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Abstract. Given k > 0 and an Abelian countable discrete group G with

elements of infinite order, we construct (i) rigid funny rank-one infinite measure
preserving (i.m.p.) G-actions of ergodic index k, (ii) 0-type funny rank-one
i.m.p. G-actions of ergodic index k, (iii) funny rank-one i.m.p. G-actions T of
ergodic index 2 such that the product T ×T−1 is not ergodic. It is shown that
T × T−1 is conservative for each funny rank-one G-action T .

0. Introduction

Let G be a discrete countable Abelian group and let T = (Tg)g∈G be a measure
preserving action of G on an infinite σ-finite standard measure space (X,B, μ).
By T−1 we denote the “inverse to T” action of G, i.e. T−1 := (T−g)g∈G. Given
two G-actions S and R of G, we denote by S ×R and S ⊗R the following product
actions ofG andG×G respectively on the product of the underlying measure spaces:
S×R := (Sg×Rg)g∈G and S⊗R := (Sg×Rh)g,h∈G. If S and R are both conservative
or ergodic, then S ⊗ R is also conservative or ergodic respectively. However the
product S × R can be neither ergodic nor conservative. If T × · · · × T (k times)
is ergodic but T × · · · × T (k + 1 times) is not, then T is said to have ergodic
index k. In 1963, Kakutani and Parry [KaPa] constructed, for each k, an infinite
Markov shift (i.e. Z-action) of ergodic index k. In their examples, the product
T × · · · × T (k times) is ergodic if and only if it is conservative. For a half-century
their examples were the only examples of transformations of finite ergodic index k >
1. Recently another family of Z-actions of an arbitrary finite ergodic index appeared
in [AdSi] by Adams and Silva. That family consists of rank-one transformations T
with infinite conservative index, i.e. T × · · · × T (l times) is conservative for each
l > 0. We extend and refine their result to the Abelian groups containing elements
of infinite order in the following way.

Theorem 0.1. Let G have an element of infinite order. For each k > 0, there
is a rigid funny rank-one1 G-action T of ergodic index k. Moreover, the G-action
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case G = Z
k, if each Fn is a cube, then T is said to be of rank one.

c©2015 American Mathematical Society

2521

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/12906


2522 ALEXANDRE I. DANILENKO

T × · · · × T︸ ︷︷ ︸
m times

×T−1 × · · · × T−1︸ ︷︷ ︸
k−m times

is ergodic for every m ∈ {0, 1, . . . , k − 1}. Further-

more, if G = Z
d for some d > 0, then T can be chosen in the class of rank-one

actions.

We note that T has infinite conservative index if T is rigid. We also note that
while the proof of the first claim of Theorem 0.1 in [AdSi] (in the case G = Z) is
somewhat tricky, our proof is shorter and more direct.

In the next theorem we construct funny rank-one actions of finite ergodic index
which are mixing (called also zero type; see [DaSi] and references therein), i.e.
limg→∞ μ(TgA∩A) = 0 for each subset A of finite measure. Thus these actions (in
the case where G = Z) are different from those constructed in [KaPa] and [AdSi].

Theorem 0.2. Let G have an element of infinite order. For each k > 0, there
is a mixing (zero type) funny rank-one G-action T of ergodic index k such that
T × · · · × T (k + 1 times) is conservative but T × · · · × T (k + 2 times) is non-
conservative. Moreover, the G-action T × · · · × T︸ ︷︷ ︸

m times

×T−1 × · · · × T−1︸ ︷︷ ︸
k−m times

is ergodic for

every m ∈ {0, 1, . . . , k− 1}. Furthermore, if G = Z
d for some d > 0, then T can be

chosen in the class of rank-one actions.

In a recent paper [Cl-Va], rank-one transformations T are constructed such that
the product T × T is ergodic but T × T−1 is not. This is a partial answer to the
following question of Bergelson (see problem P10 in [Da1]): is there a transfor-
mation T with infinite ergodic index and such that T × T−1 is non-ergodic? The
next theorem extends this result to the actions of Abelian groups and simplifies
the original proof. Moreover, we show (confirming a conjecture from [Cl-Va]) that
these examples do not answer Bergelson’s question completely because the G-action
T × T × T is not even conservative.

Theorem 0.3. Let G have an element of infinite order. There is a funny rank-one
action T of G of ergodic index 2 such that T ×T−1 is non-ergodic but conservative
and T × T × T is non-conservative. Furthermore, if G = Z

d for some d > 0, then
T can be chosen in the class of rank-one actions.

It follows, in particular, that T is asymmetric, i.e. not isomorphic to T−1. Thus,
Theorem 0.3 illustrates that even such a simple invariant as “ergodicity of prod-
ucts” can distinguish between T and T−1. Of course, this is impossible in the
framework of finite measure preserving actions. For other, more involved examples
of asymmetric infinite measure preserving systems we refer to [DaRy] and [Ry].

It was shown in [Cl-Va] that for each rank-one Z-action T , the product T ×T−1

is conservative. We generalize this result to the funny rank-one action of Abelian
groups.

Theorem 0.4. Let T be a funny rank-one action of G. Then the G-action T ×T−1

is conservative.

On the other hand, we show that for each infinite measure preserving Markov
shift T of ergodic index 1, the product T ×T−1 is not conservative (Corollary 3.3).
This was also proved in [Cl-Va] under an additional assumption that T is “re-
versible” as a Markov shift. It follows from Corollary 3.2 that if an infinite Markov
shift T has an ergodic index higher than 1, then T × T−1 is ergodic. Hence within
the class of infinite Markov shifts, the answer to Bergelson’s question is negative.
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1. (C,F )-construction

All the examples in this paper are built via the (C,F )-construction which is an
algebraic counterpart of the classical “geometric” cutting-and-stacking inductive
construction process with a single tower on each step. In this section we briefly
outline the basics of this construction. For a detailed exposition we refer the reader
to [Da1] and [Da2]. Given two finite subsets A,B ⊂ G, we denote by A+B the set
of all sums {a+ b | a ∈ A, b ∈ B}. If A is a singleton, say A = {a}, we write a+B
in place of {a}+B.

Let (Fn)n≥0 and (Cn)n≥1 be two sequences of finite subsets in G such that for
each n > 0,

F0 = {0}, #Cn > 1,(1-1)

Fn + Cn+1 ⊂ Fn+1,(1-2)

(Fn + c) ∩ (Fn + c′) = ∅ if c, c′ ∈ Cn+1 and c �= c′.(1-3)

We let Xn := Fn ×Cn+1 ×Cn+2 × · · · and endow this set with the infinite product
topology. Then Xn is a compact Cantor (i.e. totally disconnected perfect metric)
space. The mapping

Xn � (fn, cn+1, cn+2, . . . ) 	→ (fn + cn+1, cn+2, . . . ) ∈ Xn+1

is a topological embedding of Xn into Xn+1. Therefore an inductive limit X of
the sequence (Xn)n≥0 furnished with these embeddings is a well-defined locally
compact Cantor space. Given a subset A ⊂ Fn, we let

[A]n := {x = (fn, cn+1, . . . ) ∈ Xn | fn ∈ A}
and call this set an n-cylinder in X. It is open and compact in X. The collection
of all cylinders coincides with the family of all compact open subsets in X. It is
easy to see that

[A]n ∩ [B]n = [A ∩B]n, [A]n ∪ [B]n = [A ∪B]n and

[A]n = [A+ Cn+1]n+1

for all A,B ⊂ Fn and n ≥ 0. For brevity, we will write [f ]n for [{f}]n, f ∈ Fn.
Now we define the (C,F )-measure μ on X by setting

μ([A]n) =
#A

#C1 · · ·#Cn
for each subset A ⊂ Fn, n > 0,

and then extending μ to the Borel σ-algebra on X. We note that μ is infinite if
and only if

(1-4) lim
n→∞

#Fn

#C1 · · ·#Cn
= ∞.

Suppose that for each g ∈ G,

(1-5) g + Fn + Cn+1 ⊂ Fn+1 eventually in n.

We now define an action of G on X. Given x ∈ X and g ∈ G, there is n > 0 such
that x = (fn, cn+1, cn+2, . . . ) ∈ Xn and g + fn ∈ Fn. We let

Tgx := (g + fn, cn+1, . . . ) ∈ Xn ⊂ X.

Then Tg is a well-defined homeomorphism of X and T := (Tg)g∈G is a continuous
action of G on X. We call it the (C,F )-action of G associated with the sequence
(Cn, Fn−1)n≥1. It is free. If x, y ∈ Xn, x = (fn, cn+1, . . . ), x

′ = (f ′, c′n+1, . . . ) and
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y = Tgx, then g = (f ′ − f) + (c′n+1 − cn+1) + · · · . Only finitely many parentheses
in this infinite sum are different from 0. We note that T is of funny rank-one along
(Fn)n≥0, because the sequence of Fn-towers {Tf [0]n | f ∈ Fn} = {[f ]n | f ∈ Fn}
approximates the entire Borel σ-algebra on X as n → ∞. It is easy to see that T
preserves μ. We note that the action T ⊗ T of G×G is also a (C,F )-action. It is
associated with the sequence (Cn×Cn, Fn−1×Fn−1)n≥1. Therefore if A is a subset
of Fn × Fn, then we have [A]n =

⊔
(a,b)∈A[a]n × [b]n.

To state the following lemma we recall the definition of full groupoid. Given a
measure preserving action R = (Rg)g∈G on a standard measure space (X,μ) and
a subset A ⊂ X, we say that a Borel map τ : A → X belongs to the full groupoid
of R (and write τ ∈ [[R]]) if τ is one-to-one and τx ∈ {Rgx | g ∈ G} for all x ∈ A.
Equivalently, there is a partition of A into subsets Ag, g ∈ G, such that τx = Rgx
if x ∈ Ag and RgAg ∩RhAh = ∅ if g �= h ∈ G. Some of Ag can be of zero measure.
It follows that τ preserves μ.

Lemma 1.1. Let δ > 0, let H be a subgroup of G and let N be an infinite subset
of N.

(i) If for each n ∈ N there is a subset A ⊂ [0]n and a map τ : A → [0]n such
that τ ∈ [[(Th)h∈H ]], μ(A) ≥ δμ([0]n) and τx �= x for all x ∈ A, then the
action (Th)h∈H is conservative.

(ii) If for each n ∈ N and v, w ∈ Fn there is a subset A ⊂ [v]n and a map
τ : A → [w]n such that τ ∈ [[(Th)h∈H ]] and μ(A) ≥ δμ([v]n), then the
action (Th)h∈H is ergodic.

Proof. (i) Let B be a subset of X of positive measure. Then there are n ∈ N
and f ∈ Fn with μ([f ]n ∩ B) > (1 − δ

4 )μ([f ]n). By the assumption of the lemma,
there is a subset A ⊂ [0]n and a map τ : A → [0]n such that τ ∈ [[(Th)h∈H ]],
μ(A) > δμ([0]n) and τx �= x for all x ∈ A. We define a new map ϕ : TfA → [f ]n
by setting ϕ := TfτT

−1
f . Since G is Abelian, ϕ ∈ [[(Th)h∈H ]]. Moreover, ϕx �= x

for all x ∈ TfA and

μ(ϕ(TfA ∩B) ∩B) >
δ

2
μ([f ]n) > 0.

Therefore, there is h ∈ H such that h �= 0 and μ(Th(TfA ∩ B) ∩ B) > 0. Hence
(Th)h∈H is conservative.

(ii) Let B1 and B2 be subsets of X of positive measure. Then there are n ∈ N
and elements v, w ∈ Fn with μ([v]n ∩ B1) > (1 − δ

4 )μ([v]n) and μ([w]n ∩ B2) >

(1− δ
4 )μ([w]n). By the assumption of the lemma, there is a subset A ⊂ [v]n and a

map τ : A → [w]n such that τ ∈ [[(Th)h∈H ]] and μ(A) > δμ([v]n). It follows that
μ(τ (B1∩[v]n)∩[w]n∩B2) > 0. Therefore there is h ∈ H such that μ(ThB1∩B2) > 0.
Hence (Th)h∈H is ergodic. �

2. Proofs of the main results

Fix a Følner sequence (Fn)
∞
n=1 in G such that F1 ⊂ F2 ⊂ · · · and

⋃
n Fn = G. In

the case where G = Z
d, we choose Fn to be a cube for each n. The actions whose

existence is stated in Theorems 0.1–03 will appear as (C,F )-actions associated
with some sequences (Cn, Fn−1)n≥1. Moreover, (Fn)

∞
n=1 will be a subsequence of

(Fn)
∞
n=1. Therefore in the case G = Z

d, the associated (C,F )-actions will be
automatically of rank one. Hence we do not need to prove the final claims of
Theorems 0.1–0.3.
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Proof of Theorem 0.1. (i) Partition the natural numbers N into countably many
subsets Nf indexed by elements f ∈ Gk such that every Nf is an infinite arithmetic
sequence. For each f = (f1, . . . , fk) ∈ Gk and each n ∈ Nf there is a unique
sequence (dn,j)

k
j=0 of non-negative integers such that dn,0 = 0 and dn,j−1−dn,j = fj

for all j = 1, . . . , k. Fix an increasing sequence (Rn)n≥0 of positive integers such
that

∑
n≥0 R

−k
n = +∞ but

∑
n≥0 R

−k−1
n < +∞. We note that then

∑
n∈Nf

R−k
n =

+∞ for each f ∈ Gk.
To construct T we have to define the corresponding sequence (Cn, Fn−1)n≥1.

This will be done inductively. We let F0 = {0}. Suppose that we have already
determined the sequence (Cj , Fj)

n−1
j=1 . Then we let

Cn,0 := {0, an + dn,1, . . . , kan + dn,k}, Cn,1 := {wn, 2wn, . . . , (Rn − k − 1)wn},
and Cn := Cn,0 � Cn,1, where the elements an, wn ∈ G are chosen so that

(2-1) (Cn,1 − Cn − Cn + Cn) ∩ (Fn−1 − Fn−1 + Fn−1 − Fn−1) = {0}.
Now let Fn be an element of (Fj)j≥1 such that Fn−1 + Fn−1 + Cn ⊂ Fn. Continu-
ing this process infinitely many times we obtain a sequence (Cn, Fn−1)n≥1 satisfy-
ing (1-1)–(1-5). Denote by T the associated (C,F )-action of G. Let (X,μ) stand
for the space of T . It is easy to see that μ(TwnA ∩ A) → μ(A) as n → ∞ for each
subset A of finite measure. Hence T is rigid.

Claim 1. T × · · · × T (k times) is ergodic.
Take n > 0 and let v, w ∈ F k

n . We let f := w − v. Given x ∈ [v]n ⊂ Xk, we
write the expansion

x = (v, xn+1, xn+2, . . . ) ∈ F k
n × Ck

n+1 × Ck
n+2 × · · ·

and set

�(x) := min{l ∈ Nf ∩ {n+ 1, n+ 2, . . . } | xl ∈ (Cl,0 \ {kal + dl,k})k}.
Let A denote the subset of [v]n where the map � is well defined. Then

μk([v]n \A)

μk([v]n)
=

∏
l∈Nf ,l>n

(#Cl)
k − (#Cl,0 − 1)k

(#Cl)k
=

∏
l∈Nf ,l>n

(
1− kk

Rk
l

)
= 0

because
∑

l∈Nf
R−k

l = ∞. Thus � is defined almost everywhere on [v]n. For l > n,
we set

Al := {x ∈ A | �(x) = l and xl = (0, al + dl,1, . . . , (k − 1)al + dl,k−1)}.
Then μk(

⊔
l>nAl) = μk(A)/(k + 1)k. We now define a map τ :

⊔
l>n Al → Xk by

setting

τx := (Tal
× · · · × Tal

)x if x ∈ Al, l > n.

Of course, τ ∈ [[T × · · · × T ]]. Since

al + ((j − 1)al + dl,j−1) = fj + (jal + dl,j) for j = 1, . . . , k,

it follows that (Tal
× · · · × Tal

)x = (Tf1 × · · · × Tfk)y, where y = (yi)i≥n ∈ F k
n ×

Ck
n+1×Ck

n+2×· · · , yi = xi if i ≥ n and i �= l and yl = (al+dl,1, . . . , kal+dl,k) ∈ Ck
l .

Since y ∈ [v]n and f = w − v, we obtain that (Tf1 × · · · × Tfk)y ∈ [w]n for each
x ∈ Al. Hence τx ∈ [w]n for each x ∈

⊔
l>n Al. Therefore T × · · · × T (k times) is

ergodic by Lemma 1.1(ii).
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Claim 2. The G-action T × · · · × T︸ ︷︷ ︸
m times

×T−1 × · · · × T−1︸ ︷︷ ︸
k−m times

is ergodic for every m ∈

{0, 1, . . . , k− 1}. The proof is similar to the proof of Claim 1. There are only a few

points of difference which we specify now. Let f̃ := (f1, . . . , fm,−fm+1, . . . ,−fk).
Replace Nf with N

˜f in the definition of �. Define

Bl := {x ∈ A | �(x) = l and xl = (0, al + dl,1, . . . , (m− 1)al + dl,m−1,

(m+ 1)al + dl,m+1, . . . , kal + dl,k)}.
Replace Al with Bl and Tal

× · · · × Tal
with Tal

× · · · × Tal︸ ︷︷ ︸
m times

×T−al
× · · · × T−al

in

the definition of τ .

Claim 3. T × · · · × T (k + 1 times) is not ergodic. Choose n > 0 such that∑∞
j=n(

k+1
Rj

)k+1 < 1. We now let

W := {0} × (Ck+1
n \ Ck+1

n,0 )× (Ck+1
n+1 \ Ck+1

n+1,0)× · · · ⊂ [0]n−1 ⊂ Xk+1.

Here 0 denotes zero in Gk+1. Then

μk+1(W )

μk+1([0]n−1)
=

∏
j≥n

(
1−

(
k + 1

Rj

)k+1)
≥ 1−

∑
j≥n

(
k + 1

Rj

)k+1

> 0.

Fix h ∈ Fn−1 \ {0}. We now show that the (T × · · · × T )-orbit of W does not
intersect the cylinder B := [0]n−1×· · ·× [0]n−1× [h]n−1 ⊂ Xk+1. If not, then there
is x = (x1, . . . , xk+1) ∈ W and g ∈ G such that

(2-2) (Tgx1, . . . , Tgxk+1) ∈ B.

Consider the expansions

xl = (0, xl
n, x

l
n+1, . . . ) ∈ {0} × Cn × Cn+1 × · · · , l = 1, . . . , k + 1,

Tgx
l = (0, yln, y

l
n+1, . . . ) ∈ {0} × Cn × Cn+1 × · · · , l = 1, . . . , k, and

Tgx
k+1 = (h, yk+1

n , yk+1
n+1, . . . ) ∈ {h} × Cn × Cn+1 × · · · .

It follows from (2-2) that there are integers Nl ≥ n, l = 1, . . . , k + 1, such that

(2-3)

{
g =

∑Nl

i=n(y
l
i − xl

i), l = 1, . . . , k,

g = h+
∑Nk+1

i=n (yk+1
i − xk+1

i )

and ylNl
�= xl

Nl
, l = 1, . . . , k + 1. Then (2-1) yields that N1 = · · · = Nk+1. Since

x ∈ W , there exists l0 ∈ {1, . . . , k+1} with xl0
N1

∈ CN1,1. It now follows from (2-1)

that ylN1
− xl

N1
= yl0N1

− xl0
N1

for all l = 1, . . . , k + 1. Hence we deduce from (2-3)
that {

g − (y1N1
− x1

N1
) =

∑N1−1
i=n (yli − xl

i), l = 1, . . . , k, and

g − (y1N1
− x1

N1
) = h+

∑N1−1
i=n (yk+1

i − xk+1
i ).

Repeating this procedure at most N1 − n − 1 times we obtain that g = g − h, a
contradiction. �

Proof of Theorem 0.2. The desired action is constructed in the same way as in
Theorem 0.1 however Cn,1 is different. We now set

Cn,1 := {wn,1, . . . , wn,Rn−k−1},



INFINITE MEASURE PRESERVING ACTIONS 2527

where the elements wn,j ∈ G are chosen so that (2-1) is satisfied and

(2-4) the mapping (Cn,1 × Cn) \ D � (c, c′) 	→ c− c′ ∈ G is one-to-one,

where D is the diagonal in G×G. As in the proof of Theorem 0.1, we denote the
corresponding (C,F )-action by T . Claims 1–3 from the proof of that theorem hold
(verbally) for the “new” T as well.

Claim 4. T × · · · × T (k + 1 times) is conservative.
Take n > 0. Given x = (x1, . . . , xk+1) ∈ [0]n, we set

�(x) := min{l > n | x1
l = · · · = xk+1

l }.

Let A denote the subset of [0]n where � is well defined. Then

μk+1([0]n \A)

μk+1([0]n)
=

∏
l>n

(#Cl)
k+1 −#Cl

(#Cl)k+1
=

∏
l∈Nf ,l>n

(
1− 1

Rk
l

)
= 0.

For each m ∈ N and c ∈ Cm, we let Am,c := {x ∈ A | �(x) = m,x1
m = c} and fix an

element c′ from Cm \ {c}. We now define a map τ : A → Xk+1 by setting

τx = (Tc′−c × · · · × Tc′−c)x if x ∈ Am,c, c ∈ Cm, m ∈ N.

Since A =
⊔

m∈N

⊔
c∈Cm

Am,c, it follows that τx is well defined, τx ∈ [0]n and
τ ∈ [[T × · · · × T ]]. It remains to apply Lemma 1.1(i).

Claim 5. T × · · · × T (k + 2 times) is not conservative.

Choose n > 0 such that
∑∞

j=nR
−k−1
j < 0.5 and Rn > (k + 1)k+2. Denote by

Dn the diagonal in Ck+2
n,1 , i.e. Dn := {(c1, . . . , ck+2) ∈ Ck+2

n,1 | c1 = · · · = ck+2}. We
now let

W := (Ck+2
n \ (Ck+2

n,0 ∪Dn))× (Ck+2
n+1 \ (Ck+2

n+1,0 ∪Dn+1))× · · · ⊂ [0]n−1,

where 0 stands now for the zero in Gk+2. Then

μk+2(W )

μk+2([0]n−1)
=

∏
j≥n

(
1−

(
k + 1

Rj

)k+2

− Rj − k − 1

Rk+2
j

)

≥
(
1−

∑
j≥n

1

Rk+1
j

(
1 +

(k + 1)k+2

Rj

))
> 0.

We now show that W is a (T × · · · × T )-wandering set. If not, then there are
x = (x1, . . . , xk+2) ∈ W and g ∈ G such that (Tgx

1, . . . , Tgx
k+2) ∈ W. Consider

the expansions

xl = (0, xl
n, x

l
n+1, . . . ) ∈ {0} × Cn × Cn+1 × · · · and

Tgx
l = (0, yln, y

l
n+1, . . . ) ∈ {0} × Cn × Cn+1 × · · · ,

l = 1, . . . , k + 2. Arguing in the same way as in the proof of Claim 3, we find N1

such that g =
∑N1

i=n(y
l
i − xl

i), 0 �= ylN1
− xl

N1
= y1N1

− x1
N1

for all l = 1, . . . , k + 2.

Moreover, xl
N1

∈ CN1,1 for all l = 1, . . . , k + 2 because x ∈ W . Then we deduce

from (2-4) that x1
N1

= · · · = xk+2
N1

, i.e. (x1
N1

, . . . , xk+2
N1

) ∈ DN1
. Therefore x /∈ W , a

contradiction.
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Claim 6. T is mixing. Let A ⊂ Fn−1, g ∈ (Fn−Fn)\(Fn−1−Fn−1) and g+A+Cn ⊂
Fn. Then we have

μ(Tg[A]n−1 ∩ [A]n−1) =
∑

c,c′∈Cn

μ([g +A+ c]n ∩ [A+ c′]n)

≤ μ([A]n−1)#{(c, c′) ∈ Cn × Cn | g ∈ A−A+ c− c′}
#Cn

.

We first note that if

(2-5) g ∈ A−A+ c− c′,

then c �= c′ by the choice of g. If either c ∈ Cn,1 or c′ ∈ Cn,1, then we deduce
from (2-1) and (2-4) that at most one such pair (c, c′) satisfies (2-5). If both
c �∈ Cn,1 and c′ �∈ Cn,1, then c, c′ ∈ Cn,0 and hence there are no more than k(k+1)
such pairs (c, c′) satisfying (2-5). Hence

μ(Tg[A]n−1 ∩ [A]n−1) <
(k + 1)2

#Cn
μ([A]n−1).

It follows that limg→∞ μ(TgB ∩ B) = 0 for each cylinder B and hence for each
subset of finite measure in X. �
Proof of Theorem 0.3. Let (dn)

∞
n=1 be a sequence of elements of G in which each

element of G occurs infinitely many times. Let (Nn)
∞
n=1 be a sequence of positive

integers such that
∑

n>0
1

Nn
< 1

4 .

Suppose that we have already determined (Cj , Fj)
n−1
j=1 . Suppose also that dn ∈

Fn−1 − Fn−1. We then set

Cn := {en,i,−en,i,−ln,i, ln,i − dn | i = 1, . . . , Nn},
for some elements en,i, ln,i of G, 1 ≤ i ≤ Nn, such that

(2-6) (Cn − Cn) ∩ (Fn−1 − Fn−1 + Fn−1 − Fn−1) = {0}.
We call en,i and −en,i as well as ln,i and −ln,i − dn antipodal, 1 ≤ i ≤ Nn. If
c1, . . . , c4 ∈ Cn, c1 and c4 are antipodal and c2 and c3 are antipodal, then

(c1 − c2)− (c3 − c4) ∈ {0, dn,−dn}.
We introduce the following conditions on Cn. Let c1, . . . , c4 ∈ Cn.

If 0 �= (c1 − c2)− (c3 − c4) ∈ Fn−1 − Fn−1 + Fn−1 − Fn−1,(2-7)

then c1 and c4 (and c2 and c3) are antipodal, and

the mapping (Cn × Cn)\D � (c, c′) 	→ c− c′ ∈ G is one-to-one.(2-8)

It is straightforward to verify that there exist en,i, ln,i, 1 ≤ i ≤ Nn, such that
Cn satisfies (2-6)–(2-8). Now let Fn be an element of (Fj)j≥1 such that Fn ⊃
Fn−1 + Fn−1 + Cn and dn+1 ∈ Fn − Fn. Continuing this construction process
infinitely many times we obtain a sequence (Cn, Fn−1)n≥1 satisfying (1-1)–(1-4).
Let T denote the (C,F )-action of G associated with (Cn, Fn−1)n≥1.

Claim 7. T × T is ergodic.
Take m > 0 and v1, v2, w1, w2 ∈ Fm. There is n > m such that dn = w2 − w1 +

v1 − v2. Let

A :=

Nn⊔
i,j=1

[v1 +D + ln,i]n × [v2 +D − en,j ]n ⊂ [v1]m × [v2]m,
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where D := Cm+1 + · · ·+ Cn−1. Define a map τ : A → [w1]m × [w2]m by setting

τ (x, y) = (Tw1−v1+en,j−ln,i
x, Tw1−v1+en,j−ln,i

y)

if x ∈ [v1 +D + ln,i]n and y ∈ [v2 +D − en,j ]n. Indeed, since

Tw1−v1+en,j−ln,i
[v1 +D + ln,i]n = [w1 +D + en,j ]n and

Tw1−v1+en,j−ln,i
[v2 +D − en,j ]n = [w2 +D + (−ln,i − dn)]n

for all i, j = 1, . . . , Nn, it follows that τ is a bijection of A onto τ (A) ⊂ [w1]m×[w2]m.
Of course, τ ∈ [[T × T ]]. It is easy to compute that

(μ× μ)(A) = (μ× μ)([v1]m × [v2]m)/16.

By Lemma 1.1(ii), the action T × T is ergodic.

Claim 8. T × T−1 is not ergodic. Fix f1 ∈ F1 \ {0}. We let

Z := {(x, x̃) ∈ [0]1 × [0]1 | xj and x̃j are not antipodal for each j > 0},
where x = (0, x2, x3, . . . ), x̃ = (0, x̃2, x̃3, . . . ) ∈ F1 ×C2 × · · · . It is easy to compute
that

(μ× μ)(Z) =

(
1− 4

∑
j>1

1

Nj

)
(μ× μ)([0]1 × [0]1).

Hence (μ × μ)(Z) > 0. We show that
⋃

g∈G(Tg × T−g)Z ∩ ([0]1 × [f1]1) = ∅. If

not, there is (x, x̃) ∈ Z and g ∈ G such that Tgx ∈ [0]1 and T−gx̃ ∈ [f1]1. Since
Tgx = (0, x′

2, x
′
3, . . . ) ∈ F1×C2×C3×· · · and T−gx̃ = (f1, x̃

′
2, . . . ) ∈ F1×C2×· · · ,

there are integers M1 and M2 such that

(2-9)
g = (x′

2 − x2) + · · ·+ (x′
M1

− xM1
) and

−g = f1 + (x̃′
2 − x̃2) + · · ·+ (x̃′

M2
− x̃M2

)

with xM1
�= x′

M1
and x̃M2

�= x̃′
M2

. It follows from (2-6) that M1 = M2. Since
xM1

and x̃M1
are not antipodal, we deduce from (2-7) and (2-9) that xM1

− x′
M1

=
x̃′
M1

− x̃M1
. Hence (2-9) yields that

h = (x′
2 − x2) + · · ·+ (xM1−1 − x′

M1−1) and

−h = f1 + (x̃′
2 − x̃2) + · · ·+ (x̃′

M1−1 − x̃M1−1),

where h := g + xM1
− x′

M1
. Continuing this way several times, we find L ∈

{2, 3, . . . ,M1} and f ∈ G such that

f = (x′
2 − x2) + · · ·+ (x′

L − xL) and

−f = f1 + (x̃′
2 − x̃2) + · · ·+ (x̃′

L − x̃L)

with xL − x′
L �= x̃′

L − x̃L, xL − x′
L �= 0 and x̃′

L − x̃L �= 0. If such an L does not
exists we then obtain that f = 0 and hence f1 = 0, a contradiction. However then
it follows from (2-7) that cL and c̃L are antipodal, a contradiction again.

Claim 9. T × T × T is not conservative. Let

W := {(x, y, z) ∈ [0]0 × [0]0 × [0]0 | xj �= yj , yj �= zj , xj �= zj for each j > 0},
where xj , yj and zj are the j-th coordinates of x, y and z viewed as infinite sequences
from {0} × C1 × C2 × · · · . Then

(μ× μ× μ)(W ) > 1− 3

4

∑
j>0

1

Nj
> 0.
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We claim that W is a wandering subset for T ×T ×T . If not, there is (x, y, z) ∈ W
and g ∈ G such that

(2-10) Tgx, Tg ỹ, Tg z̃ ∈ [0]1.

We write the expansions x = (0, x1, x2, . . . ), y = (0, ỹ1, ỹ2, . . . ), z = (0, z̃1, z̃2, . . . ),
Tgx = (0, x′

1, x
′
2, . . . ), Tgy = (0, ỹ′1, ỹ

′
2, . . . ) and Tgz = (0, z̃′1, z̃

′
2, . . . ) as infinite

sequences from {0} × C1 × C2 × · · · . Then (2-10) and (2-6) yield that there is an
integer M such that

(2-11)

g = (x′
1 − x1) + · · ·+ (x′

M − xM ),

g = (y′1 − y1) + · · ·+ (y′M − yM ) and

g = (z′1 − z1) + · · ·+ (z′M − zM )

with x′
M − xM �= 0, y′M − yM �= 0 and z′M − zM �= 0. If x′

M − xM = y′M − yM ,
then xM = yM by (2-8) and hence (x, y, z) �∈ W . Therefore x′

M − xM �= y′M − yM .
In a similar way, y′M − yM �= z′M − zM . However then (2-11) and (2-7) yield that
xM1

and y′M1
are antipodal and zM1

and y′M1
are antipodal. This is only possible

if xM1
= zM1

and hence (x, y, z) �∈ W , a contradiction.
The fact that T × T−1 is conservative follows from Theorem 0.4. �

Proof of Theorem 0.4. For each n > 0, we let

A :=
⊔

c�=c′∈Cn+1

[c]n+1 × [c′]n+1 ⊂ [0]n × [0]n

and define a map τ : A → [0]n × [0]n by setting

τ (x, y) = (Tc′−cx, Tc−c′y) if x ∈ [c]n+1, y ∈ [c′]n+1.

Then τ ([c]n+1 × [c′]n+1) = [c′]n+1 × [c]n+1, τ ∈ [[T × T−1]] and

(μ× μ)(A) =

(
1− 1

#Cn+1

)
(μ× μ)([0]n × [0]n) ≥

1

2
(μ× μ)([0]n × [0]n).

By Lemma 1.1(i), T × T−1 is conservative. �

3. On “symmetry” of Markov shifts

In this section we consider only the case where G = Z. We first recall some basic
definitions and properties of infinite measure preserving Markov shifts.

Let S be an infinite countable set and let P = (Pa,b)a,b∈S be a stochastic
matrix over S. Suppose that there is a strictly positive vector λ = (λs)s∈S

which is a left eigenvector for P with eigenvalue 1, i.e. λP = λ. Moreover,
assume that

∑
s∈S λs = ∞. Consider the infinite product space X := SZ and

endow X with the infinite product Borel structure. Let T denote the left shift
on X. Given s0, . . . , sk ∈ S and l ∈ Z, we denote by [s0, . . . , sk]

l+k
l the cylinder

{x = (xj)j∈Z | xl = s0, . . . , xl+k = sk}. Define a measure μP,λ on X by setting

μP,λ([s0, . . . , sk]
l+k
l ) = λs0Ps0,s1 · · ·Psk−1,sk for each cylinder [s0, . . . , sk]

l+k
l . Then

μP,λ extends uniquely to the Borel σ-algebra on X as a σ-finite infinite measure
which is invariant under T . The dynamical system (X,μP,λ, T ) is called an infinite
Markov shift.
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Lemma 3.1 ([Aa], [KaPa]). (X,μP,λ, T ) is conservative and ergodic if and only if
the following two conditions are satisfied:

(i) P is irreducible, i.e. for each a, b ∈ S, there is n > 0 such that P
(n)
a,b > 0,

and
(ii) P is recurrent, i.e.

∑
n>0 P

(n)
a,a = ∞ for some (and hence for each in view

of (i)) a ∈ S.

If (ii) does not hold, then (X,μP,λ, T ) is not conservative.

Here P (n) means the usual matrix power P · · ·P (n times).
Let σ : X → X denote the flip, i.e. (σx)n := x−n for x ∈ X and n ∈ Z.

Denote by Λ = (Λa,b)a,b∈S a matrix over S such that Λa,b = λa if a = b and
Λa,b = 0 if a �= b. It is straightforward to verify that σTσ−1 = T−1, Λ−1P ∗Λ is
a stochastic matrix and μP,λ ◦ σ = μΛ−1P ∗Λ,λ. Given two infinite Markov shifts

which are defined on the spaces (SZ, μP,λ) and (SZ
1 , μP1,λ1

), their Cartesian product
is an infinite Markov shift defined on the space ((S × S1)

Z, μP⊗P1,λ×λ1
), where the

matrix P ⊗ P1 is defined over S × S1 by (P ⊗ P1)(a,a1),(b,b1) := Pa,b(P1)a1,b1 .

Corollary 3.2. Let (X,μP,λ, T ) be an infinite Markov shift and let 0 ≤ m ≤ k.

Then the transformation T × · · · × T︸ ︷︷ ︸
m times

×T−1 × · · · × T−1︸ ︷︷ ︸
k−m times

is conservative and ergodic

if and only if T × · · · × T (k times) is conservative and ergodic.

Proof. Fix a ∈ S. Then

(P⊗m ⊗ (Λ−1P ∗Λ)⊗(k−m))
(n)
(a,...,a) = (P (n)

a,a )
m(P (n)

a,a )
k−m = (P (n)

a,a )
k = (P⊗k)

(n)
(a,...,a).

Hence by Lemma 3.1(ii), the stochastic matrix P⊗m⊗(Λ−1P ∗Λ)⊗(k−m) is recurrent
if and only if the stochastic matrix P⊗k is recurrent. In a similar way one can check
that P⊗m ⊗ (Λ−1P ∗Λ)⊗(k−m) is irreducible if and only if so is P⊗k. �

The following assertion follows from Lemma 3.1 and Corollary 3.2.

Corollary 3.3. Let T be an ergodic conservative infinite Markov shift of ergodic
index one. Then T × T−1 is not conservative.

We note that Corollary 3.3 was proved in [Cl-Va] under an extra assumption
that P = Λ−1P ∗Λ.

4. Open problems and remarks

(1) Given p ≥ k ≥ 1, is there a mixing rank-one infinite measure preserving
transformation of ergodic index k such that T × · · · × T (l times) is conser-
vative if and only if l ≤ p? Theorem 0.2 provides an affirmative answer to
this question if p = k + 1.

(2) Is there a rank-one infinite measure preserving transformation T such that
T × T−1 is ergodic but T × T is not?

(3) Is there a rank-one infinite measure preserving transformation T such that
T × T × T is ergodic but T × T−1 is not?

(4) We note that Theorem 0.4 extends naturally to the ergodic infinite measure
preserving actions of finite funny rank (see [Da2] for the definition).
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(5) It would be interesting to investigate which indexes of ergodicity and conser-
vativeness are realizable on the infinite measure preserving transformations
which are Maharam extensions of type III1 ergodic non-singular transfor-
mations (see [DaSi] for the definitions).
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