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Abstract. We present concrete constructions of discrete sets in R
d (d ≥ 2)

that intersect every aligned box of volume 1 in R
d, and which have optimal

growth rate O(T d).

1. Introduction

A set D ⊆ R
d is called a Danzer set if there exists an s > 0 such that D intersects

every convex set of volume s. The question whether a discrete Danzer set in R
d of

growth rate O(T d) exists is due to Danzer, see [CFG,Go,GL], and has been open
since the sixties.

There are several variants of this question. One is to weaken the Danzer property
in the following sense. We say that Y ⊆ R

d is a dense forest if there is a function

ε = ε(T )
T→∞−−−−→ 0 so that for every x ∈ R

d and for every direction v ∈ Sd−1, the
distance between Y and the line segment of length T which starts at x and proceeds
in direction v is less than ε(T ). Intuitively, as it was presented in [Bi], T is the
maximal distance that a man can see when standing in a forest with a trunk of
radius ε located at each element of Y . Note that every Danzer set is a dense forest
with ε(T ) = O(T−1/(d−1)), and a dense forest with ε(T ) = O(T−(d−1)) is a Danzer
set.1 A construction of a dense forest of growth rate O(T d) is given in [SW], and
another construction in the plane follows from the proof of [Bi, Lemma 2.4].

One other interesting direction is to look for Danzer sets with faster growth
rates. A Danzer set of growth rate O(T d(log T )d−1) is given in [BW]; this bound
was improved recently in [SW] by a probabilistic construction that gives growth
rate O(T d log T ).

Another approach in trying to weaken the Danzer problem is by hitting a smaller
family of sets, instead of all the convex sets. John’s theorem [Jo] implies that re-
placing convex sets by boxes2 gives an equivalent question. In this note we consider
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1The second statement is proven as follows: let D be a dense forest with ε(T ) = O(T−(d−1)),

and let R ⊆ R
d be a box (i.e. a parallelotope with adjacent faces orthogonal) with volume s and

shortest edge length 2ε. Since the volume of a box is the product of the length of its sides, R

has an edge of length at least T :=
(

s
2ε

)1/(d−1)
. Let L be the line segment parallel to this edge,

passing through the center of R, and of length T − 2ε. If R does not contain any points of D,
then the distance from L to D is at least ε, which implies that ε ≤ O(T−(d−1)) = O(ε/s). For
s sufficiently large, this is a contradiction, so every box of sufficiently large volume intersects D.
Since every convex set contains a box of volume at least a constant times the volume of the convex
set, this shows that D is a Danzer set.

2A box in R
d is the image of an aligned box [a1, b1]×· · ·× [ad, bd] under an orthogonal matrix.
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a question that arises naturally from the Danzer problem. We say that D ⊆ R
d is

an align-Danzer set if there is an s > 0 such that D intersects every aligned box
of volume s. In our main results, Theorem 1.1 and Theorem 1.3 below, we present
simple constructions for align-Danzer sets in R

d of growth rate O(T d). Neither
of these constructions is new, but the viewpoint of seeing them as connected with
Danzer’s problem is new.

We denote by {0, 1}ZFin the subset of {0, 1}Z consisting of those bi-infinite se-
quences that contain only finitely many 1s.

Theorem 1.1. The set

D
def
=

{(
±
∑
n∈Z

an2
n,±

∑
n∈Z

an2
−n

)
∈ R

2 : (an) ∈ {0, 1}ZFin

}

is an align-Danzer set in R
2 of growth rate O(T 2).

The set in Theorem 1.1 is a variant of the binary version of the well-known
van der Corput sequence (see e.g. [vdC]).

Although the set D in Theorem 1.1 is given very explicitly, and the proof is by
elementary means, it only solves the problem in dimension 2, and no simple higher-
dimensional extension comes to mind. To solve the problem in higher dimensions
we use a dynamical approach.

For a fixed d ≥ 2 let A ⊆ SLd(R) be the subgroup of diagonal matrices with
positive entries, and let Ω be the space of all lattices in R

d.

Definition 1.2 ([Sk, p. 6]). A lattice Λ ∈ Ω is admissible if its orbit under A is
precompact in Ω.

Theorem 1.3 (Corollary of [Sk, Theorem 1.2]). For every d ≥ 2 there exists an
admissible lattice in R

d, and every admissible lattice is an align-Danzer set.

Although Theorem 1.3 is a direct consequence of [Sk, Theorem 1.2], we provide
the proof since it is elementary. We also refer to the discussions in [GL, pp. 24-31]
for additional reading.

As a direct consequence we reprove a result in computational geometry that
follows from a result of Halton on low discrepancy sequences; see [Ha]. We remark
that Corollary 1.4 is not stated in [Ha], but it is well known in the computational
geometry and combinatorics communities that Halton’s construction satisfies it.

Corollary 1.4. For every ε > 0 there are ε-nets of optimal sizes O(1/ε) for the
range space (X,R), where X = [0, 1]d and R = {aligned boxes}.

This corollary follows directly from the above theorems by restricting to a boun-
ded cube and rescaling to [0, 1]d. We refer to [AS,Ma] for a more comprehensive
reading about the notions in Corollary 1.4.

Remark 1.5. Align-Danzer sets in R
d of growth rate O(T d) can also be constructed

by modifying the proof of [SW, Theorem 1.4] to work for aligned boxes and then
combining with the result of [Ha] or [vdC] in the unit cube. Nonetheless, our
constructions here are simple and the proofs are straightforward.
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2. Proof of Theorem 1.1

Proof of Theorem 1.1. We first show that D intersects every aligned box of volume
64. It suffices to show that

D+
def
=

{(∑
n∈Z

an2
n,

∑
n∈Z

an2
−n

)
∈ R

2 : (an) ∈ {0, 1}ZFin

}

intersects every aligned box of volume 16 that sits in R
2
+

def
= [0,∞)2.

Let R ⊆ R
2
+ be an aligned box of volume 16, and denote its lower left vertex by

(x, y). Let t > 0 be such that the lower right and the upper left vertices of R are
(x+ t, y) and (x, y+ 16

t ) respectively. We define a sequence (an)n∈Z ∈ {0, 1}ZFin so

that
(∑

n∈Z
an2

n,
∑

n∈Z
an2

−n
)
∈ R.

For each integer k, we denote by {0, 1}≥k
Fin and {0, 1}<k

Fin the subsets of {0, 1}≥k

and {0, 1}<k, respectively, consisting of those sequences that contain only finitely
many 1s. Here {0, 1}≥k is the set of all sequences in {0, 1} of the form (ak, ak+1, . . .),
and {0, 1}<k is the set of all sequences in {0, 1} of the form (. . . , ak−2, ak−1).

Let k ∈ Z be such that 2k ≤ t
2 < 2k+1. Observe that

∑
n<k an2

n < 2k ≤ t
2 for

any sequence (an) in {0, 1}<k
Fin, and that the interval (x, x+ t

2 ) intersects the set

2kN =

⎧⎨
⎩
∑
n≥k

an2
n : (an) ∈ {0, 1}≥k

Fin

⎫⎬
⎭ .

Then we may choose the ans for n ≥ k so that
∑

n≥k an2
n ∈ (x, x+ t

2 ), and thus for

any choice of the ans for n < k (and in particular for the choice described below)
we have

∑
n∈Z

an2
n ∈ (x, x+ t).

The analysis of the y coordinate is similar. Here 2−k−1 < 2
t ≤ 2−k, and therefore

2−k+1 < 8
t ≤ 2−k+2. We have

∑
n≥k an2

−n < 2−k+1 < 8
t for any sequence (an) in

{0, 1}≥k
Fin, and the interval (y, y + 8

t ) intersects the set

2−k+1
N =

{∑
n<k

an2
−n : (an) ∈ {0, 1}<k

Fin

}
.

Then we may choose the ans for n < k so that
∑

n<k an2
−n ∈ (y, y + 8

t ), and thus
for any choice of the ans for n ≥ k (and in particular for the choice described above)
we have

∑
n∈Z

an2
−n ∈ (y, y + 16

t ).

It is left to show that D (or D+) is of growth rate O(T 2). To see that, consider
the set

B
def
=

⎧⎨
⎩
⎛
⎝∑

n≥0

an2
n,

∑
n<0

an2
−n

⎞
⎠ ∈ R

2 : (an) ∈ {0, 1}ZFin

⎫⎬
⎭ .

Observe that the mapping g : D+ → B which is defined in the obvious way by(∑
n∈Z

an2
n,

∑
n∈Z

an2
−n

)
g�→

⎛
⎝∑

n≥0

an2
n,

∑
n<0

an2
−n

⎞
⎠

is a bijection, and for any (x, y) ∈ D+ we have ‖(x, y)− g(x, y)‖2 ≤
√
5 (where ‖·‖2

denotes the Euclidean norm). But since B = N× 2N, the assertion follows. �
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Remark 2.1. We want to stress that D is not a Danzer set in R
2 and not even a

dense forest. To see it, observe that symmetric sequences (an) correspond to points
on the line y = x. On the other hand, non-symmetric sequences correspond to
points (x, y) with |x− y| > 1, and in particular D misses a neighborhood of the
line y = x+ 1

4 .

3. Proof of Theorem 1.3

Fix d ≥ 2. Let V = {t ∈ R
d :

∑d
i=1 ti = 0}, and for each t ∈ V let gt ∈ SLd(R)

be the diagonal matrix whose entries are eti . Then t �→ gt is a homomorphism.

Proof of Theorem 1.3. Let K be a totally real number field of degree d, and let OK

be its ring of integers. Let φ1, . . . , φd : K → R be the Galois embeddings of K into

R, and let Φ : K → R
d be their direct sum. Then Λ

def
= Φ(OK) is a lattice in R

d.
To see that Λ is admissible, fix x = Φ(α) ∈ Λ, and observe that if x �= 0,

d∏
i=1

|xi| =
d∏

i=1

|φi(α)| = |N(α)| ∈ Z � {0}.

Here N denotes the norm in the field K. In particular,
∏d

i=1 |xi| ≥ 1 and thus∏d
i=1 |etixi| ≥ 1 for all t ∈ V . It follows that |etixi| ≥ 1 for some i = 1, . . . , d and

thus ‖gtx‖ ≥ 1. Since t, x were arbitrary, Mahler’s compactness criterion shows
that Λ is admissible.

For the second part of the proof, let Λ be an admissible lattice in R
d. Let R be

an aligned box disjoint from Λ. Then there exists t ∈ V such that gtR is a cube.
By assumption gtΛ is in a compact subset K ⊆ Ω, hence the codiameter3 of gtΛ is
bounded above by a constant independent of t. But since gtR is disjoint from gtΛ,
the distance from the center of gtR to the complement of gtR, i.e., half the edge
length of the cube gtR, is bounded above by the distance from the center of gtR
to gtΛ, which is in turn bounded above by the codiameter of gtΛ. Thus both the
diameter and the volume of gtR are bounded above by a constant independent of
t. Since Vol(R) = Vol(gtR), the proof is complete. �
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