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THE CONGRUENCE xx ≡ λ (mod p)

J. CILLERUELO AND M. Z. GARAEV

(Communicated by Ken Ono)

Abstract. In the present paper we obtain several new results related to the
problem of upper bound estimates for the number of solutions of the congru-
ence

xx ≡ λ (mod p); x ∈ N, x ≤ p− 1,

where p is a large prime number and λ is an integer coprime to p. Our argu-
ments are based on recent estimates of trigonometric sums over subgroups due
to Shkredov and Shteinikov.

1. Introduction

For a prime p and an integer λ let J(p;λ) be the number of solutions of the
congruence

(1) xx ≡ λ (mod p); x ∈ N, x ≤ p− 1.

Note that the period of the function xx modulo p is p(p− 1), which is larger than
the range in congruence (1).

From the works of Crocker [4] and Somer [8] it is known that there are at least
�(p − 1)/2� and at most 3p/4 + p1/2+o(1) incongruent values of xx (mod p) when
1 ≤ x ≤ p− 1. There are several conjectures in [5] related to this function.

New approaches to study J(p;λ) were given by Balog, Broughan and Shparlinski;
see [1] and [2]. In the special case λ = 1 it was shown in [1] that J(p; 1) < p1/3+o(1).
This estimate was slightly improved in our work [3] to the bound J(p; 1) � p1/3−c

for some absolute constant c > 0. Note that the method of [3] applies to more
general exponential congruences, however, the constant c there becomes too small.
In the present paper we use a different approach and prove the following results.

Theorem 1. The number J(p; 1) of solutions of the congruence

(2) xx ≡ 1 (mod p); x ∈ N, x ≤ p− 1,

satisfies J(p; 1) � p27/82.

Here and below we use the notation A � B to denote that A < Bpo(1); that
is, for any ε > 0 there exists c = c(ε) > 0 such that A < cBpε. As usual, ordλ
denotes the multiplicative order of λ, that is, the smallest positive integer t such
that λt ≡ 1 (mod p). We recall that ordλ|p− 1.
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Theorem 2. Uniformly over t|p− 1, we have, as p → ∞,

(3)
∑

1≤λ≤p−1
ordλ=t

J(p;λ) � t+ p1/3t1/2.

In the range t < p1/3 our Theorem 2 improves some results of the aforementioned
works [1] and [2]. Note that in the case t = 1 the estimate of Theorem 1 is stronger.
In fact, following the argument that we use in the proof of Theorem 1 it is possible
to improve Theorem 2 in specific small ranges of t.

Now let I(p) denote the number of solutions of the congruence

xx ≡ yy (mod p); x ∈ N, y ∈ N, x ≤ p− 1, y ≤ p− 1.

There is the following relationship between I(p) and J(p;λ):

I(p) =

p−1∑
λ=1

J(p;λ)2.

We modify one of the arguments of [1] and obtain the following refinement on [1,
Theorem 8].

Theorem 3. We have, as p → ∞,

(4) I(p) � p23/12.

In order to prove our results, we first reduce the problem to estimates of expo-
nential sums over subgroups. In the proof of Theorem 1 we use Shteinikov’s result
from [7], while in the proof of Theorem 2 we use Shkredov’s result from [6] (see
Lemma 2 and Lemma 3 below).

In what follows, Fp is the field of residue classes modulo p. The elements of
Fp we associate with their concrete representatives from {0, 1, . . . , p − 1}. For an
integer m coprime to p by m∗ we denote the smallest positive integer such that
m∗m ≡ 1 (mod p). We also use the abbreviation

ep(z) = e2πiz/p.

2. Lemmas

Lemma 1. Let

λ 
≡ 0 (mod p), n ∈ N, 1 ≤ M ≤ p.

Then for any fixed constant k ∈ N the number J of solutions of the congruence

xn ≡ λ (mod p), x ∈ N, x ≤ M,

satisfies

J �
(
1 +

M

p1/k

)
n1/k.

In particular, if n = dt < p and M = p/d, then we have the bound

J �
(
d1/k +

(p
d

)1−1/k)
t1/k.
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Proof. We have

Jk � #{(x1, . . . , xk) ∈ N
k ∩ [1,M ]k; (x1 . . . xk)

n ≡ λk (mod p)}.
Since for a given integer μ the congruence

Xn ≡ μ (mod p), X ∈ N, X ≤ p,

has at most n solutions, there exists a positive integer λ0 < p such that

Jk � nJ1,

where J1 is the number of solutions of the congruence

x1 . . . xk ≡ λ0 (mod p); (x1, . . . , xk) ∈ N
k ∩ [1,M ]k.

It follows that

x1 . . . xk = λ0 + py; (x1, . . . , xk) ∈ N
k ∩ [1,M ]k, y ∈ Z.

Since the left-hand side of this equation does not exceed Mk, we get that |y| ≤
Mk/p. Hence, for some fixed y0 we have

J1 �
(
1 +

Mk

p

)
J2,

where J2 is the number of solutions of the equation

x1 . . . xk = λ0 + py0; (x1, . . . , xk) ∈ N
k ∩ [1,M ]k.

Hence, from the bound for the divisor function it follows that J2 � 1. Thus,

Jk �
(
1 +

Mk

p

)
n,

and the result follows. �

Let Hd be the subgroup of F∗
p = Fp \{0} of order d. From the classical estimates

for exponential sums over subgroups it is known that∣∣∣
∑
h∈Hd

ep(ah)
∣∣∣ ≤ p1/2.

For a wide range of d this bound has been improved in a series of works. Here, we
need some results due to Shteinikov [7] (see Lemma 2 below) and Shkredov [6] (see
Lemma 3 below). They will be used in the proof of Theorem 1 and Theorem 2,
respectively.

Lemma 2. Let Hd be the subgroup of F∗
p of order d < p1/2. Then for any integer

a 
≡ 0 (mod p) the following bound holds:∣∣∣
∑
h∈Hd

ep(ah)
∣∣∣ � p1/18d101/126.

Lemma 3. Let Hd be the subgroup of F∗
p of order d < p2/3. Then for any integer

a 
≡ 0 (mod p) the following bound holds:∣∣∣
∑
h∈Hd

ep(ah)
∣∣∣ � p1/6d1/2.

The following two results are due to Balog, Broughan and Shparlinski [1, 2].
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Lemma 4. Uniformly over t|p− 1, we have, as p → ∞,
∑

1≤λ≤p−1
ordλ=t

J(p;λ) � t+ p1/2.

Lemma 5. Uniformly over t|p−1 and all integers λ with gcd(λ, p) = 1 and ordλ =
t, we have, as p → ∞,

J(p;λ) � pt−1/12.

We also need the following lemma.

Lemma 6. Let a, x be positive integers satisfying ax ≡ 1 (mod p). Then ad ≡ 1
(mod p) for d = gcd(x, p− 1).

This lemma is well known and the proof is simple. Indeed, we can write d =
kx+ �(p− 1) with k, � integers. It then follows that

ad ≡ a�(p−1) ≡ 1 (mod p)

by Fermat’s little theorem.
The following lemma is also well known; see, for example, the exercises and

solution to chapter 3 in Vinogradov’s book [9].

Lemma 7. For any integers U and V > U the following bound holds:

p−1∑
a=1

∣∣∣
V∑

z=U

ep(az)
∣∣∣ � p.

3. Proof of Theorem 1

We have
J(p; 1) =

∑
d|p−1

J ′
d,

where J ′
d is the number of solutions of (2) with gcd(x, p − 1) = d. It then follows

by Lemma 6 that

J(p; 1) ≤
∑
d|p−1

Jd,

where Jd is the number of solutions of the congruence

zd ≡ (dd)∗ (mod p); z ∈ N, z ≤ (p− 1)/d.

We have, therefore,

J(p; 1) ≤ R1 +R2 +R3 +
∑
d|p−1

d<p3/7

Jd,

where
R1 =

∑
d|p−1

d>p5/7

Jd; R2 =
∑
d|p−1

p4/7<d<p5/7

Jd; R3 =
∑
d|p−1

p3/7<d≤p4/7

Jd.

The trivial estimate Jd ≤ p/d implies that

R1 �
∑
d|p−1

d>p5/7

p

d
�

∑
d|p−1

p2/7 � p2/7.
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To estimate R2 we use Lemma 1 with k = 3 and get

R2 =
∑
d|p−1

p4/7<d<p5/7

Jd �
∑
d|p−1

p4/7<d<p5/7

(d1/3 + (p/d)2/3) �
∑
d|p−1

p2/7 � p2/7.

To estimate R3 we use Lemma 1 with k = 2 and get

R3 =
∑
d|p−1

p3/7<d<p4/7

Jd �
∑
d|p−1

p3/7<d<p4/7

(d1/2 + (p/d)1/2) �
∑
d|p−1

p2/7 � p2/7.

Thus,

J(p; 1) � p2/7 +
∑
d|p−1

d<p3/7

Jd.

Hence, there exists d|p− 1 with d < p3/7 such that

(5) J(p; 1) � p2/7 + Jd.

Applying Lemma 1 with k = 2, we get

(6) Jd � d1/2 + (p/d)1/2 � (p/d)1/2.

Now let Hd be the subgroup of F∗
p of order d. We recall that Jd is the number of

solutions of the congruence

(dz)d ≡ 1 (mod p); z ∈ N, z ≤ (p− 1)/d.

Therefore,

Jd = #{z ∈ N; z ≤ (p− 1)/d, dz (mod p) ∈ Hd}.

It then follows that

Jd =
1

p

p−1∑
a=0

∑
1≤z≤(p−1)/d

∑
h∈Hd

ep(a(dz − h)).

Separating the term corresponding to a = 0 and using Lemma 2 for a 
= 0, we get

Jd ≤ 1 + p1/18d101/126
(1
p

p−1∑
a=1

∣∣∣
∑

1≤z≤(p−1)/d

ep(adz)
∣∣∣
)
� p1/18d101/126.

Using Lemma 7, we get the following bound for the latter double sum:

p−1∑
a=1

∣∣∣
∑

1≤z≤(p−1)/d

ep(adz)
∣∣∣ =

p−1∑
b=1

∣∣∣
∑

1≤z≤(p−1)/d

ep(bz)
∣∣∣ � p.

Therefore

Jd � p1/18d101/126.

Comparing this estimate with (6) we obtain

Jd � p27/82.

Incorporating this in (5), we get the desired result.
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4. Proof of Theorem 2

In view of Lemma 4, it suffices to deal with the case t < p1/3.
Since λt ≡ 1 (mod p), it follows from (1) that

∑
1≤λ≤p−1
ordλ=t

J(p;λ) ≤ #{x ∈ N; xtx ≡ 1 (mod p), x ≤ p− 1}.

Hence, denoting d = gcd(x, (p− 1)/t) and using Lemma 6 we obtain that
∑

1≤λ≤p−1
ordλ=t

J(p;λ) ≤
∑

d|(p−1)/t

Td,

where Td is the number of solutions of the congruence

zdt ≡ (ddt)∗ (mod p); z ∈ N, z ≤ (p− 1)/d.

By the trivial estimate Td ≤ p/d we have
∑
d|p−1

d>p2/3

Td ≤
∑
d|p−1

p1/3 � p1/3.

Furthermore, applying Lemma 1 with k = 2, we get
∑
d|p−1

p1/3<d<p2/3

Td ≤
∑
d|p−1

p1/3<d<p2/3

(
d1/2 + (p/d)1/2

)
t1/2 � p1/3t1/2.

Therefore,

(7)
∑

1≤λ≤p−1
ordλ=t

J(p;λ) ≤ p1/3t1/2 +
∑

d|(p−1)/t

d<p1/3

Td.

Recall that t < p1/3; thus dt|p− 1 and dt < p2/3.
Let Hdt be the subgroup of F∗

p of order dt. Since Td is the number of solutions
of the congruence

(dz)dt ≡ 1 (mod p); z ∈ N, z ≤ (p− 1)/d,

it follows that

Td = #{z ∈ N; z ≤ (p− 1)/d, dz (mod p) ∈ Hdt}.
Therefore,

Td =
1

p

p−1∑
a=0

∑
1≤z≤(p−1)/d

∑
h∈Hdt

ep(a(dz − h)).

Separating the term corresponding to a = 0 and using Lemma 3 for a 
= 0 (with d
replaced by dt), we get

Td ≤ t+ p1/6d1/2t1/2
(1
p

p−1∑
a=1

∣∣∣
∑

1≤z≤(p−1)/d

ep(adz)
∣∣∣
)
.

Applying Lemma 7 to the double sum, as in the proof of Theorem 1, we obtain for
d < p1/3 the bound

Td � t+ p1/6d1/2t1/2 � t+ p1/3t1/2.
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Thus, ∑
d|(p−1)/t

d<p1/3

Td ≤
∑
d|p−1

(t+ p1/3t1/2) � t+ p1/3t1/2.

Putting this into (7), we conclude the proof.

5. Proof of Theorem 3

We follow the arguments of [1] with some modifications. We have

I(p) =

p−1∑
λ=1

J(p;λ)2 =
∑
t|p−1

∑
1≤λ≤p−1
ordλ=t

J(p;λ)2.

It then follows that for some fixed order t|p− 1 we have

I(p) �
∑

1≤λ≤p−1
ordλ=t

J(p;λ)2.

We can split the range of J(p;λ) into O(log p) dyadic intervals. Then, for some
1 ≤ M ≤ p, we have

(8) I(p) � |A|M2,

where |A| is the cardinality of the set

A = {1 ≤ λ ≤ p− 1; ordλ = t, M ≤ J(p;λ) < 2M}.

From Lemma 5 we have

(9) M � pt−1/12.

On the other hand, by Lemma 4 we also have

|A|M �
∑
λ∈A

J(p;λ) �
∑

1≤λ≤p−1
ordλ=t

J(p;λ) � t+ p1/2.

If t < p1/2, then using (8) we get

I(p) � |A|M2 � (|A|M)2 � p,

and the result follows. If t > p1/2, then we get |A|M � t. Therefore, using (8)
and (9) we get

I(p) � |A|M2 � t(pt−1/12) = pt11/12 � p23/12.

This proves Theorem 3.
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58089, Morelia, Michoacán, México
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