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SHIFT HARNACK INEQUALITY AND INTEGRATION

BY PARTS FORMULA FOR FUNCTIONAL SDES DRIVEN

BY FRACTIONAL BROWNIAN MOTION

ZHI LI

(Communicated by David Levin)

Abstract. The shift Harnack inequality and the integration by parts formula
for functional stochastic differential equations driven by fractional Brownian
motion with Hurst parameter 1

2
< H < 1 are established by using a transfor-

mation formula for fractional Brownian motion and a new coupling argument.

1. Introduction

In stochastic analysis for diffusion processes, the Driver integration by parts
formula [4] and the Bismut formula [2] (also known as the Bismut-Elworthy-Li
formula due to [6]) are two fundamental tools. Based on the martingale method,
a coupling argument or Malliavin calculus, the derivative formula has been widely
studied and applied in various fields, such as heat kernel estimates, the strong Feller
property and functional inequalities; see [7, 13, 15, 16] and references therein.

Recently, using a new coupling argument, Wang [14] derived the Driver inte-
gration by parts formula, and provided a new type of Harnack inequality, called
the shift Harnack inequality. The main idea is to construct two processes which
start from the same point and, at the expected time T , separate at a fixed vector
almost surely. In [14], the Driver integration by parts formula and the shift Har-
nack inequality are also applied to various models including the degenerate diffusion
process, delayed SDEs and semi-linear SPDEs. Using the new coupling argument,
Zhang [17] established a shift Harnack inequality and an integration by parts for-
mula for semi-linear SPDEs with delay, and Fan [8] established a shift Harnack
inequality and an integration by parts formula for SDEs driven by additive frac-
tional noise with Hurst parameter 1

2 < H < 1. However, in [8] the condition that
b is Fréchet differentiable such that ∇b is bounded and Hölder continuous of order
1− 1

2H < ρ < 1 seems to be relatively strong. On the other hand, as far as we know,

in the case that 1
2 < H < 1, using the approach of coupling for the segment pro-

cess and Girsanov transformations, by virtue of irregularity of the operator K−1
H ,

it is very difficult to obtain the shift Harnack inequality. In this paper, motivated
mainly by [9], using a transformation formula for fractional Brownian motion, we
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establish the shift Harnack inequality and the integration by parts formula for the
segment process in the stochastic functional differential equations{

dX(t) = b(X(t))dt+ F (Xt)dt+ dBH
t ,

X0 = ξ,

driven by fractional Brownian motion with Hurst parameter 1
2 < H < 1.

The paper is organized as follows. In Section 2, we give some preliminaries on
fractional Brownian motion. In Section 3, we establish the shift Harnack inequal-
ity and the integration by parts formula by using a transformation formula for
fractional Brownian motion.

2. Preliminaries

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst param-

eter H ∈ (0, 1) defined on the probability space (Ω,F , P ), i.e., BH is a centered
Gauss process with covariance function

RH(t, s) = E(BH
t BH

s ) =
1

2
(t2H + s2H − |t− s|2H).

In particular, if H = 1
2 , B is a Brownian motion. It is well known that if H �= 1

2 ,

BH does not have independent increments and has an α-order Hölder continuous
path for all α ∈ (0, H).

For each t ∈ [0, T ], we denote by Ft the σ-algebra generated by the random
variables {BH

s : s ∈ [0, t]} and the P -null sets.
We denote by E the set of step functions on [0, T ]. Let H be the Hilbert space

defined as the closure of E with respect to the scalar product

〈I[0,t], I[0,s]〉 = RH(t, s) = E(BH
t BH

s ) =
1

2
(t2H + s2H − |t− s|2H).

The mapping I[0,t] �→ BH
t can be extended to an isometry between H and the

Gauss space H1 associated with BH . Denote this isometry by φ �→ BH(φ). For
more details, see [10]. On the other hand, from [5], we know the covariance kernel
RH(t, s) can be written as

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by

KH(t, s) = Γ(H +
1

2
)−1(t− s)H− 1

2F (H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s
),

in which F (·, ·, ·, ·) is the Gauss hypergeometric function.
Define the linear operator K∗

HE → L2([0, T ];R) as follows:

(K∗
Hφ)(s) = KH(T, s)φ(s) +

∫ T

s

(φ(r)− φ(s))
∂KH

∂r
(r, s)dr.

By [1], we know that for all φ, ψ ∈ E , 〈K∗
Hφ,K∗

Hψ〉L2[0,T ] = 〈φ, ψ〉 holds. From

the B.L.T. theorem, K∗
H can be extended to an isometry between H and L2[0, T ].

Therefore, according to [1], the process {Wt = B((K∗
H)−1(I[0,t])), t ∈ [0, T ]} is a

Wiener process, and BH has the integral representation

BH
t =

∫ t

0

KH(t, s)dWs.
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By [5], the operator KH : L2[0, T ] → I
H+ 1

2
0+ (L2[0, T ]) associated with the square

integrable kernel KH(·, ·) is defined as

(KHf)(t) :=

∫ t

0

KH(t, s)f(s)ds, f ∈ L2[0, T ],

where I
H+ 1

2
0+ is the H+ 1

2 -order left-fractional Riemann-Liouville operator on [0, T ];

see [12]. It is an isomorphism and for each f ∈ L2[0, T ],

(KHf)(s) = I2H0+ s
1
2−HI

1
2−H
0+ sH− 1

2 f, H ≤ 1

2
,

(KHf)(s) = I10+s
H− 1

2 I
H− 1

2
0+ s

1
2−Hf, H ≥ 1

2
.

As a consequence, for every h ∈ I
H+ 1

2
0+ (L2[0, T ]), the inverse operator K−1

H is of the
form

(K−1
H h)(s) = sH− 1

2D
H− 1

2
0+ s

1
2−Hh′, H >

1

2
,

(K−1
H h)(s) = s

1
2−HD

1
2−H
0+ sH− 1

2D2H
0+ h, H <

1

2
,

where D
H− 1

2
0+ (D

1
2−H
0+ ) is the H − 1

2 (
1
2 − H)-order left-sided Riemann-Liouville de-

rivative; see [12].
In particular, if h is absolutely continuous, we have

(1) (K−1
H h)(s) = sH− 1

2 I
1
2−H
0+ s

1
2−Hh′, H <

1

2
.

Let r > 0 be fixed, and let L = C([−r, 0];R) be equipped with the uniform norm
‖ · ‖∞. We consider the following functional stochastic differential equation driven
by fractional Brownian motion on R,{

dX(t) = b(X(t))dt+ F (Xt)dt+ dBH
t ,

X0 = ξ,
(2)

where ξ ∈ L and, for each t ≥ 0, Xt ∈ L is fixed as Xt(u) = X(t+ u), u ∈ [−r, 0].
The aim of the paper is to consider the shift Harnack inequality and the inte-

gration by parts formula for equation (2) in case 1
2 < H < 1. We define

(3) Ptf(ξ) := Ef(Xξ
t ), t ∈ [0, T ], f ∈ Bb(L),

where Xξ
t is the solution to equation (2) and Bb(L) denotes the set of all bounded

measurable functions on L.

3. Shift Harnack inequality

Let us start with the following hypotheses:

(H1) |b(x)− b(y)| ≤ K1|x− y|, ∀x, y ∈ R, where K1 > 0 is a constant;
(H2) F is globally Lipschitz on L, i.e., for some K2 > 0,

|F (x)− F (y)| ≤ K2‖x− y‖∞ ∀x, y ∈ L, t ∈ [0, T ].

According to [3], conditions (H1) and (H2) ensure that equation (2) has a unique
solution.

Theorem 3.1. Assume that (H1) and (H2) hold. Then, there exists a unique
strong solution to equation (2).
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Now, we aim to establish the integration by parts formula and the shift Harnack
inequality for PT . For any p > 1, we introduce the space

Hp := {η ∈ L : ‖η‖pH :=

∫ 0

−r

|η′(t)|pdt < ∞}.

Theorem 3.2. Assume (H1) and (H2) hold and let T > r, 1
2 < H < 1. Then for

any p > 1, max{0, 2H − 3
2} < 1

σ < H − 1
2 ,

σ
σ−1 < σ′ < 2

3−2H , η ∈ H σσ′
σσ′−σ−σ′

and

f ∈ Bb(L), the operator PT satisfies

(4) (PT f(ξ))
p ≤ PT f

p(η + ·)(ξ)exp
[ p

p− 1
C(H,σ, σ′)ρ(T, r,H, η)

]
, ∀ ξ ∈ L.

Here, in the relation (4),

(5) C(H,σ, σ′) =
[B(−σ′/2 +Hσ′ + 1,−3σ′/2 +Hσ′ + 1)1/σ

′

c̃HΓ(H − 1
2 )|σ(1− 2H) + 1| 1

σ

]2
,

where B(·, ·) and Γ(·) are the standard Beta and Gamma functions, c̃H =(
2H

Γ(2H)Γ(3−2H)

) 1
2

and

ρ(T, r,H, η)

=T
2
σ+ 2

σ′ −2H
[ 1

2H + 2
σ′ − 2

+B
(
2H +

2

σ′ − 2, 3− 4H +
2

σ

)]

·
{
(1 + (TK1)

q)[(
2

T − r
)q−1|η(−r)|q + 2q−1‖η‖qH] + 2q−1Kq

2(T − r)|η(−r)|q
}2/q

,

where q = σσ′

σσ′−σ−σ′ .

Proof. For any φ ∈ Bb([0, T − r]) such that
∫ T−r

0
φ(t)dt = 1, let

Λ(t) =

{
φ(t)η(−r), if t ∈ [0, T − r],
η′(t− T ), if t ∈ [T − r, T ],

(6)

and

Θ(t) =

∫ t∨0

0

Λ(s)ds, t ∈ [−r, T ].(7)

For any ε ∈ [0, 1], let Xε(t) solve the equation

(8) dXε(t) = {b(X(t)) + F (Xt) + εΛ(t)}dt+ dBH
t , t ≥ 0, Xε

0 = ξ.

Then, it is easy to see that

Xε
t = Xt + εΘt, t ∈ [0, T ].(9)

In particular, Xε
T = XT + εη(T ). Next, for any t ∈ [0, T ], define

dB̃H
t := dBH

t + [εΛ(t)− b(Xε(t)) + b(X(t))− F (Xε
t ) + F (Xt)]dt

= dBH
t + hε(t)dt,

where

(10) hε(t) = εΛ(t)− b(Xε(t)) + b(X(t))− F (Xε
t ) + F (Xt), t ∈ [0, T ].

As a direct consequence, we can rewrite equation (8) as

dXε(t) = {b(Xε(t)) + F (Xε
t )}dt+ dB̃H

t , t ≥ 0, Xε
0 = ξ.
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Then by virtue of (6), (9) and (10), we have∫ T

0

|hε(t)|qdt ≤ 2q−1εq
∫ T−r

0

|φ(t)η(−r)|qdt+ 2q−1εq
∫ T

T−r

|η′(t− T )|qdt

+ 2q−1(εK1)
q

∫ T

0

|Θ(t)|qdt+ 2q−1(εK2)
q

∫ T−r

0

|Θ(t)|qdt.
(11)

Taking φ(t) = 1
T−r , we have

∫ T

0

|hε(t)|qdt ≤ (
2

T − r
)q−1εq|η(−r)|q + 2q−1εq‖η‖qH

+ 2q−1(εK1T )
q

∫ T

0

|Λ(t)|qdt+ 2q−1(εK2(T − r))q
∫ T−r

0

|Λ(t)|qdt

≤(1 + (TK1)
q)[(

2

T − r
)q−1εq|η(−r)|q

+ 2q−1εq‖η‖qH] + 2q−1(εK2)
q(T − r)|η(−r)|q

<+∞.

(12)

On the other hand, we have∫ T

0

(T − u)1−2Hhε(u)du

=
1

Γ( 32 −H)

∫ T

0

(T − u)
1
2−HΓ

(3
2
−H

)
(T − u)

1
2−Hhε(u)du

=(I
3
2−H
0+ hε)(T ),

where

hε(u) = Γ
(3
2
−H

)
(T − u)

1
2−Hhε(u).

Note that q−1
q

1
2H−1 = ( 1σ + 1

σ′ )
1

2H−1 > 1 and q
q−1 (1− 2H) > −1. We have∫ T

0

|(T − u)
1
2−Hhε(u)|2du ≤

(∫ T

0

|hε(u)|qdu
) 2

q ·
(∫ T

0

(T − u)(1−2H) q
q−1 du

) q−1
q

<+∞.

Then hε(u) ∈ L2([0, T ];R). Thus, we have that
∫ ·
0
c̃−1
H (T − u)1−2Hhε(u)du ∈

I
3
2−H
0+ (L2([0, T ];R)). Note that by means of the integral representation of fractional
Brownian motion, the definition of the operator KH and transformation formulas
for fractional Brownian motion (see [9]), we get that for the any T > r,

B̃H
T =

∫ T

0

hε(s)ds+BH
T

=

∫ T

0

hε(s)ds+ c̃H

∫ T

0

(T − s)2H−1dB1−H
s

=

∫ T

0

c̃H(T − s)2H−1[c̃−1
H (T − s)1−2Hhε(s)ds+ dB1−H

s ].

(13)
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For any t ∈ [0, T ], let

B̃1−H
t =

∫ t

0

c̃−1
H (T − s)1−2Hhε(s)ds+B1−H

t

=

∫ t

0

c̃−1
H (T − s)1−2Hhε(s)ds+

∫ t

0

K1−H(t, s)dWs

=

∫ t

0

K1−H(t, s)
[(

K−1
1−H

∫ ·

0

c̃−1
H (T − u)1−2Hhε(u)du

)
(s)ds+ dWs

]
,

where c̃H =
(

2H
Γ(2H)Γ(3−2H)

) 1
2

.

Now, let

Rε(T ) = exp
[
−
∫ T

0

(
K−1

1−H

∫ ·

0

c̃−1
H (T − v)1−2Hhε(v)dv

)
(s)dWs

− 1

2

∫ T

0

(
K−1

1−H

∫ ·

0

c̃−1
H (T − v)1−2Hhε(v)dv

)2

(s)ds
]
.

Using Corollary 5.2 of [9], we immediately know that (B̃H
t )0≤t≤T is an FBH

t -
fractional Brownian motion with Hurst parameter H ∈ ( 12 , 1) under the new proba-

bility Q(dω) = Rε(T )P (dω) if (B̃1−H
t )0≤t≤T is an FB1−H

t -fractional Brownian mo-
tion with Hurst parameter 1−H under the new probability Q(dω) = Rε(T )P (dω).

Next, we want to show (B̃1−H
t )0≤t≤T is an FB1−H

t -fractional Brownian motion
with Hurst parameter H ∈ ( 12 , 1) under the new probability Q(dω) = Rε(T )P (dω).

Due to [11], it suffices to show that EPRε(T ) = 1. Since
∫ ·
0
c̃−1
H (T − v)1−2Hhε(v)dv

is absolutely continuous, for any s ∈ [0, T ] we have by (1) that(
K−1

1−H

∫ ·

0

c̃−1
H (T − v)1−2Hhε(v)dv

)
(s) = s

1
2−HI

H− 1
2

0+ sH− 1
2 c̃−1

H (T − s)1−2Hhε(s).

Hence, we have further that for s ∈ [0, T ],

∣∣∣(K−1
1−H

∫ ·

0

c̃−1
H (T − u)1−2Hhε(u)du

)
(s)

∣∣∣
=
∣∣∣ 1

Γ(H − 1
2 )

c̃−1
H s

1
2−H

∫ s

0

uH− 1
2 (T − u)1−2Hhε(u)(s− u)−

3
2+Hdu

∣∣∣
≤ 1

Γ(H − 1
2 )

c̃−1
H s

1
2−H

{∫ s

0

(
uH− 1

2 (s− u)−
3
2+Hhε(u)

) σ
σ−1

du
} σ−1

σ

·
{∫ s

0

(T − u)σ(1−2H)du
} 1

σ

≤ c̃−1
H

Γ(H − 1
2 )

s
1
2−H T 1−2H+ 1

σ + (T − s)1−2H+ 1
σ

|σ(1− 2H) + 1| 1
σ

{∫ s

0

(
uH− 1

2 (s− u)−
3
2+H

)σ′

du
} 1

σ′

·
{∫ s

0

|hε(u)|qdu
} 1

q

≤C
1
2 (H,σ, σ′)s−

3
2+H+ 1

σ′
[
T 1−2H+ 1

σ + (T − s)1−2H+ 1
σ

]{∫ s

0

|hε(u)|qdu
} 1

q

,

(14)
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where

C(H,σ, σ′) =
[B(−σ′/2 +Hσ′ + 1,−3σ′/2 +Hσ′ + 1)1/σ

′

c̃HΓ(H − 1
2 )|σ(1− 2H) + 1| 1

σ

]2
.

Substituting (12) into (14), we can further obtain that for the fixed T > r,

1

C(H,σ, σ′)

∫ T

0

∣∣∣(K−1
1−H

∫ ·

0

c̃−1
H (T − u)1−2Hhε(u)du

)
(s)

∣∣∣2ds
≤

∫ T

0

s2H+ 2
σ′ −3

[
T 1−2H+ 1

σ + (T − s)1−2H+ 1
σ

]2{∫ s

0

|hε(u)|qdu
} 2

q

ds

≤ T
2
σ+ 2

σ′ −2H
[ 1

H + 1
σ′ − 1

+ 2B
(
2H +

2

σ′ − 2, 3− 4H +
2

σ

)]

·
{
(1 + (TK1)

q)[(
2

T − r
)q−1εq|η(−r)|q

+ 2q−1εq‖η‖qH] + 2q−1(εK2)
q(T − r)|η(−r)|q

}2/q

=: 2ρ(T, r,H, η, ε).

(15)

Using the well-known Novikov criterion, one can have EPRε(T ) = 1. Now let us
put ε = 1. Note that

PT f(ξ) = EQ{f(X1
T )} = EP {R1(T )f(X

ε
T )} = EP {R1(T )f(η(T ) +XT )}

and so we can get the shift Harnack inequality

(PT f(ξ))
p ≤ PT f

p(η + ·)(ξ)(EP (R
p

p−1

1 (T )))p−1

≤ PT f
p(η + ·)(ξ)exp

[ p

p− 1
C(H,σ, σ′)ρ(T, r,H, η)

]
.

The proof is now complete. �

Remark 3.1. By virtue of 1
2 < H < 1, we have 2H − 3

2 < H − 1
2 . On the other

hand, we have σ
σ−1 = 1

1− 1
σ

< 1
1−(H− 1

2 )
= 2

3−2H since 1
σ < H − 1

2 . Thus, σ, σ′ in

Theorem 3.2 are reasonable.

Remark 3.2. In [8], Fan established the shift Harnack inequality and the integra-
tion by parts formula for equation (2) without delay by directly using Girsanov
transformations for fractional Brownian motion with Hurst parameter 1

2 < H < 1.
However, the condition that b is Fréchet differentiable such that ∇b is bounded and
Hölder continuous of order 1− 1

2H < ρ < 1 is required.

Theorem 3.3. Assume the same conditions as in Theorem 3.2. Moreover, if we
assume that b, F is differential, and |∇b| ≤ K3, |∇F | ≤ K4, where K3 and K4 are
positive constants and ∇ is the gradient operator, then we have that for any T > r
and f ∈ C1

b (L),

(PT∇ηf)(ξ) = E
{
f(Xξ

T )
c̃−1
H

Γ(H − 1
2 )

∫ T

0

〈
s

1
2−H(T − s)1−2H

∫ s

0

uH− 1
2 (s− u)−

3
2+H

[
Λ(u) +∇Θ(u)b(X

ξ(u)) +∇Θu
F (Xξ

u)
]
du, dBs

〉
.
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Proof. Use the same notation as in the proof of Theorem 3.2. Since ∇b and ∇F
are bounded, we have

d

dε
Rε(T )

∣∣∣
ε=0

=
c̃−1
H

Γ(H − 1
2 )

∫ T

0

〈
s

1
2−H(T − s)1−2H

∫ s

0

uH− 1
2 (s− u)−

3
2+H

[
Λ(u) +∇Θ(u)b(X

ξ(u)) +∇Θu
F (Xξ

u)
]
du, dBs

〉
which immediately implies that

(PT∇ηf)(ξ) = lim
ε→0+

[PT f(· − εη)(ξ)− EP f(Xξ
T )

−ε

]

= lim
ε→0+

[EPRε(T )f(X
ε
T )− εη)− EP f(Xξ

T )

−ε

]

= lim
ε→0+

[EPRε(T )f(X
ε
T )− EP f(Xξ

T )

−ε

]

=E
{
f(Xξ

T )
c̃−1
H

Γ(H − 1
2 )

∫ T

0

〈
s

1
2−H(T − s)1−2H

∫ s

0

uH− 1
2 (s− u)−

3
2+H

[
Λ(u) +∇Θ(u)b(X

ξ(u)) +∇Θu
F (Xξ

u)
]
du, dBs

〉
.

(16)

The proof is now complete. �

Remark 3.3. There are many interesting applications of the shift Harnack inequality
and the integration by parts formula, e.g., to estimate the density with respect to the
Lebesgue measure for distributions and Markov operators, to the log shift Harnack
inequality and distribution properties of the underlying transition probability.
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