
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 144, Number 6, June 2016, Pages 2661–2675
http://dx.doi.org/10.1090/proc/12909

Article electronically published on October 21, 2015

UNIQUENESS OF STABLE PROCESSES WITH DRIFT

ZHEN-QING CHEN AND LONGMIN WANG

(Communicated by David Levin)

Abstract. Suppose that d ≥ 1 and α ∈ (1, 2). Let Lb = −(−Δ)α/2 + b · ∇,
where b is an R

d-valued measurable function on R
d belonging to a certain

Kato class of the rotationally symmetric α-stable process Y on R
d. We show

that the martingale problem for (Lb, C∞
c (Rd)) has a unique solution for every

starting point x ∈ R
d. Furthermore, we show that the stochastic differential

equation dXt = dYt + b(Xt)dt with X0 = x has a unique weak solution for
every x ∈ R

d.

1. Introduction

In this paper, unless otherwise stated, d ≥ 1 and α ∈ (1, 2). A rotationally
symmetric α-stable process Y in R

d is a Lévy process with characteristic function
given by

(1.1) E[exp(iξ · (Yt − Y0))] = exp (−t|ξ|α) , ξ ∈ R
d.

The infinitesimal generator of Y is the fractional Laplacian Δα/2 := −(−Δ)α/2.
Here we use “:=” for definition. Denote by B(x, r) the open ball in R

d centered at
x ∈ R

d with radius r > 0 and dx the Lebesgue measure on R
d.

Definition 1.1. For a real-valued function f on R
d and r > 0, define

(1.2) Mα
f (r) := sup

x∈Rd

∫
B(x,r)

|f(y)|
|x− y|d+1−α

dy.

A function f on R
d is said to belong to the Kato class Kd,α−1 if limr↓0M

α
f (r) = 0.

Using Hölder’s inequality, it is easy to see that for every p > d/(α−1), L∞(Rd; dx)
+Lp(Rd; dx) ⊂ Kd,α−1. Throughout this paper we will assume b = (b1, · · · , bd) is
an R

d-valued function on R
d such that |b| ∈ Kd,α−1. For simplicity, sometimes we

just denote it as b ∈ Kd,α−1.

Let Lb = Δα/2 + b · ∇. Recently Bogdan and Jakubowski [2] constructed a
particular heat kernel (also called a fundamental solution) qb(t, x, y) for operator
Lb using a perturbation argument; see Section 2 below for details.

Let C∞
c (Rd) be the space of smooth functions on R

d with compact support
and D([0,∞);Rd) the space of right continuous R

d-valued functions having left
limits on [0,∞), equipped with Skorokhod topology. For t ≥ 0, denote by Xt
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the projection coordinate map on D([0,∞);Rd). A Borel probability measure Q
on the Skorokhod space D([0,∞);Rd) is said to be a solution to the martingale
problem for (Lb, C∞

c (Rd)) with initial value x ∈ R
d if Q(X0 = x) = 1 and for every

f ∈ C∞
c (Rd),

∫ t

0
|Lbf(Xs)|ds < ∞ Q-a.s. for every t > 0 and

(1.3) Mf
t := f(Xt)− f(X0)−

∫ t

0

Lbf(Xs)ds

is a Q-martingale. The martingale problem for (Lb, C∞
c (Rd)) with initial value

x ∈ R
d is said to be well-posed if it has a unique solution. It is easy to check

(see [4, Proposition 2.3]) that the operators {T b
t ; t ≥ 0} determined by qb(t, x, y)

form a Feller semigroup. So there exists an R
d-valued conservative Feller process

{Xt, t ≥ 0,Px, x ∈ R
d} defined on the canonical Skorokhod space D([0,∞);Rd)

having qb(t, x, y) as its transition density function. It is shown in Theorem 2.5 of
Chen-Kim-Song [4] that Px is a solution to the martingale problem for (Lb, C∞

c (Rd))
with Px(X0 = x) = 1. However, in both [2] and [4], neither the uniqueness of a
heat kernel of Lb nor the uniqueness of the martingale problem for (Lb, C∞

c (Rd))
are addressed. The main results of this paper, Theorems 1.2 and 1.3, in particular
settle the uniqueness of a heat kernel of Lb, and thus put the results of [2] and [4]
in perspective.

Theorem 1.2. For each x ∈ R
d, the martingale problem for (Lb, C∞

c (Rd)) with
initial value x is well-posed. These martingale problem solutions {Px, x ∈ R

d} form
a strong Markov process, which has infinite lifetime and possesses qb(t, x, y) as its
transition density function.

Intuitively, Lb is the infinitesimal generator for stochastic differential equation
(SDE)

(1.4) dXt = dYt + b(Xt)dt, X0 = x.

But does this SDE have a weak solution? Is the weak solution to (1.4) unique? We
will answer these questions in this paper as well.

Recall that a weak solution to (1.4) is a process X defined on some probabil-
ity space such that almost all paths are right continuous and admit left limits,∫ t

0
|b(Xs)|ds < ∞ a.s. for every t > 0, and that X satisfies (1.4) for some sym-

metric α-stable process Y . If all the weak solutions (possibly defined on different
probability spaces) to (1.4) have the same distribution, we say that (1.4) has a
unique weak solution.

Theorem 1.3. For each x ∈ R
d, SDE (1.4) has a unique weak solution and the law

of the unique weak solution to SDE (1.4) is the unique solution to the martingale
problem for (Lb, C∞

c (Rd)).

A solution to (1.4) will be called an α-stable process with drift b. When Y is
a Brownian motion (which corresponds to α = 2), it is well known that Brownian
motion with drift can be obtained from Brownian motion through a change of
measure called a Girsanov transform. But for a symmetric α-stable process (where
0 < α < 2), SDE (1.4) cannot be solved by a change of measure. This is because
Y is a purely discontinuous Lévy process and so the effect of a Girsanov transform
can only produce a purely discontinuous “drift term”; see [5, 7].

The unique weak solutions of (1.4) form a strong Markov process X. Theorem
1.3 combined with the main result of [2] and [4] readily gives sharp two-sided
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estimates on the transition density pb(t, x, y) of X as well as on the transition
density pbD(t, x, y) of the subprocess Xb,D of X killed upon leaving a bounded C1,1

open set. See Corollary 3.2 below.
As mentioned above, the existence of the martingale solution to (Lb, C∞

c (Rd)) is
established in [4, Theorem 2.5], using a (particular) heat kernel of Lb constructed
in [2]. One deduces easily from Itô’s formula that the uniqueness of the martingale
problem for (Lb, C∞

c (Rd)) implies the weak uniqueness of SDE (1.4). So the main
point of Theorems 1.2 and 1.3 is on the uniqueness of the martingale problem for
(Lb, C∞

c (Rd)) and the existence of a weak solution to SDE (1.4). The novelty here
is that the drift b is an R

d-valued function in Kato class Kd,α−1, which in general is
merely measurable and can be unbounded. Thus Picard’s iteration method is not
applicable either. Motivated by the approach in [1], we establish the uniqueness of
solutions Q to the martingale problem for (Lb, C∞

c (Rd)) by showing that

EQ

∫ ∞

0

e−λtg(Xt)dt = Ex

∫ ∞

0

e−λtg(Xt)dt

for g ∈ C∞
c (Rd) and sufficiently large λ > 0.

The equivalence between weak solutions to SDE driven by Brownian motion
and solutions to martingale problems for elliptic operators is well known. The
crucial ingredient in this connection is a martingale representation theorem for
Brownian motion. Such a martingale representation theorem is not available for
stable processes. Recently, Kurtz [9, Theorem 2.3] studied equivalence between
weak solutions to a class of SDEs driven by Poisson random measures and solutions
to martingale problems for a class of non-local operators using a non-constructive
approach. We point out that one cannot deduce the existence of weak solution
to SDE (1.4) from the existence of the martingale problem for (Lb, C∞

c (Rd)) by
applying results from [9] because Lbf is typically unbounded for f ∈ C∞

c (Rd).
When the drift b is Lp-integrable for p > d/(α − 1), Portenko [11] proposed a
perturbation approach to construct a weak solution to SDE (1.4); see also [10]. In
this paper we establish by using the arguments in [10,11] that the Markov process
X constructed above is the unique weak solution to SDE (1.4) when b belongs to
the Kato class Kd,α−1.

Very recently, around the same time as the first version of this paper was com-
pleted, Kim and Song [8] studied stable process with singular drift, analogous to
Brownian motion with singular drift introduced and studied in Bass and Chen [1].
Intuitively speaking, stable process with singular drift studied in [8] corresponds
to SDE (1.4) with b being replaced by a suitable measure. However, following
[1, Definition 2.5], the existence and uniqueness of the solution in [8] is formulated
in a weaker sense as follows. Suppose μ = (μ1, . . . , μd) is a d-dimensional signed
measure in Kato class Kd,α−1 and ϕ ≥ 0 is a smooth radial function with compact
support on R

d having
∫
Rd ϕ(x)dx = 1. For n ≥ 1, define ϕn(x) = 2ndϕ(2nx). For

x ∈ R
d , an α-stable process with drift μ on R

d starting from x is a probability
measure P on D([0,∞);Rd) such that Xt = x+ Yt +At, where

(i) At = limn→∞
∫ t

0
bn(Xs)ds uniform in t over finite intervals, where the conver-

gence is in probability and bnj (x) :=
∫
Rd ϕn(x− y)μj(dy);

(ii) there exists a subsequence nk so that supk≥1

∫ t

0
|bnk(Xs)|ds < ∞ a.s. for every

t > 0;
(iii) Y is a rotationally symmetric α-stable process in R

d with Y0 = 0 under P.
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The existence of such a process is established in [8] through approximation by

solutions of Xn
t = x + Yt +

∫ t

0
bn(Xn

s )ds. The uniqueness proof in [8] (see Section
5 there), as our proof for the uniqueness of martingale problems in this paper, is
also motivated by the approach of Bass and Chen [1, Section 5] by showing that
EP

∫∞
0

e−αtg(Xs)ds = Ex

∫∞
0

e−λsg(Xs)ds for g ∈ C∞
c (Rd) and sufficiently large

λ > 0. When applying to the Kato function b considered in this paper, the results
in [8] for μ(dx) = b(x)dx do not give the existence and uniqueness of weak solutions
to SDE (1.4) nor the well-posedness of the martingale problem for (Lb, C∞

c (Rd)).
The approach of this paper is quite robust. It can be applied to study some

other stochastic models. For example, it can be used to establish, for each b =
(b1, · · · , bd) ∈ Kd,1, the well-posedness of the martingale problem for (Δ + b ·
∇, C∞

c (Rd)) and to establish the weak existence and uniqueness of solutions to
Brownian motion with singular drift: dXt = dBt + b(Xt)dt. Recently, it has been
applied in Chen and Hu [3] to establish, for each b = (b1, · · · , bd) ∈ Kd,1, the

well-posedness of the martingale problem for (Δ+Δα/2+ b ·∇, C∞
c (Rd)) and to es-

tablish the weak existence and uniqueness for solutions to SDE with singular drift:
dXt = d(Bt + Yt) + b(Xt)dt, where Y is a symmetric α-stable process independent
of B.

The rest of the paper is organized as follows. The proof of the uniqueness of
the martingale problem is given in Section 2, while the proof of Theorem 1.3 is
presented in Section 3.

2. Uniqueness of the martingale problem

Recall that Lb = Δα/2 + b · ∇. When b = 0, we simply write L0 as L; that
is, L = Δα/2. In this section, we establish the well-posedness of the martingale
problem for (Lb, C∞

c (Rd)).
We first recall from Bogdan and Jakubowski [2] the construction of a particular

fundamental solution qb(t, x, y) for the non-local operator Lb using a perturbation
argument. It is based on the following heuristics: qb(t, x, y) of Lb can be related
to the fundamental solution p(t, x, y) of L, which is the transition density of the
symmetric stable process Y , by the following Duhamel’s formula:

(2.1) qb(t, x, y) = p(t, x, y) +

∫ t

0

∫
Rd

qb(s, x, z) b(z) · ∇zp(t− s, z, y)dzds.

Applying the above formula recursively, one expects qb(t, x, y) to be expressed as

(2.2) qb(t, x, y) =
∞∑
k=0

qbk(t, x, y),

where qb0(t, x, y) := p(t, x, y) and for k ≥ 1,

(2.3) qbk(t, x, y) :=

∫ t

0

∫
Rd

qbk−1(s, x, z) b(z) · ∇zp(t− s, z, y)dz.

The following results come from [2, Theorem 1, Lemma 15, Lemma 23] and their
proofs.

Proposition 2.1. (i) There exist constants T0 > 0 and c1 > 1 depending only
on d, α and on b only through the rate at which Mα

|b|(r) goes to zero so that
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k=0 q

b
k(t, x, y) converges locally uniformly on (0, T0] × R

d × R
d to a jointly

continuous positive function qb(t, x, y) and that on (0, T0]× R
d × R

d,

(2.4) c−1
1

(
t−d/α ∧ t

|x− y|d+α

)
≤ qb(t, x, y) ≤ c1

(
t−d/α ∧ t

|x− y|d+α

)
.

Moreover, the function qb(t, x, y) can be extended uniquely to a jointly contin-
uous positive function on (0,∞) × R

d × R
d so that for all s, t ∈ (0,∞) and

x, y ∈ R
d,

∫
Rd q

b(t, x, z)dz = 1 and

(2.5) qb(s+ t, x, y) =

∫
Rd

qb(s, x, z)qb(t, z, y)dz.

(ii) Define T b
t f(x) :=

∫
Rd q

b(t, x, y)f(y)dy. Then for any f , g ∈ C∞
c (Rd),

lim
t↓0

1

t

∫
Rd

(T b
t f(x)− f(x))g(x)dx =

∫
Rd

(Lbf)(x) g(x)dx.

Here and in the sequel, for a, b ∈ R, a ∧ b := min{a, b}, a ∨ b := max{a, b},
and the meaning of the phrase “depending on b only via the rate at which Mα

|b|(r)

goes to zero” is that the statement is true for any R
d-valued function b̃ on R

d with
Mα

|̃b|(r) ≤ Mα
|b|(r) for all r > 0. Proposition 2.1(ii) indicates that qb(t, x, y) is a heat

kernel (or fundamental solution) of Lb in the distributional sense.
Let {Px, x ∈ R

d} be the probability measures on D([0,∞);Rd) obtained from the
kernel qb(t, x, y) in Proposition 2.1. The mathematical expectation taken under Px

will be denoted by Ex. It was shown in [4, Theorem 2.5] that for each x ∈ R
d, Px

solves the martingale problem for (Lb, C∞
c (Rd)) with initial value x. We will show

in this section that Px is in fact the unique solution. Our approach is motivated by
that of Bass and Chen [1, Section 5].

Before presenting the proof of Theorem 1.2 we record two lemmas on the bound-
edness of the λ-resolvent operator Rλ corresponding to symmetric α-stable process
Y . Denote by p(t, x, y) = p(t, x − y) the transition density function of Y . Let
rλ(x) =

∫∞
0

e−λtp(t, x)dt and define the resolvent operator Rλ by

Rλg(x) =

∫
Rd

rλ(x− y)g(y)dy =

∫
Rd

rλ(y)g(x− y)dy,

for every g ∈ Cb(R
d) and x ∈ R

d. Here Cb(R
d) (resp. C0(R

d)) denote the space of
bounded continuous functions on R

d (resp. continuous functions on R
d that vanish

at infinity). For f ∈ Cb(R
d), define ‖f‖∞ = supx∈Rd |f(x)|. Denote by C∞

0 (Rd)
the space of smooth functions on R

d that together with their partial derivatives of
any order vanish at infinity. By [2, Lemma 7], for (λ, x) ∈ (0,∞)× R

d,

(2.6) rλ(x) �
(
λ(d−α)/α ∨ |x|α−d

)
∧
(
λ−2|x|−d−α

)
,

which can be rewritten as

rλ(x) �
{

1
|x|d−α ∧ λ−2

|x|d+α when d > α,

λ(d−α)/α ∧ λ−2

|x|d+α when d ≤ α.

Here for any two positive functions f and g, f � g means that there is a positive
constant c ≥ 1 so that c−1 g ≤ f ≤ c g on their common domain of definition.

Lemma 2.2. For every λ > 0, Rλ and ∇Rλ are bounded operators on C0(R
d).

Furthermore, Rλf ∈ C∞
0 (Rd) for every f ∈ C∞

0 (Rd).
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Proof. It is known by [2, Lemma 9] that rλ(z) is continuously differentiable off the
origin and there is a constant c1 > 1 so that for every λ > 0 and z �= 0,

(2.7) c−1
1

(
1

|z|d+1−α
∧ 1

λ2|z|d+1+α

)
≤ |∇rλ(z)| ≤ c1

(
1

|z|d+1−α
∧ 1

λ2|z|d+1+α

)
.

It follows that for λ > 0 and f ∈ C0(R
d), ∇rλ(x − y) is uniformly in x integrable

against f(y)dy. Thus Rλf is continuously differentiable and

∇Rλf(x) =

∫
Rd

∇rλ(x− y)f(y)dy =

∫
Rd

∇rλ(y)f(x− y)dy.

Since both rλ(y) and |∇rλ(y)| are integrable over Rd and f(x − y) converges to 0
as |x| → ∞, we conclude from the dominated convergence theorem that both Rλf
and ∇Rλf are in C0(R

d) with ‖Rλf‖∞ ≤ c2‖f‖∞ and ‖∇Rλf‖∞ ≤ c2‖f‖∞ for
some constant c2 > 0. Similarly, for f ∈ C∞

0 (Rd), we have

∂k1
x1

· · · ∂kd
xd
Rλf(x) =

∫
Rd

rλ(y) ∂
k1
x1

· · · ∂kd
xd
f(x− y) dy,

and consequently Rλf ∈ C∞
0 (Rd). �

Lemma 2.3. Let b = (b1, · · · , bd) ∈ Kd,α−1. There exists λ0 > 0 depending only
on d, α and on b only via the rate at which Mα

|b|(r) goes to zero such that for every

λ > λ0 and f ∈ C0(R
d),

‖∇Rλ(bf)‖∞ ≤ 1

2
‖f‖∞.

Proof. It follows from [2, Lemma 11 and Corollary 12] and their proof (with β = 2
there) that there exists a constant c1 > 0 depending only on d and α such that for
every t > 0,

(2.8) sup
x∈Rd

∫
Rd

(
1

|x− y|d+1−α
∧ t2

|x− y|d+1+α

)
|b(y)|dy ≤ c1M

α
|b|(t

1/α).

This together with (2.7) and [2, Lemma 16] implies that there exists a constant
c2 > 0 such that for every λ > 0,

‖∇Rλ(bf)‖∞ = sup
x∈Rd

∣∣∣∣∫
Rd

∇rλ(x− y) · b(y)f(y)dy
∣∣∣∣

≤c2‖f‖∞ sup
x∈Rd

∫
Rd

(
1

|x− y|d−α+1
∧ λ−2

|x− y|d+α+1

)
|b(y)|dy

≤c1c2‖f‖∞Mα
|b|(λ

−1/α).

Since Mα
|b|(λ

−1/α) tends to 0 as λ → ∞, there exists some λ0 > 0 so that

c3M
α
|b|(λ

−1/α) ≤ 1/2

for every λ > λ0. This proves the lemma. �

It is well known that the transition density function p(t, x, y) of the symmetric
α-stable process Y on R

d has the two-sided estimates

p(t, x, y) � t−d/α ∧ t

|x− y|d+α
.
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By (2.4) we have that there is a constant C1 ≥ 1 depending on b only through the
rate at which Mα

|b|(r) goes to zero so that

C−1
1 p(t, x, y) ≤ qb(t, x, y) ≤ C1p(t, x, y) for every (t, x, y) ∈ (0, T0]× R

d × R
d.

It follows from (2.4) and the Chapman-Kolmogorov equation (2.5) that there are
positive constants C2 ≥ 1 and C3 > 0 depending on b only through the rate at
which Mα

|b|(r) goes to zero so that

(2.9)
C−1

2 e−C3tp(t, x, y) ≤ qb(t, x, y) ≤ C2e
C3tp(t, x, y) for every t>0 and x, y∈R

d.

Thus for λ > C3,

Ex

[∫ ∞

0

e−λt|b(Xt)|dt
]
≤ C2

∫
Rd

|b(y)|rλ−C3
(x− y)dy.

By [2, Lemma 16], there is a constant C4 > C3 depending on b only through the
rate at which Mα

|b|(r) goes to zero such that for every λ ≥ C4,

(2.10) sup
x∈Rd

Ex

[∫ ∞

0

e−λt|b(Xt)|dt
]
< ∞.

By increasing the value of λ0 in Lemma 2.3 if needed, we may and do assume that
λ0 ≥ C4.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recall that for each x ∈ R
d, Px solves the martingale prob-

lem for (Lb, C∞
c (Rd)) with initial value x. The strong Markov property of (X,Px, x

∈ R
d) follows from the Feller property of qb(t, x, y), and the conservativeness of the

Feller process X follows from Proposition 2.1. It remains to prove the uniqueness
of the martingale problem.

Let Q be any solution to the martingale problem for (Lb, C∞
c (Rd)) with initial

value x. We will show that Q = Px. We divide the proof into five steps.
(i) We show that it suffices to consider the case that

(2.11) EQ

[∫ ∞

0

e−λt|b(Xt)|dt
]
< ∞ for every λ > λ0,

where EQ is the mathematical expectation under the probability measure Q and
λ0 is the constant in Lemma 2.3.

Let f ∈ C∞
c (Rd). By the definition of the martingale problem solution,

∫ t

0
|b(Xs)·

∇f(Xs)|ds < ∞ Q-a.s. for every t > 0. Let

Tn(f) = inf

{
t > 0 :

∫ t

0

|b(Xs) · ∇f(Xs)|ds ≥ n

}
.

Then {Tn(f), n ≥ 1} is an increasing sequence of stopping times such that
limn→∞ Tn(f) = ∞ Q-a.s. with

(2.12) EQ

[∫ Tn(f)

0

|b(Xs) · ∇f(Xs)|ds
]
≤ n.

Choose a sequence of functions f
(i)
n ∈ C∞

c (Rd) such that f
(i)
n (x) = xi for x ∈

B(0, n) and 1 ≤ i ≤ d. Define

Sn =

(
min
1≤i≤d

Tn(f
(i)
n )

)
∧ inf {t : |Xt| > n or |Xt−| > n} .
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Then Sn is an increasing sequence of stopping times with limn→∞ Sn = ∞. By
(2.12),

EQ

[∫ Sn

0

|b(Xs)|ds
]
≤

d∑
i=1

EQ

[∫ Sn

0

|bi(Xs)|ds
]

≤
d∑

i=1

EQ

[∫ Sn

0

|b(Xs) · ∇f (i)
n (Xs)|ds

]
≤ nd.

(2.13)

Now we construct a new probability measure Q̃ on D([0,∞);Rd) such that Q̃
is also a solution to the martingale problem for (Lb, C∞

c (Rd)) and that for every
λ > λ0,

EQ̃

[∫ ∞

0

e−λt|b(Xt)|dt
]
< ∞.

Let Ft be the filtration generated by {Xs; s ≤ t}. Fix N ≥ 1. We specify Q̃ by

Q̃ (B ∩ (C ◦ θSN
)) = EQ

[
PXSN

(C); B
]
,

for B ∈ FSN
and C ∈ F∞. By the strong Markov property of {Xt,Px} and the

optimal stopping theorem, we have that for every f ∈ C∞
c (Rd) and stopping time

T ,

EQ̃

[
Mf

T�{T>SN}

]
=EQ

[
EXSN

[
Mf

T−SN

]
�{T>SN}

]
=EQ

[
Ex

[
Mf

T

∣∣FSN

]
�{T>SN}

]
=E

[
Mf

SN
�{T>SN}

]
.

It follows that

EQ̃

[
Mf

T

]
= EQ

[
Mf

SN
�{T>SN}

]
+ EQ

[
Mf

T�{T≤SN}

]
= EQ

[
Mf

T∧SN

]
= 0.

Therefore Q̃ is again a solution to the martingale problem for (Lb, C∞
c (Rd)). Fur-

thermore,

EQ̃

[∫ ∞

0

e−λt|b(Xt)|dt
]

= EQ

[∫ SN

0

e−λt|b(Xt)|dt
]
+ EQ

[
e−λSNEXSN

[∫ ∞

0

e−λt|b(Xt)|dt
]]

,

which is finite by (2.10) and (2.13). Note that Q̃ = Q on FSN
. If we can show

Q̃ = Px, then Q = Px on FSN
. Since N ≥ 1 is arbitrary, we have that Q = Px on

F∞. So it suffices to consider the solution Q to the martingale problem satisfying
(2.11).

(ii) We next show that for every g ∈ C∞
0 (Rd) and λ > λ0,

(2.14) EQ

[∫ ∞

0

e−λtg(Xt)dt

]
= Rλg(x) + EQ

[∫ ∞

0

e−λtb(Xt) · ∇Rλg(Xt)dt

]
.
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By (1.3), f(Xt) is a semimartingale under Q for every f ∈ C∞
c (Rd). It follows

by Itô’s formula that

e−λtf(Xt) = f(X0) +

∫ t

0

e−λsdMf
s

+

∫ t

0

e−λs
(
Δα/2f(Xs) + b(Xs) · ∇f(Xs)

)
ds− λ

∫ t

0

e−λsf(Xs)ds.

Taking expectation with respect to Q, we have

(2.15) EQ[e−λtf(Xt)] = f(x)− EQ

[∫ t

0

e−λs(λf −Δα/2f)(Xs)ds

]
+ EQ

[∫ t

0

e−λsb(Xs) · ∇f(Xs)ds

]
.

Note that f , ∇f and Δα/2f are all bounded. Taking limit t → ∞ in both sides of
(2.15) and using the fact (2.11), we obtain
(2.16)

EQ

[∫ ∞

0

e−λt(λf −Δα/2f)(Xt)dt

]
= f(x) + EQ

[∫ ∞

0

e−λtb(Xt) · ∇f(Xt)dt

]
.

We want to show that (2.16) holds for all f ∈ C∞
0 (Rd). In fact, for any f ∈ C∞

0 (Rd),
there exists a sequence of functions fn ∈ C∞

c (Rd) such that ‖fn − f‖∞ → 0,
‖Δα/2fn −Δα/2f‖∞ → 0, ‖∇fn −∇f‖∞ → 0. Applying (2.11) again, we have

lim
n→∞

EQ

[∫ ∞

0

e−λt(λfn −Δα/2fn)(Xt)dt

]
= EQ

[∫ ∞

0

e−λt(λf −Δα/2f)(Xt)dt

]
and

lim
n→∞

EQ

[∫ ∞

0

e−λtb(Xt) · ∇fn(Xt)dt

]
= EQ

[∫ ∞

0

e−λtb(Xt) · ∇f(Xt)dt

]
.

Thus (2.16) holds for f ∈ C∞
0 (Rd).

By Lemma 2.2, Rλg ∈ C∞
0 (Rd) for g ∈ C∞

0 (Rd). Taking f = Rλg in (2.16) and
using the fact (λ−Δα/2)Rλg = g, we obtain (2.14).

(iii) We claim that

(2.17) EQ

[∫ ∞

0

e−λt
�A(Xt)dt

]
= 0 for any A ⊂ R

d with m(A) = 0,

where m is the Lebesgue measure on R
d.

To see this, suppose A is a bounded subset of Rd having m(A) = 0. Let ψn be a
sequence of positive functions in C∞

c (Rd) so that |ψn| ≤ 2, limn→∞ ψn = 0 m-a.e.
on R

d and limn→∞ ψn ≥ �A. It follows from (2.7) and the dominated convergence
theorem that ∇Rλψn(z) =

∫
Rd ∇rλ(z − y)ψn(y)dy converges to 0 boundedly as

n → ∞. One concludes then from (2.11) and the dominated convergence theorem
that

lim
n→∞

EQ

[∫ ∞

0

e−λtb(Xt) · ∇Rλψn(Xt)dt

]
= 0.

Applying Fatou’s lemma to (2.14) with ψn in place of g yields that

EQ

[∫ ∞

0

e−λt
�A(Xt)dt

]
≤ lim inf

n→∞
EQ

[∫ ∞

0

e−λtψn(Xt)dt

]
= lim inf

n→∞
Rλψn(x) = 0,
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where the last equality is due to (2.6) and the dominated convergence theorem.
This establishes (2.17) for any bounded and hence for any subset A ⊂ R

d having
m(A) = 0.

(iv) We now show that (2.14) holds for any function g on R
d with |g| ≤ c|b| as

well.
Let g be a function on R

d with |g| ≤ c|b| for some c > 0. Fix M > 0 and define
gM = (((−M) ∨ g) ∧M)�B(0,M). Let φ be a positive smooth function on R

d with

compact support such that
∫
Rd φ(y)dy = 1. For n ≥ 1, set φn(y) = ndφ(ny) and

fn(z) :=
∫
Rd φn(z − y)gM (y)dy. Then fn ∈ C∞

c (Rd), |fn| ≤ M , and fn converges

to gM almost everywhere on R
d as n → ∞. In view of (2.17) and the bounded

convergence theorem, limn→∞ Rλfn(x) = RλgM (x) and

lim
n→∞

EQ

[∫ ∞

0

e−λtfn(Xt)dt

]
= EQ

[∫ ∞

0

e−λtgM (Xt)dt

]
.

On the other hand, by (2.7) and the dominated convergence theorem, ∇Rλfn con-
verges boundedly on R

d to ∇RλgM as n → ∞. Letting n → ∞ in (2.14) with fn
in place of g, we deduce that
(2.18)

EQ

[∫ ∞

0

e−λtgM (Xt)dt

]
= RλgM (x) + EQ

[∫ ∞

0

e−λtb(Xt) · ∇RλgM (Xt)dt

]
.

Clearly by the dominated convergence theorem, (2.6) and (2.11),

lim
M→∞

EQ

[∫ ∞

0

e−λtgM (Xt)dt

]
= EQ

[∫ ∞

0

e−λtg(Xt)dt

]
and

lim
M→∞

RλgM (x) = Rλg(x),

while in view of (2.7) and (2.8), ∇RλgM (z) =
∫
Rd ∇rλ(z − y)gM (y)dy converges

boundedly on R
d to ∇Rλg(z). Thus by (2.11) and the dominated convergence

theorem,

lim
M→∞

EQ

[∫ ∞

0

e−λtb(Xt) · ∇RλgM (Xt)dt

]
= EQ

[∫ ∞

0

e−λtb(Xt) · ∇Rλg(Xt)dt

]
.

The last two displays together with (2.18) establish the claim that (2.14) holds for
any g with |g| ≤ c|b|.

(v) Define a linear functional Vλ by

Vλf = EQ

[∫ ∞

0

e−λtf(Xt)dt

]
.

Then (2.14) can be rewritten as
(2.19)

Vλg = Rλg(x) + Vλ(BRλg) for g ∈ C∞
0 (Rd) ∪ {g : |g| ≤ c|b| for some c > 0},

where B is the operator defined by

Bf(x) = b(x) · ∇f(x).

Fix g ∈ C∞
0 (Rd). It follows from (2.7) that |BRλg| ≤ c|b| for some constant c > 0.

Applying (2.19) with BRλg in place of g yields

(2.20) Vλ(BRλg) = Rλ(BRλg)(x) + Vλ(BRλBRλg).
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Repeating this procedure, we get that for every g ∈ C∞
0 (Rd) and every integer

N ≥ 1,

(2.21) Vλg =

N∑
k=0

Rλ(BRλ)
kg(x) + Vλ(B(RλB)NRλg).

It follows from Lemma 2.3 that for λ > λ0,

|Vλ(B(RλB)NRλg)| ≤‖(∇Rλb)
N∇Rλg‖∞EQ

[∫ ∞

0

e−λt|b(Xt)|dt
]

≤2−N‖∇Rλg‖∞EQ

[∫ ∞

0

e−λt|b(Xt)|dt
]
,

which tends to 0 as N → ∞. Letting N → ∞ in (2.21) gives

(2.22) Vλg =

∞∑
k=0

Rλ(BRλ)
kg(x).

Note that Px is also a solution to the martingale problem for (Lb, C∞
c (Rd)) with

initial value x. Then (2.22) also holds with Q replaced by Px, that is,

Ex

[∫ ∞

0

e−λtg(Xt)dt

]
=

∞∑
k=0

Rλ(BRλ)
kg(x).

Consequently

(2.23) EQ

[∫ ∞

0

e−λtg(Xt)dt

]
= Ex

[∫ ∞

0

e−λtg(Xt)dt

]
for every g ∈ C∞

c (Rd) and λ > λ0. By the uniqueness of the Laplace transform,
we have EQ[g(Xt)] = Ex[g(Xt)] for all t, or, the one-dimensional distributions of
Xt under Q and Px are the same. By [6, Theorem 4.4.2], one obtains equality
of all finite-dimensional distributions and hence Q = Px. The uniqueness for the
martingale problem for (Lb, C∞

c (Rd)) is thus proved. �

3. Stochastic differential equation

It is known that for any α ∈ (0, 2) the fractional Laplacian Δα/2 can be written
in the form

(3.1) Δα/2u(x) =

∫
Rd

(
u(x+ z)− u(x)−∇u(x) · z�{|z|≤1}

)A(d,−α)

|z|d+α
dz,

where A(d,−α) is a normalizing constant so that

(3.2)

∫
Rd

(
eiξ·z − 1− iξ · z�{|z|≤1}

) A(d,−α)

|z|d+α
dz = −|ξ|α, ξ ∈ R

d.

In fact, A(d,−α) can be computed explicitly in terms of Γ-function:

A(d,−α) = α2α−1π−d/2Γ

(
d+ α

2

)
Γ
(
1− α

2

)−1

.

Recall that {X,Px, x ∈ R
d} is the unique solution to the martingale problem for

(Lb, C∞
c (Rd)) on the canonical Skorokhod space Ω := D([0,∞);Rd). Following the

arguments in [10, 11] we show in the following theorem that X is a weak solution
to the SDE (1.4).
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Theorem 3.1. There exists a process Z defined on Ω so that all its paths are
right continuous and admit left limits, and that under each Px, Z is a rotationally
symmetric α-stable process on R

d and

(3.3) Xt = x+ Zt +

∫ t

0

b(Xs)ds, t ≥ 0.

Proof. By Theorem 1.2, X is the Feller process determined by kernel qb(t, x, y) in
Proposition 2.1. For t ≥ 0, let

(3.4) Zt := Xt −X0 −
∫ t

0

b(Xs)ds.

Note that Zt is well defined since we have from [4, Lemma 2.2] that

E

[∣∣∣∣∫ t

0

b(Xs)ds

∣∣∣∣] ≤
∫ t

0

∫
Rd

qb(s, x, y)|b(y)|dyds < ∞.

The aim is to prove that under each Px, the process Z is a rotationally symmetric
α-stable process on R

d starting at 0.
Fix ξ ∈ R

d. Consider the bounded function

(3.5) u(t, x, ξ) := Ex

[
exp

(
iξ ·

(
Xt −

∫ t

0

b(Xs)ds

))]
, t ≥ 0, x ∈ R

d.

We claim that u(t, x, ξ) is the unique bounded solution to the integral equation
(3.6)

u(t, x, ξ) =

∫
Rd

eiξ·yqb(t, x, y)dy − i

∫ t

0

∫
Rd

qb(t− s, x, z) (ξ · b(z))u(s, z, ξ)dzds.

In fact, it is easy to verify that

(3.7) e−iξ·
∫ t
0
b(Xτ )dτ = 1− i

∫ t

0

(ξ · b(Xs)) e
−iξ·

∫ t
s
b(Xτ )dτ .

Thus by the Markov property we have

u(t, x, ξ) =Ex

[
exp

(
iξ ·

(
Xt −

∫ t

0

b(Xs)ds

))]
=Ex

[
eiξ·Xt

]
− i

∫ t

0

Ex

[
eiξ·Xt (ξ · b(Xs)) e

−iξ·
∫ t
s
b(Xτ )dτ

]
ds

=Ex

[
eiξ·Xt

]
− i

∫ t

0

Ex [(ξ · b(Xs))u(t− s,Xs, ξ)] ds

=

∫
Rd

eiξ·yqb(t, x, y)dy − i

∫ t

0

∫
Rd

qb(s, x, z) (ξ · b(z))u(t− s, z, ξ)dzds.

To prove the uniqueness of the bounded solution to (3.6), it suffices to show that
the only bounded solution to the corresponding homogeneous equation

(3.8) v(t, x, ξ) = −i

∫ t

0

∫
Rd

qb(t− s, x, z) (ξ · b(z)) v(s, z, ξ)dzds

is identically zero.
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Since |b| ∈ Kd,α−1, we have from [4, Lemma 2.2] that for fixed ξ ∈ R
d, there

exists a constant T1 > 0 such that

sup
x∈Rd

∫ t

0

∫
Rd

qb(t− s, x, z) |ξ · b(z)| dzds < 1

for every t ∈ (0, T1]. As a consequence, the map Γ on L∞([0, T1]× R
d) defined by

w �→(Γw)(t, x)=−i

∫ t

0

∫
Rd

qb(t−s, x, z) (ξ · b(z))w(s, z)dzds, w∈L∞([0, T1]×R
d)

is a contraction. Let v be a bounded solution to (3.6). Then v is a fixing point of
Γ and hence v(t, x, ξ) = 0 for t ≤ T1. Note that

v(T1 + t, x, ξ) =− i

∫ T1+t

0

∫
Rd

qb(T1 + t− s, x, z) (ξ · b(z)) v(s, z, ξ)dzds

=− i

∫ t

0

∫
Rd

qb(t− s, x, z) (ξ · b(z)) v(T1 + s, z, ξ)dzds.

We conclude that v(t, x, ξ) = 0 for all t > 0 by induction. This implies that the
bounded solution to (3.6) is unique.

By Proposition 2.1, Duhamel’s formula

(3.9) qb(t, x, y) = p(t, x, y) +

∫ t

0

∫
Rd

qb(t− s, x, z)b(z) · ∇zp(s, z, y)dzds

holds true for t ≤ T0. Integrating (3.9) against eiξ·ydy, we see that the function

eiξ·x−t|ξ|α =

∫
Rd

eiξ·yp(t, x, y)dy

is also a bounded solution to (3.6) for t < T0. Therefore, by the uniqueness,

(3.10) Ex

[
exp

(
iξ ·

(
Xt −X0 −

∫ t

0

b(Xs)ds

))]
= e−iξ·xu(t, x, y) = e−t|ξ|α

for t ≤ T0 and, consequently,

Zt = Xt −X0 −
∫ t

0

b(Xs)ds

is a rotationally symmetric α-stable process. The proof of this theorem is finished.
�

Now we are ready to complete the proof for the uniqueness of a weak solution
to the SDE (1.4).

Proof of Theorem 1.3. Fix x ∈ R
d. Theorem 3.1 gives the existence of a weak

solution to SDE (1.4). If {Xt,Px} is a weak solution to (1.4), then by Itô’s formula
(cf. [7]) and (3.1), we have for every f ∈ C∞

c (Rd),

(3.11) f(Xt)− f(X0) = a martingale +

∫ t

0

Lbf(Xs)ds.

Thus every weak solution to (1.4) solves the martingale problem for (Lb, C∞
c (Rd)).

So the uniqueness of a weak solution to (1.4) follows from the uniqueness of the
martingale problem for (Lb, C∞

c (Rd)), which is established in Theorem 1.2. �
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The unique weak solutions X = {Xt,Px, x ∈ R
d} to SDE (1.4) form a strong

Markov process. By Theorems 1.2 and 1.3, X has qb(t, x, y) of Proposition 2.1
as its transition density function. Thus one readily gets from Proposition 2.1 and
[4, Theorem 1.3] the following sharp two-sided estimates on the transition density
function ofX and its subprocess in a bounded C1,1 open set. Recall that an open set
D in R

d (when d ≥ 2) is said to be C1,1 if there exist a localization radius R > 0 and
a constant Λ > 0 such that for every Q ∈ ∂D, there exist a C1,1-function φ = φQ :
R

d−1 → R satisfying φ(0) = ∇φ(0) = 0, ‖∇φ‖∞ ≤ Λ, |∇φ(x)−∇φ(y)| ≤ Λ|x− y|,
and an orthonormal coordinate system CSQ: y = (y1, . . . , yd−1, yd) =: (ỹ, yd) with
its origin at Q such that

B(Q,R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CSQ : yd > φ(ỹ)}.
The pair (R,Λ) is called the characteristics of the C1,1 open set D. Note that a
C1,1 open set can be unbounded and disconnected. For x ∈ D, let δD(x) denote
the Euclidean distance between x and ∂D. The diameter of D will be denoted as
diam(D).

Corollary 3.2. (i) X has a jointly continuous transition density function p(t, x, y)
with respect to the Lebesgue measure on R

d. Moreover, for every T > 0, there is
a constant c1 > 1 depending only on d, α, T and on b through the rate at which
Mα

|b|(r) goes to zero so that for (t, x, y) ∈ (0, T ]× R
d × R

d,

c−1
1

(
t−d/α ∧ t

|x− y|d+α

)
≤ p(t, x, y) ≤ c1

(
t−d/α ∧ t

|x− y|d+α

)
.

(ii) Let d ≥ 2 and let D be a bounded C1,1 open subset of R
d with C1,1 charac-

teristics (R0,Λ0). Define

fD(t, x, y) =

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)(
t−d/α ∧ t

|x− y|d+α

)
.

For each T > 0, there are constants c2 = c2(T,R0,Λ0, d, α, diam(D), b) ≥ 1 and
c3 = c3(T, d, α,D, b) ≥ 1 with the dependence on b only through the rate at which
Mα

|b|(r) goes to zero such that

(a) on (0, T ]×D ×D, c−1
2 fD(t, x, y) ≤ pD(t, x, y) ≤ c2fD(t, x, y);

(b) on [T,∞)×D ×D,

c−1
3 e−tλb,D

1 δD(x)α/2 δD(y)α/2 ≤ pD(t, x, y) ≤ c3 e
−tλb,D

1 δD(x)α/2 δD(y)α/2,

where λb,D
1 := − supRe(σ(Lb|D)) > 0. Here σ(Lb|D) denotes the spectrum of

the non-local operator Lb in D with zero exterior condition.
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