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NEVANLINNA COUNTING FUNCTION

AND PULL–BACK MEASURE

O. EL-FALLAH AND K. KELLAY

(Communicated by Pamela B. Gorkin)

Abstract. We give an explicit relation between the Nevanlinna counting func-
tion of an analytic self-map of the unit disk and its pull-back measure. This
gives a simple proof of the results of Lefévre, Li, Queffélec and Rodr̀ıguez–
Piazza (2011).

1. Introduction

In this note we study the relationship between the Laplacian of the Nevanlinna
counting function of an analytic self-map of the unit disk and its pull-back measure.
Our results allow us to refine asymptotic identities involving the Nevanlinna count-
ing function and the pull–back measure given recently by Lefèvre, Li, Queffélec
and Rodr̀ıguez–Piazza [3]. As consequences of their result, one easily recovers sev-
eral previously known results about composition operators on the Hardy space,
including the characterization of compact composition operators and composition
operators belonging to Schatten classes (see [3–5, 7, 8]).

In order to state our main result, we need some notation. Let ϕ be a non–
constant analytic map of the unit disk D of the complex plane into itself. The
Nevanlinna counting function is defined for every z ∈ D\{ϕ(0)} by

Nϕ(z) =

⎧⎪⎪⎨
⎪⎪⎩

∑
w∈ϕ−1(z)

log
1

|w| if z ∈ ϕ(D),

0 if z /∈ ϕ(D).

Let ϕ∗(eit) = limr→1− ϕ(reit) be the radial limit of ϕ. The function ϕ∗ maps
the unit circle T into the unit disk D. The pull–back measure on D of the Lebesgue
measure induced by ϕ∗ is given by

mϕ(B) := |{ζ ∈ T : ϕ∗(ζ) ∈ B}|,
where B is a Borel subset of D and |E| denotes the normalized Lebesgue measure of
a Borel subset E of the unit circle T. For every ζ ∈ T and 0 < h < 1, the Carleson
box W (ζ, h) ⊂ D centered at ζ and of size h is the set

W (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ πh}.
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We use, inside the Carleson box W (ζ, h), the set

S(ζ, h) := {z ∈ D : |z − ζ| ≤ h},

whose size is comparable to that of W (ζ, h). Denote by D(a, r) the disk of radius
r centered at a and as before S(ζ, h) := {z ∈ D : |z − ζ| ≤ h}, for ζ ∈ D.

Now we are able to state the main result. This is a generalization of a theorem
that was obtained by Lefèvre, Li, Queffélec and Rodr̀ıguez–Piazza in [3, Theorem
1.1] (see also Remark 5 below). In fact, our proof of this more general result is
simpler than the original proof from [3].

Theorem 1.1. For every 0 < c < 1/8 and 0 < h < (1− |ϕ(0)|)/8, we have

(1.1) mϕ[S(ζ, (1− c)h] ≤ 2

c2
sup

z∈S(ζ,h)∩D

Nϕ(z), ζ ∈ D

and

(1.2) sup
z∈W (ζ,h)∩D

Nϕ(z) ≤
100

c2
mϕ[W (ζ, (1 + c)h)], ζ ∈ T.

2. Proof

Let H2 be the Hardy space of the disk,

H2 =
{
f =

∑
n≥0

f̂(n)zn ∈ Hol(D) :
∑
n≥0

|f̂(n)|2 < ∞
}
.

The normalized area measure on D will be denoted by dA and let Δ = 4∂2/∂z∂z
be the usual Laplacian. For the proof of the above theorem we need the following
key lemma which gives a generalization of the classical Littlewood-Paley identity.

Lemma 2.1. For every analytic non–constant self–map ϕ : D → D and every
g ∈ C2 on C we have∫

D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫
D

Δg(w)Nϕ(w)dA(w).

Proof. Since Δg is bounded on D, by the change of variable formula, we have∫
D

Δg(z)Nϕ(z)dA(z) =

∫
D

Δg(ϕ(w))|ϕ′(w)|2 log 1

|w|dA(w)

=

∫
D

Δ(g ◦ ϕ)(w) log 1

|w|dA(w)

= lim
r→1−

∫
rD

Δ(g ◦ ϕ)(w) log 1

|w|dA(w).(2.1)

Now by Green’s formula, for r < 1,

(2.2)
1

2

∫
rD

Δ(g ◦ ϕ)(w) log r

r|w|dA(w)

= −g(ϕ(0)) +

∫
T

g(ϕ(rζ))
|dζ|
2π

+
1

2
log

1

r

∫
rD

Δ(g ◦ ϕ)(w)dA(w).
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Note that for ρ < 1,∣∣∣ log 1

ρ

∫
ρD

Δ(g ◦ ϕ)(w)dA(w)
∣∣∣ =

∣∣∣ log 1

ρ

∫
ρD

Δg(ϕ(w))|ϕ′(w)|2dA(w)
∣∣∣

≤ ‖Δg‖∞ log
1

ρ

∫
ρD

|ϕ′(w)|2dA(w)

≤ ‖Δg‖∞
∫
D

|ϕ′(w)|2 log 1

|w|dA(w)

=
1

2
‖Δg‖∞(‖ϕ‖2H2 − |ϕ(0)|2).

Hence for 0 < ρ < r < 1, we get∣∣∣ log 1

r

∫
rD

Δ(g ◦ ϕ)(w)dA(w)
∣∣∣

=
log(1/r)

log(1/ρ)
log

1

ρ

∫
ρD

|Δ(g ◦ ϕ)(w)|dA(w) + log
1

r

∫
rD\ρD

|Δ(g ◦ ϕ)(w)|dA(w)

≤ log(1/r)

log(1/ρ)
‖Δg‖∞‖ϕ‖2H2 + ‖Δg‖∞

∫
D\ρD

|ϕ′(w)|2 log 1

|w|dA(w).(2.3)

Finally, if we choose ρ = e−(log 1/r)1/2 , by (2.1), (2.2) and (2.3) the result follows
from r → 1. �

Proof of Theorem 1.1. Let ζ ∈ D and consider the function g defined on C by

g(w) =

{
(h2 − |w − ζ|2)2 if |w − ζ| ≤ h,

0 if |w − ζ| ≥ h.

First note that for ε > 0, gε = g1+ε ∈ C2(C). Applying Lemma 2.1 with gε and
letting ε go to 0, we obtain

(2.4)

∫
D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫
D

Δg(w)Nϕ(w)dA(w).

We have

Δg(w) = 8(2|w − ζ|2 − h2).

Note that if z ∈ S(ζ, (1− c)h), then g(z) ≥ (72/24)c2h4. By (2.4), we get

mϕ[S(ζ, (1− c)h)] ≤ 24

72c2h4

∫
S(ζ,(1−c)h)

g(z)dmϕ(z)

≤ 23

72c2h4

∫
D

Δg(z)Nϕ(z)dA(z)

≤ 23

72c2h4

∫
h/

√
2≤|z−ζ|≤h

Δg(z)Nϕ(z)dA(z)

≤ 23

72c2h4
sup

z∈S(ζ,h)

Nϕ(z)

∫
h/

√
2≤|z−ζ|≤h

Δg(z)dA(z)

≤ 26

72c2
sup

z∈S(ζ,h)

Nϕ(z).
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For the second estimate, let ζ = z/|z|, h = 1−|z|, Z = (1+ηh)ζ and ρ = 1+2c+η

where η = (1 + 2c)(1 +
√
2). Consider the function g defined by

g(w) =

{
(ρ2h2 − |w − Z|2)2 if |w − Z| < ρh,

0 if |w − Z| ≥ ρh.

As before for ε > 0, gε = g1+ε ∈ C2(C). Applying Lemma 2.1 with gε and letting ε
go to 0 we get (2.4). We have

Δg(w) = 8(2|w − Z|2 − ρ2h2).

If w ∈ D, then |w − Z| ≥ ηh = ρh/
√
2 and so Δg(w) ≥ 0. Note that D(z, ch) ⊂

D(Z, ρh). Also, if |w − z| ≤ ch, then

|w − Z| ≥ |Z − z| − |w − z| ≥ (1− c+ η)h,

hence

Δg(w) ≥ 8(2(1− c+ η)2 − (1 + 2c+ η)2)h2 ≥ 23(
√
2 + 2)h2, w ∈ D(Z, ρh).

Note that ϕ(0) /∈ D(z, ch), by the sub-mean value property of Nϕ (see Remark 3
below) and (2.4), we get

Nϕ(z) ≤ 2

c2h2

∫
D(z,ch)

Nϕ(w)dA(w)

≤ 2

23(
√
2 + 2)c2h4

∫
D(z,ch)

Nϕ(w)Δg(w)dA(w)

≤ 1

22(
√
2 + 2)c2h4

∫
D

Nϕ(w)Δg(w)dA(w)

≤ 2

22(
√
2 + 2)c2h4

∫
D(Z,ρh)∩D

g(w)dmϕ(w)

≤ 1

2(
√
2 + 2)c2h4

ρ4h4 mϕ(D(Z, ρh) ∩ D)

≤ 100

c2
mϕ(D(Z, ρh) ∩ D).

We claim that

D(Z, ρh) ∩ D ⊂ W (ζ, (1 + 2c)h).

Suppose that ζ = 1 and let eiθ ∈ ∂D(Z, ρh) ∩ T. We have

sin2 θ =
1

4(1 + ηh)2
[(1 + ρh)2 − (1 + ηh)2][(1 + ηh)2 − (1− ρh)2]

≤ (3 + 2
√
2)(1 + 2c)2h2.

Note that c < 1/8 and h < 1/8, so we get θ ≤ (1 + c)hπ. Now the proof is
complete. �

3. Remarks

1. The following corollary, first proved by Rudin [6], (see also Bishop [1]), is an
immediate consequence of Lemma 2.1
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Corollary 3.1 (Bishop & Rudin). We have

ΔNϕ = −δϕ(0) +mϕ,

where Δ is the distributional Laplacian and δz0 is the Dirac mass at z0. Furthermore
Nϕ is equal to a subharmonic function almost everywhere on D.

2. The formula from Lemma 2.1 was given by Stanton [2, Theorem 2] when g
is a subharmonic function instead of a smooth function. The proof of Stanton’s
formula is based on Jensen’s formula.

3. By Corollary 3.1, the Nevanlinna counting function Nϕ is equal to a subhar-
monic function almost everywhere on D. In fact Nϕ fails to be subharmonic only
on a set of logarithmic capacity zero [2]. The Nevanlinna counting function satisfies
the sub-mean value property

Nϕ(z) ≤
2

r2

∫
D(z,r)

Nϕ(w)dA(w),

for every disk D(z, r) of center z and radius r does not contain ϕ(0); see [7, 8].
4. In the proof in the first inequality (1.1), one can consider the following

function g(w) = (h2 − Re(w − ζ)2)2(h2 − Im(w − ζ)2)2 if Re(w − ζ) ≤ h and
Im(w − ζ) ≤ πh and g(w) = 0 otherwise. We obtain as before:

For every 0 < c < 1/8 and 0 < h < (1− |ϕ(0)|)/8, we have

mϕ[W (ζ, (1− c)h] ≤ A

c4
sup

z∈W (ζ,h)∩D

Nϕ(z) ζ ∈ T,

where A is an absolute constant.
5. The following result of Lefèvre, Li, Queffélec and Rodiguez–Piazza in [3] is

based on Stanton’s formula. Their proof is quite complicated. They showed that
the classical Nevanlinna counting function and the pull-back measure are connected
as follows:

For every ζ ∈ T and 0 < h < (1− |ϕ(0)|)/16, we have

1

64
mϕ[W̃ (ζ, h/64] ≤ sup

z∈W (ζ,h)

Nϕ(z) ≤ 196mϕ[W̃ (ζ, 24h)],

where W̃ (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ h}.
6. There are several different conditions which characterize the compactness of

the composition operator Cϕ(f) = f◦ϕ on the Hardy space H2. For the holomorphic
self-map ϕ of D the following conditions are equivalent:

(i) Nϕ(z) = o(log 1/|z|) as |z| → 1−,
(ii) mϕ[W (ζ, h)] = o(h) as h → 0,
(iii) Cϕ is compact on H2.

The condition (ii) means that mϕ is a vanishing Carleson measure for H2 [5]. For
Hilbert-Schmidt class membership see [4]. We refer the reader to the monograph
by Shapiro for an account of these problems [7].
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1014 Rabat, Morocco

E-mail address: elfallah@fsr.ac.ma
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