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A C1 REGULARITY RESULT FOR THE INHOMOGENEOUS

NORMALIZED INFINITY LAPLACIAN

GRAZIANO CRASTA AND ILARIA FRAGALÀ

(Communicated by Joachim Krieger)

Abstract. We prove that the unique solution to the Dirichlet problem with
constant source term for the inhomogeneous normalized infinity Laplacian on
a convex domain of RN is of class C1. The result is obtained by showing as
an intermediate step the power-concavity (of exponent 1/2) of the solution.

1. Introduction

This paper is focused on the regularity of the unique solution to the Dirichlet
problem

(1.1)

{
−ΔN

∞u = 1, in Ω,

u = 0, on ∂Ω ,

where Ω is an open bounded convex subset of R
N and ΔN

∞u is the normalized
infinity Laplacian. The symbolic definition of ΔN

∞ϕ for a smooth function ϕ is

(1.2) ΔN
∞ϕ(x) :=

{
1

|∇ϕ(x)|2
〈
∇2ϕ(x)∇ϕ(x), ∇ϕ(x)

〉
, if ∇ϕ(x) �= 0,

[λmin(∇2ϕ(x)), λmax(∇2ϕ(x))], if ∇ϕ(x) = 0 ,

being λmin(∇2ϕ(x)) and λmax(∇2ϕ(x)) respectively the minimum and the maxi-
mum eigenvalue of the Hessian matrix ∇2ϕ(x); for the detailed interpretation of
the pde −ΔN

∞u = 1 in the viscosity sense, we refer to Section 2 below.
The normalized infinity Laplace operator has recently attracted increasing in-

terest for its applications and connections with different areas, such as mass trans-
portation [8], shape metamorphism [4], and especially differential games [13, 17].
In fact, according to Kohn and Serfaty [13], and Peres et al. [17], the equation
−ΔN

∞u = 1 is satisfied by the continuum value function of a differential game
called “tug of war” (a description can be found for instance in [2]).

The development of the existence, uniqueness, and regularity theory for bound-
ary value problems involving the normalized infinity Laplace operator is still at its
early stages.

The well-posedness of the Dirichlet problem (1.1), possibly with a more general
source term f , has been proved independently in [17] with probabilistic methods, in
[15] with pde methods (see also [16]), and in [2] using a finite difference approach.
Let us mention that the existence and uniqueness questions have been attacked also
in the parabolic framework; see the interesting paper [12] on the evolution governed
by ΔN

∞u.
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About regularity theory, so far no result seems to be available. As it is well
known, the fundamental contributions on regularity for pde’s involving the infin-
ity Laplace operator are the celebrated works by Savin [18], Evans-Savin [9], and
Evans-Smart [10], which concern infinity harmonic function and establish that they
are differentiable in any space dimension and C1,α in dimension two. Recently, some
of these results have been extended to a class of inhomogeneous Dirichlet problems
for the not-normalized infinity Laplacian in any dimension: the everywhere differ-
entiability property has been obtained by Lindgren [14], and the C1 regularity in
the case of a constant source term on a convex domain has been proved in our
previous paper [6].

In the case of the normalized operator, its definition via a dichotomy involving
the maximum and minimum directions of the Hessian necessarily augments the
difficulty of enforcing regularity techniques, and in fact no result beyond Lipschitz
regularity is currently known.

The aim of this paper is to present two new regularity results for the unique
solution to problem (1.1) on convex domains.

The first result establishes that the solution is power-concave, precisely, 1/2-
concave, see Theorem 3.1. To prove such a result, we apply the convex envelope
method by Alvarez-Lasry-Lions which we exploited in our previous paper [6], but
in the current case this requires a more delicate procedure which is outlined for the
benefit of the reader at the beginning of Section 3. In particular, this procedure
exploits as a crucial tool a comparison principle proved in [2].

The second result is obtained as a consequence of the first one, and states that
the solution is of class C1(Ω); see Theorem 4.4. The proof relies on the local
semiconcavity of the solution, combined with an estimate for semiconcave functions
near singular points proved in [6].

The paper is organized as follows. In Section 2 we provide and discuss the
definitions and properties of viscosity solution to problem (1.1) and to more general
second-order equations that we need to consider in the proofs. In Sections 3 and 4
we state and prove respectively the power-concavity and the C1 regularity of the
solution.

2. Preliminaries

In this section we review the definition of the normalized infinity Laplace op-
erator, and that of viscosity sub- and super-solutions of (1.1), as well as of more
general second-order equations (that we shall need to use). Afterwards, we give
some remarks to enlighten some basic features of solutions.

For a C2 function ϕ defined in a neighborhood of x ∈ R
n, we define the (not-

normalized) infinity Laplace operator

Δ∞ϕ(x) :=
〈
∇2ϕ(x)∇ϕ(x), ∇ϕ(x)

〉
and the operators

Δ+
∞ϕ(x) :=

{
|∇ϕ(x)|−2 Δ∞ϕ(x), if ∇ϕ(x) �= 0,

λmax(∇2ϕ(x)), if ∇ϕ(x) = 0,

Δ−
∞ϕ(x) :=

{
|∇ϕ(x)|−2 Δ∞ϕ(x), if ∇ϕ(x) �= 0,

λmin(∇2ϕ(x)), if ∇ϕ(x) = 0,



A C1 REGULARITY RESULT FOR ΔN
∞ 2549

where, for a symmetric matrix A ∈ R
n×n
sym , λmin(A) and λmax(A) denote respectively

the minimum and the maximum eigenvalue of A.
In the following, if u, v : Ω → R are two functions and x ∈ Ω, by

u ≺x v

we mean that u(x) = v(x) and u(y) ≤ v(y) for every y ∈ Ω.

Moreover we recall that second-order sub-jet (resp. super-jet), J2,−
Ω u(x) (resp.

J2,+
Ω u(x)), of a function u ∈ C(Ω) at a point x ∈ Ω, is by definition the set of pairs

(p,A) ∈ R
n × R

n×n
sym such that, as y → x, y ∈ Ω, it holds that

(2.1) u(y) ≥ (≤) u(x) + 〈p, y − x〉+ 1

2
〈A(y − x), y − x〉+ o(|y − x|2) .

Definition 2.1. Let f : Ω → R be a continuous function and consider the normal-
ized infinity Laplace equation

(2.2) −ΔN
∞u = f(x) in Ω .

(i) An upper semicontinuous function u : Ω → R is a viscosity sub-solution of
(2.2) if, for every x ∈ Ω,

−Δ+
∞ϕ(x) ≤ f(x) ∀ϕ ∈ C2(Ω) s.t. u ≺x ϕ.

The explicit formulation reads{
−Δ∞ϕ(x) ≤ f(x)|∇ϕ(x)|2 ∀ϕ ∈ C2(Ω) s.t. u ≺x ϕ, if ∇ϕ(x) �= 0,

−λmax(∇2ϕ(x)) ≤ f(x) ∀ϕ ∈ C2(Ω) s.t. u ≺x ϕ, if ∇ϕ(x) = 0 ,

or in terms of super-jets{
−〈Xp, p〉 ≤ f(x)|p|2 ∀(p,X) ∈ J2,+

Ω u(x), if p �= 0,

−λmax(X) ≤ f(x) ∀(p,X) ∈ J2,+
Ω u(x), if p = 0 .

(ii) A lower semicontinuous function u : Ω → R is a viscosity super-solution
of (2.2) if, for every x ∈ Ω,

−Δ−
∞ϕ(x) ≥ f(x) ∀ϕ ∈ C2(Ω) s.t. ϕ ≺x u .

The explicit formulation reads{
−Δ∞ϕ(x) ≥ f(x)|∇ϕ(x)|2 ∀ϕ ∈ C2(Ω) s.t. ϕ ≺x u, if ∇ϕ(x) �= 0,

−λmin(∇2ϕ(x)) ≥ f(x) ∀ϕ ∈ C2(Ω) s.t. ϕ ≺x u, if ∇ϕ(x) = 0 ,

or in terms of super-jets{
−〈Xp, p〉 ≥ f(x)|p|2 ∀(p,X) ∈ J2,−

Ω u(x), if p �= 0,

−λmin(X) ≥ f(x) ∀(p,X) ∈ J2,−
Ω u(x), if p = 0 .

(iii) A function u ∈ C(Ω) is a viscosity solution of (2.2) if u is both a viscosity
sub-solution and a viscosity super-solution of (2.2).

(iv) A function u ∈ C(Ω) is a viscosity solution of (1.1) if u = 0 on ∂Ω and u is
a viscosity solution of (2.2) in Ω.

Definition 2.2. Let I ⊂ R be an open interval, let H : Ω × I × R
n × R

n×n
sym → R,

and consider the equation

(2.3) H(x, u,∇u,∇2u) = 0 in Ω .
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(i) An upper semicontinuous function u : Ω → I is a viscosity sub-solution of
(2.3) if, for every x ∈ Ω,

H∗(x, u(x),∇ϕ(x),∇2ϕ(x)) ≤ 0 ∀ϕ ∈ C2(Ω) s.t. u ≺x ϕ ,

where H∗ is the lower semicontinuous envelope of H.
(ii) A lower semicontinuous function u : Ω → I is a viscosity super-solution

of (2.3) if, for every x ∈ Ω,

H∗(x, u(x),∇ϕ(x),∇2ϕ(x)) ≥ 0 ∀ϕ ∈ C2(Ω) s.t. u ≺x ϕ ,

where H∗ is the upper semicontinuous envelope of H.
(iii) A function u ∈ C(Ω, I) is a viscosity solution of (2.3) if u is both a viscosity

sub-solution and a viscosity super-solution of (2.2).
(iv) A function u ∈ C(Ω, I) is a viscosity solution of the homogeneous Dirichlet

problem for equation (2.3) if u = 0 on ∂Ω and u is a viscosity solution of (2.3) in
Ω.

Remark 2.3. By taking the function

H(p,A) := −
〈
A

p

|p| ,
p

|p|
〉

∀(p,A) ∈ (Rn \ {0})× R
n×n
sym ,

and computing its upper and lower semicontinuous envelopes, we see that Defini-
tion 2.2 gives back Definition 2.1. (Note that H∗ = −(−H)∗ and H∗ = −(−H)∗.)
This argument justifies the apparently strange notions of the operators Δ+

∞ and
Δ−

∞.

Remark 2.4. It is clear that the viscosity solution of the Dirichlet problem (1.1) is
also a viscosity solution of

(2.4)

{
−Δ∞u = |∇u|2 in Ω,

u = 0 on ∂Ω.

On the other hand, the converse is not true, and in fact the Dirichlet problem (2.4)
has not, in general, a unique solution. To shed some light on this feature, it is
enough to look at the one-dimensional case. If Ω is the interval (−R,R), prob-
lems (1.1) and (2.4) read respectively

(2.5)

{
−u′′ = 1 in (−R,R),

u(±R) = 0 .

{
−u′′(u′)2 = (u′)2 in (−R,R),

u(±R) = 0 .

It is immediate to check that the function

ur(x) :=

{
(R−r)2

2 , if |x| ≤ r,
(R−r)2−(|x|−r)2

2 , if r ≤ |x| ≤ R

is a solution to the second problem in (2.5) for every r ∈ [0, R], whereas it is a
solution to the first problem in (2.5) only for r = 0. Indeed, if r ∈ (0, R], for every
x with |x| < r there exist smooth functions ϕ such that ϕ ≺x u, but which violate
the condition −ϕ′′(x) ≥ 1, so that u is not a super-solution to −u′′ = 1.

Remark 2.5. The viscosity solution u to problem (1.1) is strictly positive in Ω.
Indeed, it is non-negative by the comparison result proved in [2, Thm. 2.18]. Assume
by contradiction that u(x0) = 0 at some point x0 ∈ Ω. Then the function ϕ ≡ 0
touches u from below at x0, and hence u cannot be a viscosity super-solution to
the equation −ΔN

∞u = 1 at x0.
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3. Power-concavity of solutions on convex domains

In this section we prove

Theorem 3.1. Assume that Ω is an open-bounded convex subset of Rn, and let u
be the solution to problem (1.1). Then u1/2 is concave in Ω.

Our proof strategy is the following.

Step 1. We show that the map u �→ w := −u1/2 establishes a one-to-one correspon-
dence between positive viscosity sub- and super-solution of −ΔN

∞u = 1
in Ω and a “restricted class” of, respectively negative viscosity super- and
sub-solution of the equation

(3.1) F (w,∇w,∇2w) = 0 in Ω,

where the function F : (−∞, 0)× R
n × R

n×n
sym → R is defined by

(3.2) F (w, p,A) := −〈Ap, p〉 − 1

w

(
|p|4 + 1

2
|p|2

)
.

Step 2. Under the additional assumption that

(3.3) the convex set Ω satisfies an interior sphere condition,

we can adapt the convex envelope method of Alvarez, Lasry, and Lions (see
[1]), proving that the convex envelope w∗∗ of a (restricted) super-solution
w of (3.1) is still a (restricted) super-solution.

Step 3. Using the comparison principle proved in [2, Thm. 2.18], we conclude that,
if (3.3) is fulfilled, then w is convex, namely u1/2 is concave.

Step 4. By approximating Ω with outer parallel sets, we finally show that the as-
sumption (3.3) can be removed.

Remark 3.2. The assumption (3.3) is used in a crucial way to prove Lemma 3.6
below, so that we do not need to impose state constraints boundary conditions on
∂Ω (see [1, Definition 2]). In this respect, we mention that the power-concavity of
solutions to (3.1) has been discussed by Juutinen in [11]; nevertheless, as kindly
pointed out by the author himself, his proof is flawed precisely in the argument used
to show the validity of these state constraints boundary conditions. (See Lemma 4.1

in [11] where, at boundary points, the emptiness of J2,−
Ω

instead of J
2,−
Ω is proved.)

Remark 3.3. The comparison principle proved in [2, Thm. 2.18], that we use as
a crucial tool in Step 3, holds true for solutions to problem (1.1). In view of the
one-to-one correspondence mentioned in Step 1, it is therefore irremissible to deal
with “restricted” solutions to the equation (3.1), according to Definition 3.4 below.

Step 1. We set the following

Definition 3.4. We say that w is a restricted viscosity super-solution of (3.1), if
it satisfies

(3.4) ∀x ∈ Ω, ∀ψ ≺x w =⇒

⎧⎨
⎩
F (w(x),∇ψ(x),∇2ψ(x)) ≥ 0,

λmin(∇2ψ(x)) ≤ − 1

2w(x)
, if ∇ψ(x) = 0.
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We say that w is a restricted viscosity sub-solution of (3.1), if it satisfies

(3.5) ∀x ∈ Ω, ∀w ≺x ψ =⇒

⎧⎨
⎩
F (w(x),∇ψ(x),∇2ψ(x)) ≤ 0,

λmax(∇2ψ(x)) ≥ − 1

2w(x)
, if ∇ψ(x) = 0.

Lemma 3.5. A positive upper semicontinuous function u : Ω → R
+ is a viscosity

sub-solution of −ΔN
∞u = 1 in Ω if and only if the function w = −u1/2 is a restricted

viscosity super-solution of (3.1). Likewise, a positive lower semicontinuous function
u : Ω → R

+ is a viscosity super-solution of −ΔN
∞u = 1 in Ω if and only if the

function w = −u1/2 is a restricted viscosity sub-solution of (3.1).

Proof. We are going to prove only the first part of the statement. To that aim it is
enough to observe that

u ≺x ϕ ⇐⇒ ψ := −ϕ1/2 ≺x w,

and the test functions ϕ and ψ satisfy

∇ψ(x) = − ∇ϕ(x)

2ϕ(x)1/2
, ∇2ψ(x) =

1

4ϕ(x)3/2
∇ϕ(x)⊗∇ϕ(x)− 1

2ϕ(x)1/2
∇2ϕ(x).

In particular, ∇ϕ(x) = 0 if and only if ∇ψ(x) = 0 and, if this is the case,
λmax(∇2ϕ(x)) ≥ −1 if and only if λmin(∇2ψ(x)) ≤ −1/(2w(x)). �

Step 2. Let us show that, if (3.3) is satisfied and w is a restricted viscosity solution
to

(3.6)

{
−Δ∞w − 1

w

(
|∇w|4 + 1

2 |∇w|2
)
= 0 in Ω,

w = 0 on ∂Ω,

then w is convex. We denote by w∗∗ the largest convex function below w. We first
establish that, under the assumption (3.3), for every x ∈ Ω, in the characterization

w∗∗(x)=inf

{
k∑

i=1

λiw(xi) : x =

k∑
i=1

λixi , xi ∈ Ω , λi > 0 ,

k∑
i=1

λi = 1 , k ≤ n+ 1

}

the infimum can be attained only at interior points xi ∈ Ω.

Lemma 3.6. Assume (3.3), and let u be the solution to problem (1.1). Set w :=

−u1/2. For a fixed x ∈ Ω, let x1, . . . , xk ∈ Ω, λ1, . . . , λk > 0, with
∑k

i=1 λi = 1, be
such that

x =

k∑
i=1

λixi , w∗∗(x) =
k∑

i=1

λiw(xi).

Then x1, . . . , xk ∈ Ω.

Proof. Assume by contradiction that at least one of the xi’s, say x1, belongs to ∂Ω.
Let BR(y) ⊂ Ω be a ball such that ∂BR(y) ∩ ∂Ω = {x1}. Since −Δ∞u = |∇u|2,
by Lemma 2.2 in [5], the function ũ := −u enjoys the property of comparison
with cones from above according to Definition 2.3 in the same paper. Then, by
Lemma 2.4 in [5], the function

r �→ max
x∈∂Br(y)

ũ(x)− ũ(y)

r
= − min

x∈∂Br(y)

u(x)− u(y)

r
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is monotone non-decreasing on the interval (0, R). Namely, for all r ∈ (0, R), there
holds

(3.7) min
x∈∂Br(y)

u(x)− u(y)

|x− y| ≥ min
x∈∂BR(y)

u(x)− u(y)

|x− y| = −u(y)

R
,

where the last equality comes from the fact that u is non-negative in Ω (cf. Re-
mark 2.5). By (3.7), we have

u(x) ≥ u(y)
(
1− |x− y|

R

)
∀x ∈ BR(y) ,

and hence

(3.8) w(x) ≤ w(y)
(
1− |x− y|

R

)1/2

∀x ∈ BR(y) .

Let us define the unit vector ζ := (x − x1)/|x − x1| and let ν = (y − x1)/|y − x1|
denote the inner normal of ∂Ω at x1. Since Ω is a convex set and x ∈ Ω, we have
that 〈ζ, ν〉 > 0 and x1+ tζ ∈ BR(y) for t > 0 small enough. Moreover, w∗∗ is affine
on [x1, x]; indeed, since the epigraph of w∗∗ is the convex envelope of the epigraph
of w, it is readily seen that w∗∗ is affine on the whole set of convex combinations
of the points {x1, . . . , xk}. Taking into account that w∗∗(x1) = w(x1) = 0, we infer
that there exists μ > 0 such that

w(x1 + tζ) ≥ w∗∗(x1 + tζ) = −μt ∀t ∈ [0, 1].

From (3.8) we obtain

−μt ≤ w(y)

(
1− |tζ −Rν|

R

)1/2

= w(y)

(
〈ζ, ν〉 t

R
+ o(t)

)1/2

, t → 0+,

and, recalling that w(y) < 0,

μt1/2 ≥ K + o(1), t → 0+,

with K > 0, a contradiction. �

On the basis of the lemma just proved, we obtain

Lemma 3.7. Assume (3.3), and let w be a restricted viscosity super-solution
to (3.6). Then also w∗∗ is a restricted viscosity super-solution to the same problem.

Proof. Let w be a restricted viscosity super-solution to (3.6). In order to show
that w∗∗ is still a restricted viscosity super-solution to the same problem, we begin
by observing that that w∗∗ agrees with w on ∂Ω, namely w∗∗ = 0 on ∂Ω (since
[1, Lemma 4.1] applies).

Now let us check that w∗∗ satisfies (3.4). In terms of sub-jets, such property can
be rephrased as

(3.9) ∀x ∈ Ω, ∀(p,A) ∈ J2,−
Ω

w∗∗(x) =⇒

⎧⎨
⎩
F (w∗∗(x), p, A) ≥ 0, if p �= 0,

λmin(A) ≤ − 1

2w∗∗(x)
, if p = 0.

Let x ∈ Ω and consider first the case when (p,A) ∈ J2,−
Ω

w∗∗(x), with p �= 0 and

A positive semidefinite (see [1], Lemma 3).
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For every ε > 0 small enough, applying Proposition 1 in [1] and Lemma 3.6, we

obtain points x1, . . . , xk ∈ Ω, positive numbers λ1, . . . , λk satisfying
∑k

i=1 λi = 1,

and elements (p,Ai) ∈ J
2,−
Ω w(xi), with Ai positive semidefinite, such that

k∑
i=1

λixi = x,
k∑

i=1

λiw(xi) = w∗∗(x), A− εA2 ≤
(

k∑
i=1

λiA
−1
i

)−1

=: B.

We recall that, here and in the sequel, it is not restrictive to assume that the
matrices A, A1, . . . , Ak are positive definite, since the case of degenerate matrices

can be handled as in [1], p. 273. Moreover we recall that the “closure” J
2,−
Ω v(x0)

is the set of (p,A) ∈ R
n × R

n×n
sym for which there is a sequence (pj , Aj) ∈ J2,−

Ω
v(xj)

(according to (2.1)) such that (xj , v(xj), pj , Aj) → (x0, v(x0), p, A).
Then, since by assumption w is a super-solution to (3.6), we have F (w(xi), p, Ai)

≥ 0, i.e.

−w(xi) ≤
1

〈Aip, p〉

(
|p|4 + 1

2
|p|2

)
,

so that

− 1∑k
i=1 λiw(xi)

(
|p|4 + 1

2
|p|2

)
≥

(
k∑

i=1

λi
1

〈Aip, p〉

)−1

.

Then, using the degenerate ellipticity of F and the concavity of the map Q �→
1/tr

(
(p⊗ p)Q−1

)
(see [1], p. 286), we obtain

F (w∗∗(x), p, A− εA2) ≥ −〈Bp, p〉 − 1∑k
i=1 λiw(xi)

(
|p|4 + 1

2
|p|2

)

≥ −〈Bp, p〉+
(

k∑
i=1

λi
1

〈Aip, p〉

)−1

≥ 0 .

It remains to consider the case when (0, A) ∈ J2,−
Ω

w∗∗(x). We have to show that

λmin(A) ≤ − 1

2w∗∗(x)
.

In terms of test functions, this is equivalent to proving that

ψ ≺x w∗∗, ∇ψ(x) = 0 =⇒ λmin(∇2ψ(x)) ≤ − 1

2w∗∗(x)
.

Since w∗∗ is a convex function, the conditions ψ ≺x w∗∗ and ∇ψ(x) = 0 imply
that x is a minimum point of w∗∗. In particular, we must have w(x1) = · · · =
w(xk) = w∗∗(x).

If k = 1, then w∗∗(x) = w(x), B = A1, and λmin(A − εA2) ≤ λmin(B) =
λmin(A1) ≤ −1/(2w(x)), so that the required inequality follows.

Assume now that k > 1, so that x is not a strict minimum point of w∗∗. Since
x belongs to the relative interior of the convex polyhedron with vertices x1, . . . , xk,
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if we choose q := (x1 − x)/|x1 − x| we get that w∗∗(x+ tq) is constant for |t| small
enough, so that ψ(x+ tq) ≤ w∗∗(x) = ψ(x) for |t| small. Hence

λmin(∇2ψ(x)) ≤
〈
∇2ψ(x) q, q

〉
≤ 0 < − 1

2w∗∗(x)
,

completing the proof. �

Step 3. Let us prove that, under the additional assumption (3.3), the unique solu-
tion u to (1.1) is 1/2-power-concave.

Let w = −u1/2. By Lemma 3.5, w is a restricted super-solution to (3.6), hence,
by Lemma 3.7, also w∗∗ is a restricted super-solution to (3.6). Invoking again
Lemma 3.5, the function v := (w∗∗)

2 is a viscosity sub-solution to (1.1). By the
comparison principle proved in [2, Thm. 2.18] we deduce that v ≤ u, i.e. (w∗∗)

2 ≤
w2. On the other hand, since w∗∗ ≤ w (by definition of convex envelope) and
w ≤ 0, we have that (w∗∗)

2 ≥ w2, so that w = w∗∗, namely w is a convex function.

Step 4. Let us finally show that the conclusions of Step 3 (i.e. the power-concavity
of u) remain true if Ω is any bounded convex domain.

For ε ∈ (0, 1] let Ωε denote the outer parallel body of Ω defined by

Ωε := {x ∈ R
n : dist(x,Ω) < ε} ,

and let uε denote the solution to{
−ΔN

∞uε = 1 in Ωε

uε = 0 on ∂Ωε .

Since Ωε satisfies an interior sphere condition (of radius ε), by Step 2, the function

u
1/2
ε is concave in Ωε. Therefore, to show that u1/2 is concave in Ω, it is enough to

show that, as ε → 0, uε → u uniformly in Ω. In turn, by Theorem 5.3 in [15], this
convergence holds true provided that uε|∂Ω converges uniformly to 0.

Let y ∈ ∂Ω, and let xε ∈ ∂Ωε be such that |xε − y| = ε. Let us consider the
polar quadratic polynomial

η(x) :=
1

2
diam(Ωε) |x− xε| −

1

2
|x− xε|2.

Since uε ≤ η on ∂Ωε, and uε enjoys the comparison with quadratic cones (see
[15, Theorem 2.2] or [2, Lemma 5.1]), we have uε ≤ η on Ωε, and, in particular,

uε(y) ≤
ε

2
(diam(Ω) + 1)− 1

2
ε2.

Hence uε|∂Ω converges uniformly to 0 in ∂Ωε.

4. Local semiconcavity and C1
-regularity of solutions

In this section we show the local semiconcavity and the C1-regularity of the
unique solution to problem (1.1).

We recall that u : Ω → R is called semiconcave (with constant C) in Ω if

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y)− C
λ(1− λ)

2
|x− y|2,

∀[x, y] ⊂ Ω and ∀λ ∈ [0, 1] .

We say that u is locally semiconcave in Ω if it is semiconcave on compact subsets
of Ω.
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Proposition 4.1. Assume that Ω is an open bounded convex subset of Rn, and let
u be the solution to problem (1.1). Then u is locally semiconcave in Ω.

Proof. Let K be a compact convex subset of Ω, and let M be the Lipschitz constant
of v := u1/2 in K. We claim that u is semiconcave inK with semiconcavity constant
C = 2M2. Namely, given x, y ∈ K and λ ∈ [0, 1] and using the concavity of v
established in Theorem 3.1, we get

u(λx+ (1− λ)y)− λu(x)− (1− λ)u(y) +
C

2
λ(1− λ)|x− y|2

≥ [λv(x) + (1− λ)v(y)]2 − λv(x)2 − (1− λ)v(y)2 +M2λ(1− λ)|x− y|2

= λ(1− λ)
[
M2|x− y|2 − |v(x)− v(y)|2

]
≥ 0 . �

Remark 4.2. In the above result the semiconcavity property of u is stated just locally
in Ω. The reason can be understood by inspection of the proof, and analyzing the
behaviour of the constant M appearing therein as the compact set K ↑ Ω. Indeed,
recalling that the function w = −v = −u1/2 satisfies (3.8), choosing x = x1 + λν,
and taking into account that w(x1) = 0, it is readily seen that

lim
λ→0+

w(x1 + λν)− w(x1)

λ
≤ lim

λ→0+

w(y)

λ

( λ

R

)1/2

= −∞ .

This means that the normal derivative of w with respect to the external normal is
+∞ at every boundary point of Ω (so that M → +∞ as K ↑ Ω).

Next, let us quote an estimate for locally semiconcave functions near singular
points that we are going to exploit in order to arrive at the C1-regularity; such a
result was proved in our previous paper [6, Thm. 8] (see also [7, Thm. 5]).

Given a function u ∈ C(Ω), we denote by Σ(u) the singular set of u, namely the
set of points where u is not differentiable. For every x0 ∈ Σ(u), the super-differential
of u at x0, which is defined by

D+u(x0) :=

{
p ∈ R

n : lim sup
x→x0

u(x)− u(x0)− 〈p, x− x0〉
|x− x0|

≤ 0

}
,

turns out to be a non-empty compact convex set different from a singleton. In
particular, D+u(x0) \ extrD+u(x0) is not empty and contains non-zero elements.

Theorem 4.3 ([6, Theorem 8]). Let u : Ω → R be a locally semiconcave function,
let x0 ∈ Σ(u), and let p ∈ D+u(x0) \ extrD+u(x0). Let R > 0 be such that
BR(x0) ⊂ Ω, and let C denote the semiconcavity constant of u on BR(x0). Then
there exist a constant K > 0 and a unit vector ζ ∈ R

n satisfying the following
property:

(4.1) u(x) ≤ u(x0) + 〈p, x− x0〉 −K | 〈ζ, x− x0〉 |+
C

2
|x− x0|2 ∀x ∈ BR(x0) .

In particular, for every c > 0, setting δ := min{K/c,R}, it holds that

(4.2) u(x) ≤ u(x0) + 〈p, x− x0〉 − c 〈ζ, x− x0〉2 +
C

2
|x− x0|2 ∀x ∈ Bδ(x0) .

Furthermore, if p �= 0, then the vector ζ can be chosen so that 〈ζ, p〉 �= 0.

We are now ready to give our C1-regularity result.
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Theorem 4.4. Let u ∈ C(Ω) be a viscosity solution to −ΔN
∞u = f(x, u) in Ω. If u

is locally semiconcave in Ω, then u is everywhere differentiable (hence of class C1)
in Ω.

In particular, if Ω is an open bounded convex subset of Rn, and u is the unique
solution to problem (1.1), then u ∈ C1(Ω).

Proof. Let u ∈ C(Ω) be a locally semiconcave viscosity solution to −ΔN
∞u = f(x, u)

in Ω. Assume by contradiction that Σ(u) �= ∅. Without loss of generality we can
assume that 0 ∈ Σ(u). Let p ∈ D+u(0) \ extrD+u(0), p �= 0. By Theorem 4.3,
there exists a unit vector ζ ∈ R

n, with 〈ζ, p〉 �= 0, such that, for every c > 0, the
inequality

u(x) ≤ u(0) + 〈p, x〉 − c 〈ζ, x〉2 + C

2
|x|2

holds true for all x ∈ Bδ(0), with δ depending on c. Thus, setting ϕ(x) := u(0) +

〈p, x〉 − c 〈ζ, x〉2 + C
2 |x|2, it holds that u ≺0 ϕ. Since ∇ϕ(0) = p �= 0, we have

Δ+
∞ϕ(0) = −2c 〈ζ, p〉2 + C|p|2,

choosing c > 0 large enough that we get −Δ+
∞ϕ(0) > f(0, u(0)), a contradiction.

Since u is differentiable everywhere in Ω, by [3, Prop. 3.3.4] we conclude that
u ∈ C1(Ω).

Finally, if Ω is an open bounded convex subset of Rn, and u is the unique solution
to problem (1.1), the first part of the statement just proved applies (and hence
u ∈ C1(Ω)) because we know from Proposition 4.1 that u is locally semiconcave. �
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