eigenvalue with a radial eigenfunction) of
(1.1) is given in [3]. The authors of [3] showed that λ is a radial eigenvalue of (1.1)
if and only if the following ODE has a nonzero solution:

−
(
rN−1 |u′(r)|p−2u′(r)

)′
= λrN−1 |u(r)|p−2u(r) in (0, 1),

u′(0) = 0, u(1) = 0.(1.2)

Regardless of the methods by which the eigenvalues are obtained, one can uniquely
identify the first two eigenvalues of (1.1) as below:

λ1 = min{λ : λ is an eigenvalue of (1.1)},
λ2 = min{λ > λ1 : λ is an eigenvalue of (1.1)}.

It is well known that the eigenfunctions corresponding to λ1 are radial and
keep the same sign on B1. All other eigenfunctions change their sign on B1. The
structures of the second eigenfunctions are not well understood, except for p = 2.
In this case, the Fourier method for the Laplacian in the polar coordinates gives
the precise form of the second eigenfunctions. In particular, it is evident that the
second eigenfunctions are not radial. One anticipates the same results as well for
p �= 2.

In [13], Parini proved that the second eigenfunctions are not radial in a special
case, where B1 is the disc (B1 ⊂ R

2) and p is close to 1. In [1], this result is
extended for every p ∈ (1,∞) using a computer aided proof. Indeed, these methods
are not readily extendable to dimensions greater than 2. Here, we give a simple
analytic proof for their result which works in all dimensions (N ≥ 2) and for every
p ∈ (1,∞). Our proof relies on the variational characterization of λ2 given in [5]
and a variation of the deformation lemma given in [9]. We also use a result of [2]
that gives the monoticity of the first eigenvalue with respect to annular domains in
B1. More precisely, for a fixed r ∈ (0, 1), let Br(x) ⊂ B1 be the ball with centre

x and radius r. Then Theorem 2 of [2] gives that λ1(B1 \ Br(x)) is monotonically
decreasing as |x| → 1 − r. It is worth mentioning that the strict monoticity of

λ1(B1 \ Br(x)) is still an open problem for p �= 2. In [7], the strict monoticity of

λ1(B1 \Br(x)) is obtained for certain weighted eigenvalue problems; unfortunately
their results do not fit in our case.

Now we state our main result:

Theorem 1.1. Let B1 be the unit ball centred at the origin in R
N with N ≥ 2 and

let 1 < p < ∞. Let λ2 be the second eigenvalue of (1.1). Then the eigenfunctions
corresponding to λ2 are not radial.

In this paper we also construct a sequence {τn,Ψn} of eigenpairs of (1.1) such
that the eigenfunction Ψn is nonradial and has exactly 2n nodal domains. Fur-
thermore, the sequence {τn} is strictly increasing and unbounded. In fact the
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nodal domains can be specified using the spherical coordinate system for R
N

which consists of a radial coordinate r and angular coordinates θ1, . . . , θN−1 where
θ1, . . . , θN−2 ∈ [0, π] and θN−1 ∈ [0, 2π). By a sector of the ball B1 we mean the
set S given by S = {x ∈ B1 : 0 < θ∗ < θN−1 < θ∗ < 2π}. Now we state our next
result.

Theorem 1.2. Let B1 ⊂ R
N . Then for each n ∈ N there exists an eigenpair

{τn,Ψn} of (1.1) such that Ψn has exactly 2n nodal domains where each nodal

domain is a sector with measure |B1|
2n .

The rest of this paper is organized as follows. In Section 2, we consider a Dirichlet
eigenvalue for the p-Laplacian on a general domain and discuss the existence and
the regularity properties of the eigenfunctions. We also discuss the variational
characterizations of eigenvalues and state a version of the deformation lemma. In
Section 3, we give a proof for Theorem 1.1. The last section consists of a proof
of Theorem 1.2 and some important open problems related to eigenvalues of the
p-Laplacian.

2. Preliminary

In this section we consider the eigenvalue problem on a bounded domain Ω in
R

N :

−Δpu = λ|u|p−2u in Ω,

u = 0 on ∂Ω.(2.1)

We discuss the existence and regularity properties of the eigenfunctions of (2.1). If

λ is an eigenvalue of (2.1) and u ∈ W 1,p
0 (Ω) is an associated eigenfunction, then we

have ∫
Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2uv dx, ∀ v ∈ W 1,p
0 (Ω).(2.2)

Now we consider the following two functionals on W 1,p
0 (Ω) :

J(u) =

∫
Ω

|∇u|pdx, G(u) =

∫
Ω

|u|pdx.

Using the Lagrange multiplier theorem, it can be easily verified that the critical
values and critical points of J on the manifold S = G−1(1) satisfy (2.2). Indeed,
the eigenvalues of (2.1) and the critical values of J on S are one and the same. The
least critical value of J on S is given by

λ1 = inf
u∈S

J(u).

In the next proposition, we list some of the important properties of λ1 and the
corresponding eigenfunctions.

Proposition 2.1. Let λ1 be the first eigenvalue of (2.1). Then

(i) λ1 is simple,
(ii) any eigenfunction corresponding to λ1 keeps the same sign on Ω,
(iii) any eigenfunction corresponding to an eigenvalue λ > λ1 changes its sign

on Ω,
(iv) if Ω = Br(0), then the eigenfunctions corresponding to λ1 are radial.
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Proof. A proof of (i) (for nonsmooth Ω) can be found in Lemma 3.2 of [10] and
(iii) in Lemma 3.1 of [10]. For a proof of (ii), see Lemma 2.4 of [12]. Finally (iv) is
evident from (i) and (iii) by noting the existence of a radial positive eigenfunction
for (2.1) when Ω = Br(0). �

An infinite set of critical values of J on S are obtained in [8] using the variational
methods. Their approach relies on the notion of Krasnoselskii genus of a symmetric
closed set. For a symmetric closed subset A ⊂ S, Krasnoselskii genus of A is defined
as

γ(A) := inf {n ∈ N : ∃ a continuous odd map from A into R
n \ {0}}

with the convention inf{∅} = ∞. For each n ∈ N, let

En :=
{
A ⊂ S : A = A, A = −A and γ(A) ≥ n

}
,

μn := inf
A∈En

sup
u∈A

J(u).

Then μn is a critical value of J on S (see Proposition 5.4 of [8]). Possibly another
set of critical values is obtained in [5] by considering a special collection of sets with
genus n in S. Note that the unit sphere Sn−1 in R

n has genus n, and hence its
image under an odd continuous map has the same genus. For each n ∈ N, let

Fn :=
{
A ⊂ S : A = h(Sn−1), h is an odd continuous map from Sn−1 → S

}
,

μ∗
n := inf

A∈Fn

sup
u∈A

J(u).

Then μ∗
n is a critical value of J on S (see Theorem 5 of [5]). Since Fn ⊂ En, we

always have μn ≤ μ∗
n. It is known that λi = μi = μ∗

i for i = 1, 2. This result for
i = 1 follows as the set {u,−u} lies in both E1 and F1 for u ∈ S. Let u be an
eigenfunction corresponding to λ2. Then by (ii) of Proposition 2.1 both u+ and

u− are nonzero. Thus the set A :=
{
au+ + bu− : |a|p‖u+‖pp + |b|p‖u−‖pp = 1

}
lies

in both E2 and F2. Now as J(au+ + bu−) = λ2, we get μ2 ≤ λ2 and μ∗
2 ≤ λ2.

Since there is no eigenvalue between λ1 and λ2, it follows that λ2 = μ2 = μ∗
2.

In particular, we have the following variational characterization of λ2 that we use
later:

(2.3) λ2 = inf
A∈F2

sup
u∈A

J(u).

The next proposition is a consequence of the deformation lemma (see Lemma 3.7

of [9]; see also Theorem 2.1 and Remark 2.3 of [6]). Note that J ∈ C1(W 1,p
0 (Ω);R)

and S is a C1-manifold. Further, J(u) = J(−u) and S = −S.

Proposition 2.2. Let S, J be as before. Let K be a compact subset of S. If
‖J ′(u)‖∗ ≥ ε > 0 for all u ∈ K, then there exists a continuous one parameter
family of homeomorphisms Ψ : S × [0, 1] → S such that

(i) J(Ψ(u, t)) ≤ J(u)− εt, for every u ∈ K, t ∈ [0, 1],
(ii) Ψ(−u, t) = −Ψ(u, t), for all u ∈ S, t ∈ [0, 1].

In particular, if K ∈ Fn and J has no critical point on K, then the set K̃ =
{Ψ(u, 1) : u ∈ K} is in Fn and

(2.4) sup
u∈˜K

J(u) < sup
u∈K

J(u).
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We also need the following result on the regularity of the eigenfunctions of (2.1)
which is a consequence of Theorem 1 of [11].

Proposition 2.3. Let Ω be a bounded domain in R
N with smooth boundary. Let

φ be an eigenfunction of (2.1). Then there exists α ∈ (0, 1) such that φ ∈ C1,α(Ω).

3. Radial asymmetry of the second eigenfunctions

In this section we prove our main result. First we state a lemma that follows
from Proposition 4.1 of [3].

Lemma 3.1. Let γ2 be the second radial eigenvalue of (1.2). Then any radial
eigenfunction corresponding to γ2 has exactly two nodal domains — a ball and an
annulus with centre at the origin. In particular, there exists r ∈ ( 12 , 1) such that

λ1(Br(0)) = γ2 = λ1(B1 \Br(0)).

Now using the ‘r’ given by the above lemma, we construct a special collection
of sets in F2. For each n ∈ N ∪ {0}, we construct a special set An ∈ F2 such
that supu∈An

J(u) = γ2. Let {tn} be a sequence in [0, 1 − r) such that t0 = 0 and

tn → 1 − r. For each n ∈ N ∪ {0}, let Ωn = B1 \ Br(tne1), where e1 is the unit
vector in the direction of the first coordinate axis. Let un, vn be the respective
first eigenfunctions on Br(tne1) and Ωn satisfying un > 0 on Bn, vn > 0 on Ωn

and ‖un‖p = ‖vn‖p = 1. By translation invariance of the p-Laplacian, we have

λ1(Br(tne1)) = γ2. Further, from Theorem 1 of [2], we also have λ1(Ωn) ≤ γ2. Let
ũn and ṽn be the zero extensions to the entire B1. For each n ∈ N∪{0}, we consider

An := {aũn + bṽn : |a|p + |b|p = 1}.
One can easily verify that An ∈ F2 and supu∈An

J(u) = γ2, ∀n ∈ N ∪ {0}.
Now we ask the question of whether or not An contains a critical point of J on

S. This leads to the following two alternatives:

(i) for every n ∈ N, An contains at least one critical point of J on S,
(ii) there exists n0 ∈ N such that An0

does not contain any critical point of J
on S.

In the next lemma we show that alternative (i) does not hold.

Lemma 3.2. Let An be as above. Then alternative (i) does not hold.

Proof. Let un and ũn be as above. Then un(x) = u0(x − tne1), and hence the
sequence {ũn(x)} converges to u∗(x) = ũ0(x − (1 − r)e1) both pointwise and in

W 1,p
0 (B1). On the other hand, the sequence {ṽn} is bounded by γ2 in W 1,p

0 (B1).

Thus, up to a subsequence, ṽn converges to some v∗ weakly in W 1,p
0 (B1) and a.e.

in B1. If alternative (i) holds, then we get a sequence {φn = anũn + bnṽn : |an|p +
|bn|p = 1} of eigenfunctions of (1.1) with eigenvalues J(φn). By Proposition 2.3,
the eigenfunctions are in C1(B1), and hence we must have anbn < 0. Now we may
assume that an > 0 and bn < 0 for each n. Further, the sequences {J(φn)}, {an}
and {bn} are bounded. Thus for a subsequence we get J(φn) → λ∗, an → a∗

and bn → b∗ for some λ∗, a∗ ≥ 0 and b∗ ≤ 0. The sequence {φn} is bounded in

W 1,p
0 (B1) and hence up to a subsequence φn ⇀ φ∗ in W 1,p

0 (B1) and a.e. in B1.
Since anũn + bnṽn → a∗u∗ + b∗v∗ a.e. in B1, we must have

φ∗ = a∗u∗ + b∗v∗.
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Since each φn is an eigenfunction of (1.1), it is easy to verify that φ∗ is an eigen-
function corresponding to the eigenvalue λ∗. Thus by the regularity of φ∗, we must
have a∗b∗ < 0, and hence

a∗ > 0, b∗ < 0.

Let B∗ = Br((1 − r)e1) and Ω∗ = B1 \ B∗. Clearly u∗ > 0 on B∗ and u∗ = 0 on
Ω∗. On the other hand, v∗ = 0 a.e. in B∗ and v∗ ≥ 0 a.e. on Ω∗. Thus from the
continuity of the φ∗ we get

φ∗(x) > 0, ∀x ∈ B∗, φ∗(x) ≤ 0, ∀x ∈ Ω∗.

Now we apply Theorem 5 of [16] (a Hopf’s lemma type result for p-Laplacian) on
B∗ ∪ {e1} to get

∂φ∗

∂x1
(e1) = c < 0.

Since φ∗ ≤ 0 on Ω∗ we also have

∂φ∗

∂η(x)
(x) ≥ 0, ∀x ∈ ∂B1 \ {e1},

where η(x) is the outward unit normal to B1 at x. The above two inequalities
contradict the fact that φ∗ is in C1(B1). Thus we conclude that alternative (i) does
not hold. �

Proof of Theorem 1.1. Let An be as before. Thus we have supv∈An
J(v) ≤ γ2. By

the above lemma, the alternative (ii) holds, i.e. there exists n0 ∈ N such that An0

does not contain any critical points of J on S. Thus by Proposition 2.2 and by

(2.4), we get Ãn0
∈ F2 such that

sup
u∈ ˜An0

J(u) < sup
v∈An0

J(v) ≤ γ2.

Now from (2.3) we get λ2 < γ2. �

4. Construction of nonradial eigenfunctions

In this section we construct an infinite sequence of nonradial eigenfunctions of
(1.1). First we fix the following conventions. A vector x in R

N is always taken as
a 1 × N row vector, i.e x = (x1, x2, . . . , xN ). The transpose of x, denoted by xT ,
is an N × 1 column vector. We denote the scalar product in R

N by x · y (= xyT ).
Let H be the hyperplane given by H = {x ∈ R

N : x · a = 0} for some unit vector
a ∈ R

N . Let σH be the reflection about H. Then

σH(x) = x− 2(x · a)a = x(I − 2aTa).

Next we list some of the elementary properties of σH that we use in this article.

(i) σH is linear and σH = (I − 2aTa).
(ii) σH

−1 = σH .
(iii) σH is symmetric and orthogonal.
(iv) DσH(x) = σH and detDσH(x) = −1, ∀x ∈ R

N .
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Let O be a bounded domain symmetric about H, i.e, σH(O) = O. Let O+ :=

{x ∈ O : x · a > 0} and let O− = σH(O+). Let u ∈ W 1,p
0 (O+) be a weak solution

of (2.1) on Ω = O+. Define u∗ on O as

u∗(x) =

⎧⎨
⎩

u(x), x ∈ O+,
0, x ∈ ∂(O+) ∪ ∂(O−),
−u(σH(x)), x ∈ O−.

Clearly u∗ ∈ W 1,p
0 (O), and we also have the following lemma:

Lemma 4.1. Let u∗ be defined as above. Then u∗ is a weak solution of (2.1) on
Ω = O.

Proof. Let φ ∈ W 1,p
0 (O) be a test function. We show that

(4.1)

∫
O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx = λ

∫
O
|u∗(x)|p−2u∗(x)φ(x)dx.

From the definition of u∗,∫
O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx

=

∫
O+

|∇u(x)|p−2∇u(x) · ∇φ(x)dx

+

∫
O−

|∇(−u(σH(x)))|p−2∇(−u(σH(x))) · ∇φ(x)dx.

Now by noting that DσH(x) = σH and σH is an isometry we get∫
O−

|∇(−u(σH(x)))|p−2∇(−u(σH(x))) ·∇φ(x)dx

= −
∫
O−

|∇u(σH(x))σH |p−2[∇u(σH(x))σH ] · ∇φ(x)dx

= −
∫
O−

|∇u(σH(x))|p−2∇u(σH(x)) ·[∇φ(x)σH ]dx,

where the equality in the last step also uses the fact that σH is symmetric. Now
the change of variable y = σH(x) along with properties (ii) and (iv) of σH will give∫

O−
|∇(−u(σH(x)))|p−2∇(−u(σH(x))) ·∇φ(x)dx

−
∫
O+

|∇u(y)|p−2∇u(y) · [∇φ(σH(y))σH ]dy.

Thus ∫
O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx

=

∫
O+

|∇u(x)|p−2∇u(x) · [∇φ(x)− [∇φ(σH(x))σH ]]dx.

Let ψ(x) = φ(x)− φ(σH(x)). Then we have

(4.2)

∫
O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫
O+

|∇u(x)|p−2∇u(x) · ∇ψ(x)dx.
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Further,

(4.3)

∫
O
|u∗(x)|p−2u∗(x)φ(x) =

∫
O+

|u(x)|p−2u(x)ψ(x)dx.

Clearly ψ ∈ W 1,p
0 (O+) and hence

(4.4)

∫
O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫
O+

|u(x)|p−2u(x)ψ(x)dx,

since u solves (2.1) on Ω = O+. Now (4.1) follows from (4.2), (4.3) and (4.4). �

Proof of Theorem 1.2. For n ∈ N, we consider the sectors Sk given by Sk = {x ∈
B1 : (k−1)π

n < θN−1 < kπ
n }, k = 1, . . . , n. Let Hk be the hyperplane given by

Hk = {x ∈ R
N : θN−1 = πk

n }, for k = 1, . . . , n. Let τn be the first eigenvalue for
the p-Laplacian on S1 and u1(x) be a corresponding eigenfunction. For i = 2, . . . , n,
we define ui recursively by ui = −ui−1(σHi−1

(x)), the odd reflection of ui about
Hi−1. Let D+ be the sector given by {x ∈ B1 : 0 < θN−1 < π}. Now we define u∗

on D+ by

u∗(x) = ui(x), x ∈ Si, i = 1, . . . , n.

From Lemma 4.1, it is clear that u∗ solves (2.1) on the union of two adjacent sectors

with λ = τn. Let Ui = {x ∈ B1 : (i−1)π
n < θN−1 < (i+1)π

n }, for i = 1, . . . , n − 1.

Then {Ui}n−1
i=1 is an open covering of D+. Let {φi}n−1

i=1 be a C∞-partition of the
unity corresponding to this open covering. Note that for each i, φi intersects at

most Si and Si+1. Since
∑n−1

i=1 φi = 1, we have

∫
D+

|∇u∗(x)|p−2∇u∗(x)·∇φ(x)dx =

∫
D+

|∇u∗(x)|p−2∇u∗(x)·∇
(
φ(x)

n−1∑
i=1

φi(x)
)
dx

=

n−1∑
i=1

∫
D+

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx.

For a fixed i, the product φφi ∈ W 1,p
0 (Ui). Hence by the definition of u∗ and Lemma

4.1, we get

∫
D+

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx

=

∫
Ui

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx

= τn

∫
Ui

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx

= τn

∫
D+

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx.
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Thus we get∫
D+

|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

n−1∑
i=1

τn

∫
D+

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx

= τn

∫
D+

|u∗(x)|p−2u∗(x)
( n−1∑

i=1

φ(x)φi(x)
)
dx

= τn

∫
D+

|u∗(x)|p−2u∗(x)φ(x)dx.

Now define Ψn on B1 by

Ψn(x) =

⎧⎨
⎩

u∗(x), x ∈ D+,
0, x ∈ ∂(D+) ∪ ∂(D−),
−u∗(σH0

(x)), x ∈ D−,

where D− = {x ∈ B1 : π < θN−1 < 2π} is the “lower” half-ball and H0 is the
hyperplane corresponding to θN−1 = 0. Applying Lemma 4.1 once again, we get
that Ψn is a weak solution of (1.1). Thus we have constructed an eigenpair {τn,Ψn}
of (1.1) such that Ψn has 2n nodal domains and each nodal domain is a sector with

measure |B1|
2n . �

In the next remark we list some of the interesting open problems related to the
results of this paper:

Remark 4.2 (Open problems associated with (1.1)).

(1) Payne conjectured (Conjecture 5 of [14]) that the nodal line of a second
eigenfunction of Laplacian on a bounded domain Ω ⊂ R

2 cannot be a
closed curve. In [15], he proved his conjecture for the special case when Ω
is convex in x and symmetric about the y axis. For a ball, his result was
easily obtained by applying the Fourier method to the Laplacian in polar co-
ordinates. We conjecture that the nodal surface of a second eigenfunction
of p-Laplacian on B1 cannot be a closed surface in B1 for 1 < p < ∞ and
for every N ≥ 2.

(2) For p = 2, it is easy to see that λ2 = τ1. We anticipate the same result for
p �= 2 as well. More precisely, the nodal surface of any second eigenfunction
is given by the intersection of a hyperspace with B1 and the nodal domains
are the half-balls symmetric to this hyperspace.

(3) We have just shown that all the eigenfunctions corresponding to λ2 are
nonradial. Is it true that all the eigenfunctions corresponding to the second
radial eigenvalue γ2 are radial?

(4) Note that λ2 is the least eigenvalue having an eigenfunction with two nodal
domains. For p = 2, it can also be seen that γ2 is the maximal eigenvalue
having an eigenfunction with two nodal domains. In other words, the eigen-
functions corresponding to λ > γ2 must have at least three nodal domains.
Is this true for p �= 2?
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