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UNIQUENESS OF STABLE PROCESSES WITH DRIFT

ZHEN-QING CHEN AND LONGMIN WANG
(Communicated by David Levin)

ABSTRACT. Suppose that d > 1 and a € (1,2). Let £b = —(=A)*/2 + 5.V,
where b is an R%-valued measurable function on R¢ belonging to a certain
Kato class of the rotationally symmetric a-stable process Y on R?. We show
that the martingale problem for (£?, C2°(R%)) has a unique solution for every
starting point z € R%. Furthermore, we show that the stochastic differential
equation dX; = dY; + b(X¢)dt with X¢ = z has a unique weak solution for
every x € RY.

1. INTRODUCTION

In this paper, unless otherwise stated, d > 1 and a € (1,2). A rotationally
symmetric a-stable process Y in R? is a Lévy process with characteristic function
given by

(1.1) Elexp(i€ - (Y, — Y0))] = exp (—t[¢]*), € € R™
The infinitesimal generator of Y is the fractional Laplacian A%/? := —(—A)®/2,
Here we use “:=" for definition. Denote by B(z,r) the open ball in R? centered at

x € R? with radius 7 > 0 and dz the Lebesgue measure on R?.

Definition 1.1. For a real-valued function f on R? and r > 0, define

1/ ()]
1.2 MF(r) = sup/ dy
( ) / ( ) zeR J B(z,r) |:17 - y|d+1—a

A function f on R? is said to belong to the Kato class Kgo—1 if lim, o Mg (r) = 0.

Using Hélder’s inequality, it is easy to see that for every p > d/(a—1), L>=(R%; dx)
+LP(R%dx) C Kga-1. Throughout this paper we will assume b = (by,--- ,bg) is
an Re-valued function on R? such that |b| € Ky .. For simplicity, sometimes we
just denote it as b € Kg o—1.

Let £* = A%/2 4 b-V. Recently Bogdan and Jakubowski [2] constructed a
particular heat kernel (also called a fundamental solution) ¢°(¢,,y) for operator
L? using a perturbation argument; see Section 2 below for details.

Let C2°(R%) be the space of smooth functions on R¢ with compact support
and D([0,00); R?) the space of right continuous R%valued functions having left
limits on [0, 00), equipped with Skorokhod topology. For ¢ > 0, denote by X;
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the projection coordinate map on D([0,00); R%). A Borel probability measure Q
on the Skorokhod space D([0, 00); R?) is said to be a solution to the martingale
problem for (£°, C2°(R?)) with initial value z € R? if Q(X, = x) = 1 and for every
fe (R, [T1L0f(X,)|ds < 0o Q-ass. for every ¢t > 0 and

(1.3) M = (X)) - f(Xo) - / £ F(X,)ds

is a Q-martingale. The martingale problem for (£, C°(R?)) with initial value
x € R? is said to be well-posed if it has a unique solution. It is easy to check
(see [ Proposition 2.3]) that the operators {T7;t > 0} determined by ¢°(¢,z,y)
form a Feller semigroup. So there exists an R%valued conservative Feller process
{X;,t > 0,P,,z € R?} defined on the canonical Skorokhod space D([0, 00); R?)
having ¢®(t,x,y) as its transition density function. It is shown in Theorem 2.5 of
Chen-Kim-Song [4] that PP, is a solution to the martingale problem for (L%, C2°(R%))
with P,(Xo = x) = 1. However, in both [2] and [], neither the uniqueness of a
heat kernel of £” nor the uniqueness of the martingale problem for (£° C°(R%))
are addressed. The main results of this paper, Theorems and [[L3] in particular
settle the uniqueness of a heat kernel of £°, and thus put the results of [2] and [4]
in perspective.

Theorem 1.2. For each z € R?, the martingale problem for (L’ C(R?)) with
initial value x is well-posed. These martingale problem solutions {P,,z € R} form
a strong Markov process, which has infinite lifetime and possesses ¢°(t,x,y) as its
transition density function.

Intuitively, £° is the infinitesimal generator for stochastic differential equation
(SDE)

(1.4) dX, = dY; + b(X,)dt, X = z.

But does this SDE have a weak solution? Is the weak solution to (L) unique? We
will answer these questions in this paper as well.

Recall that a weak solution to (I4]) is a process X defined on some probabil-
ity space such that almost all paths are right continuous and admit left limits,
fot |b(Xs)|ds < oo a.s. for every ¢ > 0, and that X satisfies (L)) for some sym-
metric a-stable process Y. If all the weak solutions (possibly defined on different
probability spaces) to ([4]) have the same distribution, we say that ([4) has a
unique weak solution.

Theorem 1.3. For each x € R?, SDE ([[4) has a unique weak solution and the law
of the unique weak solution to SDE (I4) is the unique solution to the martingale
problem for (Lb, C2°(RY)).

A solution to () will be called an a-stable process with drift 5. When Y is
a Brownian motion (which corresponds to o = 2), it is well known that Brownian
motion with drift can be obtained from Brownian motion through a change of
measure called a Girsanov transform. But for a symmetric a-stable process (where
0 < a < 2), SDE (7)) cannot be solved by a change of measure. This is because
Y is a purely discontinuous Lévy process and so the effect of a Girsanov transform
can only produce a purely discontinuous “drift term”; see [5L[7].

The unique weak solutions of (L4) form a strong Markov process X. Theorem
combined with the main result of [2] and [] readily gives sharp two-sided
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estimates on the transition density p°(t,z,y) of X as well as on the transition
density p%, (¢, z,y) of the subprocess X" of X killed upon leaving a bounded C'+*
open set. See Corollary below.

As mentioned above, the existence of the martingale solution to (£, C°(R%)) is
established in [4, Theorem 2.5, using a (particular) heat kernel of £° constructed
in [2]. One deduces easily from Itd’s formula that the uniqueness of the martingale
problem for (£°, C>°(R9)) implies the weak uniqueness of SDE (L4)). So the main
point of Theorems and [[13]is on the uniqueness of the martingale problem for
(LY, C*(RY)) and the existence of a weak solution to SDE (IL4)). The novelty here
is that the drift b is an R?-valued function in Kato class Kd,a—1, which in general is
merely measurable and can be unbounded. Thus Picard’s iteration method is not
applicable either. Motivated by the approach in [I], we establish the uniqueness of
solutions Q to the martingale problem for (£?, C2°(R?)) by showing that

oo oo
Eq / e Mg(X,)dt =E, / e Mg(X,)dt
0 0

for g € C°(R%) and sufficiently large A > 0.

The equivalence between weak solutions to SDE driven by Brownian motion
and solutions to martingale problems for elliptic operators is well known. The
crucial ingredient in this connection is a martingale representation theorem for
Brownian motion. Such a martingale representation theorem is not available for
stable processes. Recently, Kurtz [9, Theorem 2.3] studied equivalence between
weak solutions to a class of SDEs driven by Poisson random measures and solutions
to martingale problems for a class of non-local operators using a non-constructive
approach. We point out that one cannot deduce the existence of weak solution
to SDE (L4) from the existence of the martingale problem for (£’ C°(R?)) by
applying results from [9] because LPf is typically unbounded for f € C°(R9).
When the drift b is LP-integrable for p > d/(a — 1), Portenko [II] proposed a
perturbation approach to construct a weak solution to SDE (L4); see also [10]. In
this paper we establish by using the arguments in [I0IT] that the Markov process
X constructed above is the unique weak solution to SDE (4] when b belongs to
the Kato class Kg o—1-

Very recently, around the same time as the first version of this paper was com-
pleted, Kim and Song [8] studied stable process with singular drift, analogous to
Brownian motion with singular drift introduced and studied in Bass and Chen [I].
Intuitively speaking, stable process with singular drift studied in [§] corresponds
to SDE (4] with b being replaced by a suitable measure. However, following
[T, Definition 2.5], the existence and uniqueness of the solution in [§] is formulated
in a weaker sense as follows. Suppose p = (u1,...,pq) is a d-dimensional signed
measure in Kato class K4 o1 and ¢ > 0 is a smooth radial function with compact
support on R? having [, ¢(x)dz = 1. For n > 1, define ¢, (z) = 2"4p(2"z). For
x € R? | an a-stable process with drift p on R? starting from z is a probability
measure P on ([0, 00); RY) such that X; = z + Y; + A;, where

(i) Ay =lim, fg b™(X)ds uniform in ¢ over finite intervals, where the conver-
gence is in probability and 0% (z) := [pa wn(z — y)p;(dy);
(ii) there exists a subsequence ny, so that supy>; fot |6 (X5)|ds < oo a.s. for every
t>0;
(iii) Y is a rotationally symmetric a-stable process in R? with Yy = 0 under P.
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The existence of such a process is established in [8] through approximation by
solutions of X' =z +Y; + f(f b"(X™)ds. The uniqueness proof in [8] (see Section
5 there), as our proof for the uniqueness of martingale problems in this paper, is
also motivated by the approach of Bass and Chen [I, Section 5] by showing that
Ep [~ e g(X,)ds = B, [, e *g(X,)ds for g € C°(RY) and sufficiently large
A > 0. When applying to the Kato function b considered in this paper, the results
n [§] for p(dzr) = b(x)dz do not give the existence and uniqueness of weak solutions
to SDE (I4) nor the well-posedness of the martingale problem for (£?, C°(R?)).

The approach of this paper is quite robust. It can be applied to study some
other stochastic models. For example, it can be used to establish, for each b =
(b1,--- ,b4) € Kg1, the well-posedness of the martingale problem for (A + b -
V,C>®(R%)) and to establish the weak existence and uniqueness of solutions to
Brownian motion with singular drift: dX; = dB; + b(X;)dt. Recently, it has been
applied in Chen and Hu [3] to establish, for each b = (b1,---,bq) € Kg1, the
well-posedness of the martingale problem for (A +A%/2 +b-V,C>(R%)) and to es-
tablish the weak existence and uniqueness for solutions to SDE with singular drift:
dX; =d(B; +Y:) + b(X;)dt, where Y is a symmetric a-stable process independent
of B.

The rest of the paper is organized as follows. The proof of the uniqueness of
the martingale problem is given in Section 2] while the proof of Theorem [[J is
presented in Section [3]

2. UNIQUENESS OF THE MARTINGALE PROBLEM

Recall that £° = A%/2 +b-V. When b = 0, we simply write £° as £; that
is, £ = A®/2_ In this section, we establish the well-posedness of the martingale
problem for (L%, C°(R?)).

We first recall from Bogdan and Jakubowski [2] the construction of a particular
fundamental solution ¢°(t,z,y) for the non-local operator £ using a perturbation
argument. It is based on the following heuristics: ¢°(¢,z,y) of £ can be related
to the fundamental solution p(t,z,y) of £, which is the transition density of the
symmetric stable process Y, by the following Duhamel’s formula:

t
1) Pty = pltey) + / / & (5, 2) b(2) - Vap(t — 5, 2, y)dzds.
0 R4

Applying the above formula recursively, one expects ¢°(¢, z,y) to be expressed as
(2.2) Ot x,y) = qutxy

where ¢8(t,x,y) := p(t,z,y) and for k > 1,

(2.3) Yt x,y) / / @1 (s,2,2)b(2) - Vop(t — s, 2,y)dz.

The following results come from [2, Theorem 1, Lemma 15, Lemma 23] and their
proofs.

Proposition 2.1. (i) There exist constants Ty > 0 and ¢; > 1 depending only
on d, a and on b only through the rate at which Mlab‘(r) goes to zero so that
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Yoo db(t, z,y) converges locally uniformly on (0,Tp] x RY x R? to a jointly
continuous positive function ¢°(t,x,y) and that on (0,Tp] x R x R?,

t t
-1 —d/a b —d/a -
(2.4) o (t /\7|x_y|d+a>§q(t,x7y)§01 <t Ax_y|d+a).

Moreover, the function ¢®(t,z,y) can be extended uniquely to a jointly contin-
uous positive function on (0,00) x R? x R? so that for all s, t € (0,00) and
z,y € RY, fRd ¢ (t,z,2)dz =1 and

(2.5) d(s+txy) = /Rd @ (s,z,2)q"(t, z,y)dz.
(ii) Define T f(x f]Rd ¢ (t,z,y)f(y)dy. Then for any f, g € C*(RY),
lfn% [ (1) =~ 1t = [ (€)@ gl

Here and in the sequel, for a, b € R, a A b := min{a,b}, a V b := max{a, b},
and the meaning of the phrase “depending on b only via the rate at which M, “Z‘ (r)

goes to zero” is that the statement is true for any R%-valued function b on R? with
Ml%l( r) < My (r) for all r > 0. Proposition 21(ii) indicates that ¢*(t,x,y) is a heat

kernel (or fundamental solution) of £ in the distributional sense.

Let {P,,z € R?} be the probability measures on D(]0, 00); R?) obtained from the
kernel ¢®(t,x,y) in Proposition 21 The mathematical expectation taken under P,
will be denoted by E,. It was shown in [4, Theorem 2.5] that for each x € R, P,
solves the martingale problem for (£°, C2°(R%)) with initial value x. We will show
in this section that P, is in fact the unique solution. Our approach is motivated by
that of Bass and Chen [Il, Section 5].

Before presenting the proof of Theorem we record two lemmas on the bound-
edness of the A-resolvent operator R) corresponding to symmetric a-stable process
Y Denote by p(t,x,y) = p(t,x — y) the transition density function of Y. Let

= [,7 e p(t, x)dt and define the resolvent operator Ry by

Ryg(z) = /Rd m(r —y)g(y)dy = /Rd A (y)g(z — y)dy,

for every g € Cy(R?) and x € RY. Here Cy,(R?) (resp. Co(R?)) denote the space of
bounded continuous functions on R? (resp. continuous functions on R? that vanish
at infinity). For f € C,(RY), define | f|loc = supyera |f(z)]. Denote by C§°(R?)
the space of smooth functions on R? that together with their partial derivatives of
any order vanish at infinity. By [2 Lemma 7], for (A, z) € (0,00) x R%,

(2.6) ra(x) < (/\(d )/ |g|o- d) A ()\_Z\x|_d_°‘),
which can be rewritten as
ra(z) = M%/\\ﬂf}i% when d > «a,
A - )\(d—a)/a A ‘z)id_ja when d <a

Here for any two positive functions f and g, f < g means that there is a positive
constant ¢ > 1 so that ¢! g < f < cg on their common domain of definition.

Lemma 2.2. For every A\ > 0, Ry and VRy are bounded operators on Cy(R%).
Furthermore, Ryf € C5°(R?) for every f € C°(R?).
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Proof. It is known by [2, Lemma 9] that r(z) is continuously differentiable off the
origin and there is a constant ¢; > 1 so that for every A > 0 and z # 0,

1 1 1 1
1
2.7) « <|Z|d+1—a A )\2|Z|d+1+a) < V2l <a <|Z|d+1—a A )\2|Z|d+1+o¢> :

It follows that for A > 0 and f € Cy(R?), Vry(x — y) is uniformly in x integrable
against f(y)dy. Thus R f is continuously differentiable and

VR, f(x) = / Vra(e — ) f@)dy = | Vra()f(e - y)dy.

R4 Rd

Since both 7, (y) and |Vry(y)| are integrable over R? and f(z — y) converges to 0
as || — oo, we conclude from the dominated convergence theorem that both R f
and VR, f are in Co(R?) with ||Rxf|lec < 2 flloo and [VRAf|leo < callflloo for

some constant c; > 0. Similarly, for f € C5°(R?), we have
ok dlsBaf@) = [ ra)ok; - 0kuf(e— )
and consequently Ry f € C5°(R?). |

Lemma 2.3. Let b = (b1, ,bq) € Kga—1. There exists Ao > 0 depending only
on d, o and on b only via the rate at which Ml‘zl (r) goes to zero such that for every

A > A and f S Co(Rd),
1
IVEA(BS)lloo < 11 lloo-

Proof. Tt follows from [2, Lemma 11 and Corollary 12] and their proof (with g = 2
there) that there exists a constant ¢; > 0 depending only on d and « such that for
every t > 0,

1 t2 a (41/a
@9 s [ (e A ) PO < )

This together with (27) and [2, Lemma 16] implies that there exists a constant
¢ > 0 such that for every A > 0,

IVEADS) oo = sup

Vra(e—y) - b(y)f(y)dy‘

zeR | JR4
<aalfll sup [ < L ) b(y)ld
SCo sup — y)lay
OOIERd Rd |m—y\d a+1 |x_y|d+a+1

<cra|| flloo Mgy (A7),

Since M, (A~Y/2) tends to 0 as A — oo, there exists some \g > 0 so that

csMi (A1) < 1/2
for every A > Ag. This proves the lemma. |
It is well known that the transition density function p(t,z,y) of the symmetric

a-stable process Y on R? has the two-sided estimates

t

- —d/a
p(t,x,y),\t A ‘.’[—y|d+a.
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By (24) we have that there is a constant C; > 1 depending on b only through the
rate at which M (r) goes to zero so that

Ci'p(t,z,y) < ¢"(t,z,y) < Cip(t,x,y)  for every (t,z,y) € (0,Tp] x R x R%.

It follows from (2.4) and the Chapman-Kolmogorov equation (23] that there are
positive constants Cy > 1 and C3 > 0 depending on b only through the rate at
which M, (r) goes to zero so that

(2.9)

Cyte™%tp(t,z,y) < ¢°(t, x,y) < Coe'p(t, x,y) for every t>0 and z, yeR.

Thus for A > Cj,

B, [ [T e b <o [ bolnete -

By [2| Lemma 16|, there is a constant Cy > C3 depending on b only through the
rate at which M (r) goes to zero such that for every A > C,

(2.10) sup E, U e”b(xt)|dt] < oo.
zERC 0

By increasing the value of \g in Lemma 2.3 if needed, we may and do assume that
)\0 > 04.
We are now ready to prove Theorem

Proof of Theorem [L2. Recall that for each z € R?, P, solves the martingale prob-
lem for (£, C°(R?)) with initial value x. The strong Markov property of (X, P,z
€ R%) follows from the Feller property of ¢°(¢, z,y), and the conservativeness of the
Feller process X follows from Proposition 2.l It remains to prove the uniqueness
of the martingale problem.

Let Q be any solution to the martingale problem for (£°, C2°(R%)) with initial
value . We will show that Q = P,. We divide the proof into five steps.

(i) We show that it suffices to consider the case that

(2.11) Eq {/ e_’\t|b(Xt)|dt} < oo for every A > A,
0

where Eq is the mathematical expectation under the probability measure Q and
Ao is the constant in Lemma [2.3]

Let f € C2°(RY). By the definition of the martingale problem solution, fot |b(Xs)-
Vf(Xs)|ds < oo Q-a.s. for every t > 0. Let

T, (f) = inf {t >0: /Ot |b(Xs) - Vf(X,)|ds > n} .

Then {T,(f),n > 1} is an increasing sequence of stopping times such that
lim,, o0 T (f) = 00 Q-a.s. with

(2.12) Eq

Tn(f)
/ [b(Xs) - Vf(XS)|ds] <n.
0

Choose a sequence of functions f” € C(R?) such that f,(f)(:t) =gz, for x €
B(0,n) and 1 < i < d. Define

. = (jin, Tu(A) ) At (£ 10 > on X0 | > ).
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Then S,, is an increasing sequence of stopping times with lim,, . S, = co. By

2I12),
Sn
/ bi(XS)|ds]
0

Sn
/ b(Xs)Vf,S”(Xs)lds] < nd.
0

Sh d
Eq [/ Ib(Xs)IdS] <) Eq
0 i=1
d
< ZEQ
i=1

Now we construct a new probability measure Q on D(]0, 00); RY) such that Q
is also a solution to the martingale problem for (£’ C>°(R?)) and that for every
A > )\0,

(2.13)

Eg [/OOO e’\t|b(Xt)dt] < oo.

Let F; be the filtration generated by {Xs; s < t}. Fix N > 1. We specify Q by

Q(BN (Cobs,)) =Eq [Pxs, (C); B,

for B € Fg, and C € F. By the strong Markov property of {X;,P,} and the
optimal stopping theorem, we have that for every f € C°(R?) and stopping time
T,

EQ th]l{T>SN}} =Eq [EXSN [MTJLSN} ]l{T>SN}}
—Eq [E. [ Mf|Fsy | Lirssy)]
_E [MgNu{T>SN}] _
It follows that
Eg [M%] =Eq [MgNl{T>sN}} +Eq [M%JI{TSSN}] —Eq [M%ASN] —o.

Therefore Q is again a solution to the martingale problem for (£, C2°(R¢)). Fur-
thermore,

Eg UOOO e’\t|b(Xt)dt]

SN
=Eq V e Mb(Xy)|dt
0

+Eq {e_’\sN]EXSN [ / e_’\t|b(Xt)|dt” ,
0

which is finite by ZI0) and @I3). Note that Q = Q on Fg,. If we can show
Q =P,, then Q =P, on Fg,. Since N > 1 is arbitrary, we have that Q = P, on
Foo- S0 it suffices to consider the solution Q to the martingale problem satisfying

RII)

(ii) We next show that for every g € C5°(R?) and A > ),

(2.14) Eq [ /O h e_’\tg(Xt)dt] = Ryg(z) + Eq { /0 h e Mb(X;) - VRyg(Xy)dt| .
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By ([L3J), f(X;) is a semimartingale under Q for every f € C2°(R%). It follows
by It6’s formula that

e M (X)) = f(Xo) + /t e M
0

+ /Ote*s (Aa/Qf(XS) +b(X,) - Vf(XS)) ds — )\/t e M f(X,)ds.

0
Taking expectation with respect to Q, we have

(2.15) Eqle1(X,)] = f(x) - Eq [ / emf—m/?f)(Xs)ds]

+Eq [/Ote_’\sb(Xs) : Vf(XS)ds] :

Note that f, Vf and A®/2f are all bounded. Taking limit ¢ — co in both sides of

@I8) and using the fact (211]), we obtain
(2.16)

Eq UOOO e’\t(/\f—Aa/Qf)(Xt)dt} = f(z) +Eq /OOO e Mb(X,) - Vf(Xt)dt] .

We want to show that ([Z.I6)) holds for all f € C§°(R?). In fact, for any f € C§°(R?),
there exists a sequence of functions f, € C°(R?) such that ||f, — fllc — O,
(A2 f, — A2 f|loo = 0, ||V fr — Voo — 0. Applying II) again, we have

lim Eq UOOO e M f — Aa/zfn)(Xt)dt] =Eq UOOO e M — Aa/2f)(Xt)dt}

n— oo

and

n— oo

lim Eq UOOO e Mb(Xy) - an(Xt)dt] =Eq [/000 e Mb(X,) - Vf(Xt)dt] .

Thus (ZI6) holds for f € C$°(RY).

By Lemma 22, Ryg € C§°(RY) for g € C§°(RY). Taking f = Ryg in (ZI6) and
using the fact (A — A®/2)Ryg = g, we obtain (ZI4).

(iii) We claim that

(2.17) Eq U e_’\t]lA(Xt)dt} =0  for any A C R? with m(A) =0,
0

where m is the Lebesgue measure on R

To see this, suppose A is a bounded subset of R% having m(A) = 0. Let ¢, be a
sequence of positive functions in C2°(R%) so that |¢,,| < 2, lim,, o ¥, = 0 m-a.e.
on R? and lim,,—, o0 ¥n > 14. It follows from @71) and the dominated convergence
theorem that VR\n(2) = [pa Vra(z — y)¥n(y)dy converges to 0 boundedly as
n — 0o0. One concludes then from (2T1)) and the dominated convergence theorem
that

n—roo

lim Eq UOO e’\tb(Xt).VR,\wn(Xt)dt} =0.
0

Applying Fatou’s lemma to (ZI4) with ¢, in place of g yields that

Eq [ / e_’\tILA(Xt)dt} <liminfEq { / e_’\twn(Xt)dt} = liminf Ry, () = 0,
0 0 n—oo

n—00
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where the last equality is due to (2.6) and the dominated convergence theorem.
This establishes (ZI7) for any bounded and hence for any subset A C R? having
m(A) = 0.

(iv) We now show that ([Z14) holds for any function g on R? with |g| < c|b| as
well.

Let g be a function on R¢ with |g| < c[b| for some ¢ > 0. Fix M > 0 and define
gu = (((=M) V g) AM) Lpo,ar). Let ¢ be a positive smooth function on R? with
compact support such that fRd é(y)dy = 1. For n > 1, set ¢,(y) = n¢(ny) and
fn(2) == Jga &n(z — y)gn(y)dy. Then f, € C*(R?), |fn| < M, and f, converges
to gy almost everywhere on R? as n — co. In view of (ZI7) and the bounded
convergence theorem, lim,,_, o, Ry fn(z) = Ragar(x) and

lim Eq UOOO e)‘tfn(Xt)dt] =Eq [/OOO e)‘th(Xt)dt] :

n—oo

On the other hand, by ([2.7) and the dominated convergence theorem, VR, f,, con-
verges boundedly on R? to VRygas as n — oo. Letting n — oo in (ZI4) with f,
in place of g, we deduce that

(2.18)

Eq [/OOO e)‘th(Xt)dt] = Rygum(7) + Eq UOOO e Mb(X,) - VR,\gM(Xt)dt] :

Clearly by the dominated convergence theorem, (Z8) and (ZII),

lim Eq [ /O h e’\th(Xt)dt] =Eq [ /O h e)‘tg(Xt)dt}

M —o0

and
lim R,\gM(I) = R)\g(x)v

M—o0

while in view of (Z7) and Z8), VRrgn(2) = [pa Vra(z — y)gnm(y)dy converges
boundedly on R? to VRyg(z). Thus by ([II) and the dominated convergence
theorem,

Jim Eq U e_’\tb(Xt)-VR,\gM(Xt)dt} =Eq U e Mb(X;) - VRyg(X,)dt| .
Edee] 0 0

The last two displays together with (28] establish the claim that (ZI4]) holds for
any g with |g| < ¢|b|.
(v) Define a linear functional V) by

Vaf =Eq UOOO e’\tf(Xt)dt] :

Then (ZTI4) can be rewritten as
(2.19)
Vag = Rag(z) + Va(BRyg) for g € CC(RY) U {g: |g| < ¢|b| for some ¢ > 0},

where B is the operator defined by
Bf(z) = b(z) - V().

Fix g € C§°(R?). Tt follows from (7)) that |[BRyg| < ¢|b| for some constant ¢ > 0.
Applying (219) with BRyg in place of g yields

(2.20) VA(BRxg) = Rx(BRxg)(x) + VA(BRA\BR\g).
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Repeating this procedure, we get that for every g € C§°(R?) and every integer
N >1,

N
(2.21) Vag =Y Ra(BR\)*g(x) + Va(B(RAB)" Ryg).

k=0

It follows from Lemma [2.3] that for A > \g,

VA(B(RAB)™ Rag)| <[[(VRAD)YVRgl cEq U e“lb(Xt)dt]
0

<2V |VRrgllEq [ / e”|b<xt>|dt} ,
0

which tends to 0 as N — oo. Letting N — oo in [221]) gives

(2.22) Vag = Ra(BR))"g(x).
k=0

Note that P, is also a solution to the martingale problem for (£?, C°(R?)) with
initial value z. Then (222]) also holds with Q replaced by P,, that is,

B | [T e Matxoa| = Y- Rt
0 k=0
Consequently

(2.23) Eq [/OOO e)‘tg(Xt)dt] =E, UOOO e”g(Xt)dt}

for every g € C°(R%) and A > \g. By the uniqueness of the Laplace transform,
we have Eq[g(X;)] = E.[g(X})] for all ¢, or, the one-dimensional distributions of
X; under Q and P, are the same. By [6l Theorem 4.4.2], one obtains equality
of all finite-dimensional distributions and hence Q = P,. The uniqueness for the
martingale problem for (£°, C2°(R%)) is thus proved. O

3. STOCHASTIC DIFFERENTIAL EQUATION

It is known that for any o € (0,2) the fractional Laplacian A%/ can be written
in the form

A(d, —«
(3.1) A ?y(z) = /R (u(x + 2) —u(z) = Vu(z) - 21 <1y) ﬁ dz,

where A(d, —a) is a normalizing constant so that

i€z : —A d’ —o
(3.2) /]Rd (% =1 —if - 21y 1<ny) |(Z|d+a)

In fact, A(d, —a) can be computed explicitly in terms of I'-function:

d+ a\ 1
_ — a—1_-—d/2 et =
Ald, —a) = a2 17 F( . >F(1 2) .

dz = _‘€|a’ 5 € Rd'

Recall that {X,P,,z € R%} is the unique solution to the martingale problem for
(L8, C2°(R%)) on the canonical Skorokhod space (2 := D([0, 00); R%). Following the
arguments in [I0,[IT] we show in the following theorem that X is a weak solution
to the SDE (4.
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Theorem 3.1. There exists a process Z defined on 2 so that all its paths are

right continuous and admit left limits, and that under each P, Z is a rotationally
symmetric a-stable process on R and

t
0

Proof. By Theorem [[LZ, X is the Feller process determined by kernel ¢°(¢, z,y) in
Proposition 211 For t > 0, let

t
(3.4) Zy =X, — Xo — / b(X,)ds.
0

Note that Z; is well defined since we have from [4, Lemma 2.2] that

s | wf < [ t [, ..ol < .

The aim is to prove that under each P,, the process Z is a rotationally symmetric
a-stable process on R? starting at 0.
Fix ¢ € RZ. Consider the bounded function

35) u(tz,6) —E, [exp <i§~ (Xt _ /Ot b(Xs)ds)ﬂ L t>0, zeRY

We claim that wu(t, z, &) is the unique bounded solution to the integral equation
(3.6)

u(t,z,&) = /Rd eig'yqb(t,x, y)dy — i/o /Rd qb(t —8,2,2) (€ b(2)) u(s, z,&)dzds.

In fact, it is easy to verify that
t
(3.7) e 6o bXAT i/ (€-b(X,)) e i/ p(X)dr,
0

Thus by the Markov property we have
t
u(t,z, &) =E, [exp <if~ <Xt —/ b(Xs)ds)ﬂ
0
t
=E, [e¢ %] —1 / E, [eiﬁ-xt (€ - b(X,)) e 6 MXAT] g
0

—E, [ - / E, [(€ - b(X.)) ult — 5, X.,6)] ds

= /]Rd eig'yqb(t,x, y)dy — i/o /]Rd qb(s, x,2) (€-b(2))u(t — s, z,£)dzds.

To prove the uniqueness of the bounded solution to (3.6), it suffices to show that
the only bounded solution to the corresponding homogeneous equation

(3.8) v(t,z,€) = / /]Rd —s,x,2) (- b(2))v(s, z,£)dzds

is identically zero.
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Since |b] € Kgo—1, we have from [4, Lemma 2.2] that for fixed ¢ € RY, there
exists a constant 77 > 0 such that

t
sup / / @t —s,x,2) € b(2)]dzds < 1
]Rd

zERY

for every t € (0,T1]. As a consequence, the map I' on L*°(]0, 7] x R?) defined by

00 d
— (Tw //]Rd (t—s,x,2) (€ -b(2)) w(s, z)dzds, weL>*([0,T1]xR?)

is a contraction. Let v be a bounded solution to (3. Then v is a fixing point of
I' and hence v(t,z,£) = 0 for t <Tj. Note that

Ty+t
o(Ty +t,x,8) =— i/ /R @I+t —s,2,2) (€-b(2)v(s, z,€)dzds
0 d

- i/ / @t —s,2,2) (€ b(2))v(Ty + s, 2,&)dzds.
0 Jre

We conclude that v(t,z,£) = 0 for all ¢ > 0 by induction. This implies that the
bounded solution to ([B.6) is unique.
By Proposition 2.1} Duhamel’s formula

¢
39 dlan) =)+ [ [ s b Vaplsz)dads

0o Jre
holds true for t < Tj. Integrating (89) against e'*¥dy, we see that the function

Rd

is also a bounded solution to (B8] for ¢ < Ty. Therefore, by the uniqueness,

(3.10) E, [exp (ig : (Xt - Xo — /Ot b(XS)ds»] = e Tyt z,y) = e I

for ¢t < T, and, consequently,

t
Zt:Xt—XQ—/ b(X )dS
0

is a rotationally symmetric a-stable process. The proof of this theorem is finished.
O

Now we are ready to complete the proof for the uniqueness of a weak solution
to the SDE (L4).

Proof of Theorem [[3. Fix 2 € R? Theorem [ gives the existence of a weak
solution to SDE ([I4). If {X;,P,} is a weak solution to (I4]), then by It&’s formula
(cf. [7]) and (BJI), we have for every f € C°(R?),

¢
(3.11) f(X:) — f(Xo) = a martingale +/ LPf(X,)ds.
0
Thus every weak solution to ([4) solves the martingale problem for (L%, C2°(R%)).

So the uniqueness of a weak solution to (L4) follows from the uniqueness of the
martingale problem for (£°, C2°(R%)), which is established in Theorem O
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The unique weak solutions X = {X;,P,,z € R¢} to SDE (4] form a strong
Markov process. By Theorems and [[3l X has ¢°(t,x,y) of Proposition B.1]
as its transition density function. Thus one readily gets from Proposition 2] and
[4, Theorem 1.3] the following sharp two-sided estimates on the transition density
function of X and its subprocess in a bounded C'>! open set. Recall that an open set
D in R? (when d > 2) is said to be C11 if there exist a localization radius R > 0 and
a constant A > 0 such that for every Q € 9D, there exist a C'!-function ¢ = ¢ :
RI-1 3 R satisfying ¢(0) = V(0) = 0, [ Vol < A, [Vo(z) — Vo(y)| < Alz — yl,
and an orthonormal coordinate system CSg: y = (y1,...,Ya—1,Y4) =: (¥, ya) with
its origin at @ such that

B(Q,R)ND ={y = (,ya) € B(0, R) in CSq :ya > &(y)}

The pair (R, A) is called the characteristics of the C1'! open set D. Note that a
C11 open set can be unbounded and disconnected. For 2 € D, let §p(x) denote
the Euclidean distance between z and 0D. The diameter of D will be denoted as
diam(D).

Corollary 3.2. (i) X has a jointly continuous transition density function p(t,x,y)
with respect to the Lebesque measure on RE. Moreover, for every T > 0, there is
a constant ¢c; > 1 depending only on d, o, T and on b through the rate at which
M, (r) goes to zero so that for (t,z,y) € (0,T] x R? x RY,

t t
-1 —d/a B
1 (t A |.’II — y|d+a> S p(t,.f,y) S C1 (t A |£17 _ y|d+a> :

(ii) Let d > 2 and let D be a bounded C*' open subset of RY with CY! charac-
teristics (Ro, Ag). Define

For each T > 0, there are constants ca = c2(T, Ro, Ao, d, o, diam(D),b) > 1 and
cs = c3(T,d,a, D,b) > 1 with the dependence on b only through the rate at which
M, (r) goes to zero such that

(a) on (0,T] x D x D, ¢; ' fp(t,z,y) < pp(t,z,y) < cofp(t,z,y);
(b) on [T,00) x D x D,

b,D b,D
ezt e M 6p(2)* 2 6p(y)*? < po(tw,y) < cge”N dp(a)*28p(y)*/?,
where AP .= —supRe(o(Lb|p)) > 0. Here o(L|p) denotes the spectrum of

the non-local operator LY in D with zero exterior condition.
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