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DOUBLE COSET SEPARABILITY OF ABELIAN SUBGROUPS
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(Communicated by Martin Scharlemann)

Abstract. A subset X of a group G is said to be separable if it is closed
in the profinite topology. Let M = Hn/Γ be a closed hyperbolic orbifold of
dimension n ≥ 2. We show that if H and K are abelian subgroups of Γ and
g ∈ Γ, then the double coset HgK is separable in Γ. We generalize this result
to cocompact lattices in linear, semisimple Lie groups of (real) rank one.

1. Introduction

In 1911, Max Dehn posed three important problems in combinatorial group
theory: the word problem, the conjugacy problem, and the isomorphism problem.
It is known that each problem is undecidable in general. However, algorithms have
been developed for many well-known classes of groups. These decidability problems
have been linked to subgroup separability.

Definition 1.1. The profinite topology on a group Γ is the coarsest topology in
which every homomorphism from Γ to a finite group is continuous. If a subset X
of Γ is closed in the profinite topology, then X is called separable. Equivalently, for
every γ ∈ Γ − X there is a homomorphism φ from Γ to a finite group such that
φ(γ) /∈ φ(X).

(1) A group Γ is residually finite if the trivial subgroup is separable in Γ.
(2) A group Γ is subgroup separable or locally extended residually finite (LERF)

if every finitely generated subgroup of Γ is separable in Γ.
(3) A group Γ is conjugacy separable if every conjugacy class in Γ is separable.

Let Γ be a finitely presented group. If Γ is residually finite, then Γ has a solvable
word problem, meaning that there exists an algorithm to decide if a given word in
the presentation of Γ is trivial. If Γ is subgroup separable, then Γ has a solvable
generalized word problem. Finally, if Γ is conjugacy separable, then Γ has a solvable
conjugacy problem.

Subgroup separability is of great interest in low dimensional topology. If Γ is
the fundamental group of a manifold M , then the profinite topology on Γ encodes
the finite sheeted covering spaces of M . A precise connection between subgroup
separability and geometric topology is given in [14]. In that paper, Scott proves
that surface groups, finitely generated Fuchsian groups and fundamental groups of
Seifert fibered 3-manifolds are subgroup separable. There has been recent dramatic
progress in subgroup separability of hyperbolic 3-manifold groups. Agol proved
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that fundamental groups of closed hyperbolic 3-manifolds are subgroup separable
[1]. Moreover, Wise proved that fundamental groups of hyperbolic 3-manifolds
containing an embedded geometrically finite surface are subgroup separable [15].
The picture is more complicated for non-hyperbolic 3-manifolds. For example,
Niblo-Wise showed that the fundamental group of a graph manifold M is subgroup
separable if and only if M is geometric [12].

A related definition is double coset separability.

Definition 1.2. A group Γ is double coset separable if for every pair H,K of finitely
generated subgroups of Γ, and every g ∈ Γ, the double coset HgK is separable in
Γ.

It is known that free groups, finitely generated Fuchsian groups, surface groups,
and fundamental groups of Seifert fibered 3-manifolds are double coset separable
[11]. In [9], it is shown that if M = H3/Γ is a hyperbolic 3-orbifold of finite
volume, then for every pair H and K of abelian subgroups of Γ and every element
g ∈ Γ, the double coset HgK is separable in Γ. This is used to prove that if M
is a compact, orientable 3-manifold, then π1(M) is conjugacy separable [9]. In
this paper, we consider double coset separability of fundamental groups of closed
hyperbolic orbifolds of dimension n ≥ 2. In particular, we prove the following
theorem.

Theorem 1.3. Let M = Hn/Γ be a closed hyperbolic orbifold of dimension n ≥ 2.
Let H and K be abelian subgroups of Γ, and let g ∈ Γ. Then the double coset
HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

To prove Theorem 1.3, we first reduce to the case where M = Hn/Γ is a closed,
orientable hyperbolic manifold of dimension n ≥ 2. Therefore, the non-trivial
abelian subgroups of Γ will be free abelian of rank 1, generated by loxodromic
isometries.

Theorem 1.3 does not follow from the recent work of Agol and Wise. Indeed,
although many examples of closed hyperbolic n-orbifolds are known to be virtually
special [4], it is as yet open as to whether every closed hyperbolic n-orbifold is
virtually special.

This paper is organized as follows. In Section 2 we state algebraic preliminaries.
In Section 3 we prove Theorem 1.3. In Section 4 we discuss some generalizations
of Theorem 1.3. For example, we prove the following corollary to the proof of
Theorem 1.3.

Theorem 1.4. Let Γ be a cocompact lattice in SO(n, 1), SU(n, 1), Sp(n, 1), n ≥ 2,
or F−20

4 . Let H and K be abelian subgroups of Γ, and let g ∈ Γ. Then the double
coset HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

The virtually special technology does not apply in the setting of Theorem 1.4.
Cocompact lattices in Sp(n, 1), n ≥ 2, never virtually inject in a RAAG because
they have Property (T). Cocompact lattices in SU(n, 1), n ≥ 2, never virtually
inject in a RAAG because they are Kahler [13].

2. Algebraic preliminaries

In this section we state three propositions that will be used in the proof of
Theorem 1.3. The first proposition is well known. The second two propositions are
from [8].
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Proposition 2.1. Let R be a finitely generated ring in a number field k, and let
x1, x2, . . . , xj be non-zero elements of R. Then there exist a finite field F and a
ring homomorphism η : R → F such that η(xi) �= 0, for each 1 ≤ i ≤ j.

For a proof of Proposition 2.1 see Lemma 4.2 of [10]. We now state a general-
ization of Proposition 2.1.

Proposition 2.2. Let R be a finitely generated ring in a number field k, let δ be a
non-zero element of R that is not a root of unity, and let x1, x2, . . . , xj be non-zero
elements of R. Then there exists a positive integer n with the following property.
For each integer m ≥ n, there exist a finite field F and a ring homomorphism
η : R → F such that the multiplicative order of η(δ) is equal to m and η(xi) �= 0,
for each 1 ≤ i ≤ j.

For the proof of Proposition 2.2 see Corollary 2.5 of [8].

Proposition 2.3. Let R be a finitely generated ring in a number field k. Let λ and
ω be non-zero elements of R such that λ is not a multiplicative power of ω. Then
there exist a finite ring S and a ring homomorphism η : R → S such that η(λ) is
not a multiplicative power of η(ω).

For the proof of Proposition 2.3 see Corollary 2.8 of [8].

3. Proof of double-coset separability

In this section we prove that double cosets of abelian subgroups of hyperbolic
n-orbifold groups are separable. For the proof will use the following proposition
from [11].

Proposition 3.1. Let G0, H and K be finitely generated subgroups of a group G
and set H0 = H ∩ G0 and K0 = K ∩ G0. If [G : G0] is finite and if H0K0 is
separable in G0, then HK is separable in G.

For a proof of Proposition 3.1 see Proposition 2.2 of [11].

Theorem 3.2. Let M = Hn/Γ be a closed hyperbolic orbifold of dimension n ≥ 2.
Let H and K be abelian subgroups of Γ, and let g ∈ Γ. Then the double coset
HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

Proof. Since finitely generated Fuchsian groups are double coset separable [11], we
may assume that the dimension of M is greater than or equal to 3.

As noted in [11], since the profinite topology on Γ is equivariant under left and
right multiplication, the double coset HgK is closed in Γ if and only if HgK =
g−1HgK is closed in Γ. Therefore, to prove the theorem, it suffices to show that if
H and K are abelian subgroups of Γ, then the double coset HK is separable in Γ.

By Selberg’s Lemma [2], Γ has a subgroup of finite index Γ0 which is torsion free.
We may assume that Γ0 consists of orientation-preserving isometries of Hn. Let
H0 = H∩Γ0 and K0 = K∩Γ0. By Proposition 3.1, if H0K0 is separable in Γ0, then
HK is separable in Γ. Therefore, we may assume that Γ is torsion free, and thus is
the fundamental group of an orientable, hyperbolic manifold of dimension n ≥ 3.
Since abelian subgroups of fundamental groups of closed hyperbolic n-manifolds are
separable [7], we may assume that H and K do not commute. In particular, both H
andK are non-trivial. SinceM is closed and Γ is torsion free, the non-trivial abelian
subgroups of Γ are free abelian of rank 1, generated by loxodromic isometries. Let
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H ′ be the maximal abelian subgroup of Γ containing H. Then H has finite index in
H ′. Let {a1, a2, . . . , am−1} be a set of non-trivial coset representatives of H ′/H.
By [7], H is a separable subgroup of Γ. Therefore, there exists a subgroup ΓH

of finite index in Γ such that H ⊂ ΓH but ΓH ∩ {a1, a2, . . . , am−1} = ∅. Then
ΓH ∩H ′ = H. In a similar way, define K ′ and choose ΓK of finite index in Γ such
that ΓK ∩K ′ = K. Let Γ0 = ΓH ∩ ΓK and set H0 = H ∩ Γ0 and K0 = K ∩ Γ0.
Then Γ0 is a subgroup of finite index in Γ, H0 = H ′ ∩ Γ0 and K0 = K ′ ∩ Γ0. By
Proposition 3.1, by replacing Γ with Γ0, if necessary, we may assume that H = 〈h〉
and K = 〈k〉 are maximal abelian subgroups of Γ.

Since M is a hyperbolic manifold of dimension n, there exists a discrete, faithful
representation of Γ into SO(n, 1;R). Since n ≥ 3, it follows from Mostow Rigidity
that the trace field of Γ,

Q(trΓ) = Q(tr (γ) | γ ∈ Γ),

is a number field. We may conjugate Γ in GL(n + 1,C) to lie in a finite field
extension of Q(trΓ) [3]. Therefore, we view Γ ⊂ SL(n+1, F ) for some number field
F . Let Th and Tk be the linear transformations in SL(n + 1, F ) associated to h
and k, respectively. Since h and k are loxodromic, Th and Tk are semisimple. (See
Proposition 3.2.3 of [5].) Let {λ0, λ1, . . . , λn} and {ω0, ω1, . . . , ωn} denote the
eigenvalues of Th and Tk, respectively. There exists a natural number m such that
the quotient of any two distinct elements of {ωm

0 , ωm
1 , . . . , ωm

n } is not a root of
unity. Since K is a separable subgroup of Γ, there exists a subgroup Γ0 of finite
index in Γ such that Γ0 ∩K = 〈km〉. By Proposition 3.1, by replacing Γ with Γ0,
if necessary, we may assume that the quotient of any two distinct eigenvalues of Tk

is not a root of unity.
Let L be the field obtained by adjoining the eigenvalues of Th and Tk to the field

F . Since the eigenvalues of Th and Tk are algebraic numbers, L is a number field.
The transformations Th and Tk are diagonalizable over L. Since Th is diagonalizable
over L, there exists P ∈ GL(n + 1, L) such that P−1hP is a diagonal matrix.
Denote this diagonal matrix by Dh. Since Tk is diagonalizable over L and P−1kP ∈
SL(n+1, L), there exists A ∈ GL(n+1, L) such that A−1P−1kPA = Dk, where Dk

is a diagonal matrix. Then P−1kP = ADkA
−1. Define an isomorphism ψ from Γ

into SL(n+1, L) by ψ(Γ) = P−1ΓP . Let R be the ring generated by the coefficients
of the generators of ψ(Γ) over Z. Note that the eigenvalues of Th are contained in
R. By expanding R, if necessary, we may assume that the eigenvalues of Tk and
the entries of A are contained in R. By replacing our original representation of Γ
into SO(1, n;R) with the new representation ψ of Γ into SL(n+1, R) we now have
the following assumptions:

(1) The group Γ ⊂ SL(n + 1, R), where R is a finitely generated ring in a
number field L.

(2) The subgroup H = 〈h〉 = 〈Dh〉, where Dh is a diagonal matrix with eigen-
values {λ0, λ1, . . . , λn}.

(3) The subgroup K = 〈k〉 = 〈ADkA
−1〉, where Dk ∈ SL(n+1, R) is a diagonal

matrix with eigenvalues {ω0, ω1, . . . , ωn} and A ∈ GL(n+ 1, R).
(4) The quotient of any two distinct elements of {ω0, ω1, . . . , ωn} is not a root

of unity.
(5) H and K are distinct maximal abelian subgroups of Γ.
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To prove that the double coset HK = 〈Dh〉A〈Dk〉A−1 is separable in Γ, let
B ∈ Γ−HK. We will find a group homomorphism from Γ into a finite group such
that the image of BA does not lie in the image of 〈Dh〉A〈Dk〉. Then the image of
B does not lie in the image of HK, as required.

Write

BA =

⎛
⎜⎜⎝
x00 x01 . . . x0n

x10 x11 . . . x1n

. . . . . . . . . . . .
xn0 xn1 . . . xnn

⎞
⎟⎟⎠ ,

and note that the set 〈Dh〉A〈Dk〉 has the form⎛
⎜⎜⎝

λs
0 0 0 . . . 0
0 λs

1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . λs

n

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a00 a01 . . . a0n
a10 a11 . . . a1n
. . . . . . . . . . . .
an0 an1 . . . ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ωt
0 0 0 . . . 0
0 ωt

1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . ωt

n

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
a00λ

s
0ω

t
0 a01λ

s
0ω

t
1 . . . a0nλ

s
0ω

t
n

a10λ
s
1ω

t
0 a11λ

s
1ω

t
1 . . . a1nλ

s
1ω

t
n

. . . . . . . . . . . .
an0λ

s
nω

t
0 an1λ

s
nω

t
1 . . . annλ

s
nω

t
n

⎞
⎟⎟⎠ , where s, t ∈ Z.

Since H and K do not commute, k = ADkA
−1 is not a diagonal matrix. Since

the set of generalized permutation matrices is the normalizer of the set of diagonal
matrices, this implies that A is not a generalized permutation matrix. Therefore,
there exists a row of A with at least two non-zero entries, aij and ail, j �= l. For
any such pair, we prove the following.

Claim. Let aij and ail, j �= l, be two non-zero entries in a row of A. Then at least
one of the following conditions is satisfied:

1. There exists a group homomorphism from Γ into a finite group such that
the image of B is not contained in the image of HK, which completes the
proof of the theorem.

2. The corresponding entries xij and xil in BA are non-zero and

xijail
xilaij

∈
〈
ωj

ωl

〉
.

Proof of the Claim. Suppose that xij = 0. Since the determinants of Th and Tk are
equal to 1, λi �= 0 and ωj �= 0. By Proposition 2.1, there exist a finite field F and
a ring homomorphism η : R → F such that η(aij) �= 0, η(λi) �= 0 and η(ωj) �= 0.
The map η induces a group homomorphism

η : Γ ↪→ SL(n+ 1, R) → SL(n+ 1, F ).

Suppose that η(BA) ∈ η(〈Dh〉A〈Dk〉). Then there exist integers s and t such that

η(BA) = η(Ds
hADt

k).

By equating coefficients,

0 = η(xij) = η(aijλ
s
iω

t
j),

a contradiction. We conclude that η(BA) �∈ η(〈Dh〉A〈Dk〉), and thus η(B) �∈
η(HK). Therefore, condition 1 is satisfied. For the remainder of the proof we may
assume that xij �= 0. Similarly, we may assume that xil �= 0.
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Suppose that condition 2 is not satisfied, meaning that xijail/xilaij is not a mul-
tiplicative power of ωj/ωl. Then by Proposition 2.3, there exist a finite ring S and
a ring homomorphism η : R → S such that η(xijail/xilaij) is not a multiplicative
power of η(ωj/ωl). The map η induces a group homomorphism

η : Γ ↪→ SL(n+ 1, R) → SL(n+ 1, S).

Suppose that η(BA) ∈ η(〈Dh〉A〈Dk〉). Then there exist integers s and t such that

η(BA) = η(Ds
hADt

k).

By equating coefficients,

η(xij) = η(aijλ
s
iω

t
j) and η(xil) = η(ailλ

s
iω

t
l ).

By dividing,

η(xij/xil) = η(aij/ail)η(ωj/ωl)
t,

a contradiction. We conclude that η(BA) �∈ η(〈Dh〉A〈Dk〉), and thus η(B) �∈
η(HK). This completes the proof of the claim.

For the remainder of the proof, we may assume that condition 2 of the claim
holds for any pair of non-zero entries in any row of A. Therefore, given a pair of
non-zero entries aij and ail, j �= l, there exists an integer t(aij , ail), depending on
aij and ail, such that

xijail
xilaij

=

(
ωj

ωl

)t(aij ,ail)

.

Case 1. There exists an integer t0 such that, for any pair of non-zero entries, aij
and ail, j �= l, in a row of A,

xijail
xilaij

=

(
ωj

ωl

)t0

.

The matrix BAD−t0
k A−1 = Bk−t0 is not diagonal. If Bk−t0 were diagonal, then

Bk−t0 would commute with H. Since Bk−t0 ∈ Γ and H is a maximal abelian
subgroup of Γ, this would imply that Bk−t0 = hs0 for some s0 ∈ Z. But then B =
hs0kt0 ∈ HK, a contradiction. Let yij , i �= j, be a non-zero entry of BAD−t0

k A−1

that does not lie on the diagonal. By Proposition 2.1, there exist a finite field F
and a ring homomorphism η : R → F such that η(yij) �= 0. The map η induces a
group homomorphism

η : Γ ↪→ SL(n+ 1, R) → SL(n+ 1, F ).

Since η(yij) �= 0, η(BAD−t0
k A−1) is not a diagonal matrix. We will show that

η(BAD−t0
k ) /∈ η(〈Dh〉A〈Dk〉).
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Suppose, to the contrary, that η(BAD−t0
k ) = η(Ds

hADt
k), for some integers s and

t. Then ⎛
⎜⎜⎝
η(x00ω

−t0
0 ) η(x01ω

−t0
1 ) . . . η(x0nω

−t0
n )

η(x10ω
−t0
0 ) η(x11ω

−t0
1 ) . . . η(x1nω

−t0
n )

. . . . . . . . . . . .
η(xn0ω

−t0
0 ) η(xn1ω

−t0
1 ) . . . η(xnnω

−t0
n )

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
η(a00λ

s
0ω

t
0) η(a01λ

s
0ω

t
1) . . . η(a0nλ

s
0ω

t
n)

η(a10λ
s
1ω

t
0) η(a11λ

s
1ω

t
1) . . . η(a1nλ

s
1ω

t
n)

. . . . . . . . . . . .
η(an0λ

s
nω

t
0) η(an1λ

s
nω

t
1) . . . η(annλ

s
nω

t
n)

⎞
⎟⎟⎠ .

Let {aij , ail}, j �= l, be a pair of non-zero entries in any row of A. By equating
coefficients,

η(xijω
−t0
j ) = η(aijλ

s
iω

t
j) and η(xilω

−t0
l ) = η(ailλ

s
iω

t
l ).

By dividing,

η(ωt
j)

η(ωt
l )

=
η(xijail)

η(xilaij)

(
η(ωj)

η(ωl)

)−t0

= 1.

We conclude that for any pair {aij , ail} of non-zero entries in any row of A, η(ωt
j) =

η(ωt
l ). For each row i of A, choose a non-zero entry aij and set

di = η(λs
iω

t
j).

The element di is well defined by the argument above. Then

η(BAD−t0
k ) = η(Ds

hADt
k) =

⎛
⎜⎜⎝
η(a00λ

s
0ω

t
0) η(a01λ

s
0ω

t
1) . . . η(a0nλ

s
0ω

t
n)

η(a10λ
s
1ω

t
0) η(a11λ

s
1ω

t
1) . . . η(a1nλ

s
1ω

t
n)

. . . . . . . . . . . .
η(an0λ

s
nω

t
0) η(an1λ

s
nω

t
1) . . . η(annλ

s
nω

t
n)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

d0 0 0 . . . 0
0 d1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . dn

⎞
⎟⎟⎠

⎛
⎜⎜⎝
η(a00) η(a01) . . . η(a0n)
η(a10) η(a11) . . . η(a1n)
. . . . . . . . . . . .

η(an0) η(an1) . . . η(ann)

⎞
⎟⎟⎠ .

Thus, η(BAD−t0
k A−1) is a diagonal matrix, a contradiction. We conclude that

η(BAD−t0
k ) /∈ η(〈Dh〉A〈Dk〉), and thus η(BA) /∈ η(〈Dh〉A〈Dk〉). This implies that

η(B) /∈ HK, as required.

Case 2. There does not exist an integer t0 such that, for any pair of non-zero
entries, aij and ail, j �= l, in a row of A,

xijail
xilaij

=

(
ωj

ωl

)t0

.

By assumption, given a pair of non-zero entries aij and ail, j �= l, there exists
an integer t(aij , ail), depending on aij and ail, such that

xijail
xilaij

=

(
ωj

ωl

)t(aij ,ail)

.
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If ωj = ωl, then xijail/xilaij = 1. This implies that

xijail
xilaij

=

(
ωj

ωl

)t

, for every t ∈ Z.

Therefore, in this case, there must exist two pairs {aij , ail} and {auv, auw} of non-
zero entries in rows of A such that t(aij , ail) �= t(auv, auw), ωj �= ωl, and ωv �= ωw.
Our assumptions at the beginning of the proof then imply that ωj/ωl and ωv/ωw

are not roots of unity.
Let p be a prime that does not divide t(aij , ail)− t(auv, auw). If p is sufficiently

large, then by Proposition 2.2, there exist finite fields F1 and F2, and ring homo-
morphisms

η1 : R → F1 and η2 : R → F2,

such that the multiplicative orders of η1(ωj/ωl) and η2(ωv/ωw) are equal to p.
The ring homomorphism

η = η1 × η2 : R → F1 × F2

induces a group homomorphism

η : Γ ↪→ SL(n+ 1, R) → SL(n+ 1, F1 × F2).

Suppose that η(BA) ∈ η(〈Dh〉A〈Dk〉). Then there exist integers s and t such
that

η(BA) = η(Ds
hADt

k).

By equating coefficients,

η(xij) = η(aijλ
s
iω

t
j), η(xil) = η(ailλ

s
iω

t
l )

and

η(xuv) = η(auvλ
s
uω

t
v), η(xuw) = η(auwλ

s
uω

t
w).

By dividing, (
η(ωj)

η(ωl)

)t

=
η(xijail)

η(xilaij)
=

(
η(ωj)

η(ωl)

)t(aij ,ail)

and (
η(ωv)

η(ωw)

)t

=
η(xuvauw)

η(xuwauv)
=

(
η(ωv)

η(ωw)

)t(auv ,auw)

.

Therefore,

η1(ωj/ωl)
t
= η1(ωj/ωl)

t(aij ,ail) and η2(ωv/ωw)
t
= η2(ωv/ωw)

t(auv,auw)
.

This implies that

t ≡ t(aij , ail) (mod p) and t ≡ t(auv, auw) (mod p).

Thus p divides t(aij , ail)− t(auv, auw), a contradiction. We conclude that η(BA) /∈
η(〈Dh〉A〈Dk〉), implying that η(B) /∈ HK, as required. �
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4. Generalizations of Theorem 3.2

In the proof of Theorem 3.2, we used the assumption that M = Hn/Γ is a closed
hyperbolic orbifold of dimension n ≥ 3 to draw the following conclusions:

1. Γ is finitely generated and there exists a discrete, faithful representation ρ
from Γ into GL(m,C), for some natural number m.

2. The trace field of ρ(Γ) is a number field.
3. If Γ is torsion free, then the non-trivial abelian subgroups of ρ(Γ) are free

abelian of rank 1, generated by semisimple linear transformations.
4. Cyclic subgroups of ρ(Γ) generated by semisimple linear transformations

are separable in Γ.

Conditions 1, 2 and 4 are true under the weaker assumption that M = Hn/Γ
has finite volume. Therefore, we have the following corollary to the proof of Theo-
rem 3.2.

Theorem 4.1. Let M = Hn/Γ be a finite volume hyperbolic orbifold of dimension
n ≥ 2. Let H and K be cyclic subgroups of Γ, generated by loxodromic isometries,
and let g ∈ Γ. Then the double coset HgK = {hgk | h ∈ H, k ∈ K} is separable in
Γ.

All four conditions are true for a class of cocompact lattices in semisimple Lie
groups. Therefore, we have a second corollary to the proof of Theorem 3.2.

Theorem 4.2. Let Γ be a cocompact lattice in SO(n, 1), SU(n, 1), Sp(n, 1), n ≥ 2,
or F−20

4 . Let H and K be abelian subgroups of Γ, and let g ∈ Γ. Then the double
coset HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

Proof. Cocompact lattices in SO(2, 1) are double coset separable [11]. Let G be
one of SO(n, 1), n ≥ 3, SU(n, 1), n ≥ 2, Sp(n, 1), n ≥ 2, or F−20

4 , and let Γ be
a cocompact lattice in G. If suffices to verify the four conditions above. Since
Γ is cocompact, Γ is finitely generated. Since G is a semisimple Lie group that
is not locally isomorphic to SL(2,R), and Γ is a cocompact lattice in G, by work
of Calabi-Vesentini, Selberg, Calabi and Weil, the defining embedding of Γ in G is
locally rigid. (See Theorem 3.1 of [6].) It follows that the trace field of Γ is a number
field. Since Γ is cocompact and G is of (real) rank one, the non-trivial, torsion free,
abelian subgroups of Γ are free abelian of rank 1, generated by semisimple linear
transformations. Condition 4 follows from the proof of Theorem 2 in [7]. �
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