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HANKEL OPERATORS, INVARIANT SUBSPACES,

AND CYCLIC VECTORS IN THE DRURY-ARVESON SPACE

STEFAN RICHTER AND JAMES SUNKES

(Communicated by Pamela B. Gorkin)

Abstract. We show that every nonzero invariant subspace of the Drury-
Arveson space H2

d of the unit ball of Cd is an intersection of kernels of little

Hankel operators. We use this result to show that if f and 1/f ∈ H2
d , then f

is cyclic in H2
d .

1. Introduction

It follows from Beurling’s characterization of the invariant subspaces of the uni-
lateral shift acting on H2 = H2(∂D) of the unit circle that every such invariant
subspace equals the null space of a Hankel operator. Since the symbols of bounded
Hankel operators on H2 are given by BMOA functions, this observation ties the
operator theory surrounding the unilateral shift to the H1-BMO duality and its
connection with Carleson measures. In this paper we will exhibit an analogy of this
for the d-shift and the Drury-Arveson space of the unit ball Bd = {z ∈ Cd : |z| < 1},
d ≥ 1.

For some information about the significance of the Drury-Arveson space, we
direct the reader’s attention to the survey article [15]. The Drury-Arveson space
H2

d is the space of analytic functions on Bd with reproducing kernel kw(z) =
1

1−〈z,w〉 ,

where 〈z, w〉 =
∑d

i=1 ziwi. The operator tuple Mz = (Mz1 , . . . ,Mzd) acting on H2
d

is called the d-shift.
Let Rf =

∑d
i=1 zi

∂f
∂zi

denote the radial derivative of a holomorphic function f .

It is well known and easy to check that an analytic function f on Bd is in H2
d

if and only if
∫
Bd

|Rnf |2(1 − |z|2)2n−ddV < ∞ for some (or equivalently for all)

n > (d − 1)/2. Here we have used dV to denote normalized Lebesgue measure on
Bd. In Section 2 of this paper, we provide more detail about the norm on H2

d and
its connection to the norms of weighted Bergman spaces.

We will write

Md = {ϕ ∈ Hol(Bd) : ϕf ∈ H2
d for all f ∈ H2

d}
for the multiplier algebra of H2

d . It was shown in [12] that

Md = H∞(Bd) ∩ CH2
d ,

where H∞(Bd) denotes the algebra of bounded analytic functions on Bd and CH2
d

is the space of functions b ∈ H2
d such that |Rnb|2(1 − |z|2)2n−ddV is a Carleson

measure for H2
d for some (or equivalently for all) n > (d − 1)/2. Recall that a
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positive measure μ on Bd is called a Carleson measure for a Hilbert function space
H if there is a C > 0 such that

∫
Bd

|f |2dμ ≤ C‖f‖2 for all f ∈ H; see Section 3 and

Lemmas 3.1 and 3.2 for more information about the space CH2
d .

The results of this paper are based on the theory of Hankel operators which
map H into H. Here H denotes a Hilbert space of analytic functions on Bd such
that Hol(Bd) is densely contained in H, and we have written H = {f : f ∈ H} for
the space of complex conjugates of H. The space H is a Hilbert space with inner
product 〈f, g〉H = 〈g, f〉H, f, g ∈ H.

As in [2] or [14] we define the space of Hankel symbols

X (H) = {b ∈ H : ∃ C > 0 |〈ϕψ, b〉| ≤ C‖ϕ‖‖ψ‖ ∀ϕ, ψ ∈ Hol(Bd)}.

Note that for every b ∈ X (H) the map (ϕ, ψ) → 〈ϕψ, b〉 extends to be a bounded
sesquilinear form on H×H. Thus with each b ∈ X (H) we may associate the Hankel
operator Hb ∈ B(H,H),

〈Hbϕ, ψ〉H = 〈ϕψ, b〉H, ϕ, ψ ∈ Hol(Bd).

If H = H2(∂D), then this definition of Hankel operator differs by a rank 1 operator
from the common definition as an operator H2(∂D) → H2(∂D)⊥ ⊆ L2(∂D). For
the Bergman space L2

a(Bd) = {f ∈ Hol(Bd) :
∫
Bd

|f |2dV < ∞}, this definition

coincides with what is typically referred to as the little Hankel operator.
It is known in many cases that Carleson measures can be used to describe X (H).

In particular, this is known to be true for H2(∂Bd), L2
a(Bd), and the Dirichlet

space of one variable, D = {f ∈ Hol(D) : f ′ ∈ L2
a(D)}. In fact, X (H2(∂Bd)) =

BMOA(Bd) and this equals

{b ∈ H2(∂Bd) : |Rb|2(1− |z|2)dV is a Carleson measure for H2(∂Bd)}

(see [6] or [19], Theorem 5.14). Similarly, X (L2
a(Bd)) is the Bloch space

B =

{
b ∈ Hol(Bd) | sup

z∈Bd

|Rb(z)|(1− |z|2) < ∞
}

(see, e.g., Corollary 1 of [17] together with Theorem 3.5 of [19]), and one easily
checks that this coincides with

{b ∈ L2
a(Bd) : |Rb|2(1− |z|2)2dV is a Carleson measure for L2

a(Bd)}.

Furthermore, in [2] it was shown that for the Dirichlet space

X (D) = {b ∈ D : |b′|2dA is a Carleson measure for D}.

For the Drury-Arveson space we will prove the following:

Theorem 1.1. CH2
d ⊆ X (H2

d) ⊆ B.

This theorem implies that Md ⊆ X (H2
d), and it is this observation that will be

important for the rest of the paper.
We use Lat(Mz, H

2
d) to denote the lattice of invariant subspaces of the d-shift.

One checks that for i = 1, . . . , d one has

〈Hb(zif), ψ〉H = 〈Hbf, ziψ〉H for all f ∈ H and ψ ∈ Hol(Bd).

This implies for each b ∈ X (H2
d) that kerHb ∈ Lat(Mz, H

2
d). Moreover, we have

the following theorem.
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Theorem 1.2. If (0) �= M ∈ Lat(Mz, H
2
d), then there are {bn}n≥0 ⊆ X (H2

d) such
that

M =
⋂
n≥0

kerHbn .

We mentioned before that it follows from Beurling’s theorem that every invariant
subspace of the unilateral shift (Mz, H

2) equals the kernel of a bounded Hankel
operator. Similarly, it was shown in [10] that every invariant subspace M of the
Dirichlet shift (Mz, D) satisfies M = kerHb for some b ∈ X (D). For the Bergman
space no direct analog of such a theorem can hold (see [18]). We will present
an example showing that if d > 1 one cannot expect to represent every invariant
subspace as the null space of a single Hankel operator (see Example 4.3).

In the later parts of our paper, we will apply Theorem 1.2 together with the
insight from [6] that X (H) is the dual of the space of weak products of H. For a
space H of analytic functions on Bd, the weak product is defined as

H�H =

{ ∞∑
i=1

figi : fi, gi ∈ H,
∞∑
i=1

‖fi‖‖gi‖ < ∞
}
.

A norm on H�H is given by

‖h‖∗ = inf

{ ∞∑
i=1

‖fi‖‖gi‖ : h =

∞∑
i=1

figi

}
.

It is known, for example, that H2(∂Bd) � H2(∂Bd) = H1(∂Bd) and L2
a(Bd) �

L2
a(Bd) = L1

a(Bd) (see [6]). We refer the reader to [6] and [2] for details and further
motivation for weak products.

For the Drury-Arveson space we don’t have a natural candidate for what the
weak product should be, thus we just define

H1
d = H2

d �H2
d .

Note that since 1 ∈ H2
d we have H2

d ⊆ H1
d . Furthermore, we have that (H1

d)
∗ =

X (H2
d), where the duality is given by Lb(h) = 〈h, b〉H2

d
for b ∈ X (H2

d) and h =∑n
i=1 ϕiψi ∈ Hol(Bd) ⊆ H1

d (see [14], Theorem 1.3).
If Y is a Banach space of analytic functions, then a function f is called cyclic in

Y if the polynomial multiples of f are dense in Y . If the polynomials are dense in
Y , then a function is cyclic if and only if there is a sequence {pn} of polynomials
such that pnf → 1. It is thus obvious from the continuous inclusion H2

d ⊆ H1
d that

any f ∈ H2
d which is cyclic in H2

d must also be cyclic in H1
d . The following corollary

implies that f ∈ H2
d is cyclic in H2

d if and only if it is cyclic in H1
d . For clarity, if

S ⊆ H2
d , then we write closH1

d
S for the closure of S in H1

d .

Corollary 1.3. Let M ∈ Lat(Mz, H
2
d). Then

M = H2
d ∩ closH1

d
M.

We note that this is analogous to Theorem 1.2 of [10], where the corollary is
proved for the Dirichlet space.

For Hp(∂D) with 1 ≤ p < ∞, the cyclic functions are the outer functions. For
other spaces, such as the Bergman space L2

a(D) or the Dirichlet space D, it is an
open problem to characterize cyclicity. For the Drury-Arveson space, we prove the
following theorem.



2578 STEFAN RICHTER AND JAMES SUNKES

Theorem 1.4. If f, g and fg ∈ H2
d , then fg is cyclic in H2

d if and only if both f
and g are cyclic in H2

d .

In particular, it follows that if f and 1/f ∈ H2
d , then f is cyclic in H2

d . It
was shown by Borichev and Hedenmalm in [4] that there is f ∈ L2

a(D) such that
1/f ∈ L2

a(D), but f is not cyclic in L2
a(D). We will provide details in Section 4,

but it is easy to see that this result implies Theorem 1.4 cannot hold for H2(∂B2).
For the Dirichlet space, the analogue of Theorem 1.4 was proved in [13] by use of
cut-off functions and a formula of Carleson for the Dirichlet integral of an outer
function. Our current proof also reproves the Dirichlet space result and it avoids
all those technicalities.

By considering the first radial derivative, it is fairly easy to see that for d ≤ 3,
whenever f ∈ H2

d such that 1/f is bounded in Bd, then 1/f ∈ H2
d . Thus such an f

must be cyclic in H2
d . For d ≥ 4 we were able to show such a result only under the

extra hypothesis that f be in the Bloch space B.

Theorem 1.5. If f ∈ H2
d ∩ B, and if there is c > 0 such that |f(z)| ≥ c for all

z ∈ Bd, then 1/f ∈ H2
d and f is cyclic in H2

d .

The Corona theorem is known to hold for Md (see [7]), thus any multiplier of
H2

d that is bounded below must be cyclic. The inclusions Md ⊆ H∞(Bd) ⊆ B show
that Theorem 1.5 generalizes this fact. In Theorem 5.4, we prove another result
that can be considered a generalization of the one function Corona theorem (and
the result is verified for spaces that include cases for which the Corona theorem is
not known to hold).

In order to prove our results it is convenient to consider a one-parameter family
of Hilbert spaces Hγ for real γ > 0. We defineHγ to be the Hilbert space of analytic
functions in Bd with reproducing kernel kγλ(z) =

1
(1−〈z,λ〉)γ . As we will explain (and

is well known), this family includes certain weighted Bergman and Besov spaces.
We have chosen the somewhat nonstandard notation for the parameter because of
our use of reproducing kernel techniques. In this paper our emphasis is on the
Drury-Arveson space, but we note that for 0 < γ ≤ 1 the reproducing kernels are
complete Nevanlinna-Pick kernels and all of our results hold in that setting as well.

2. Equivalence of bilinear forms

The family of spaces Hγ defined above includes several well-studied spaces such
as H1 = H2

d , Hd = H2(∂Bd), and Hd+1 = L2
a(Bd). Furthermore, for γ > d, the

norm on Hγ can be expressed as

‖f‖2γ = cγ

∫
|z|<1

|f(z)|2(1− |z|2)γ−d−1dV (z), cγ =
(γ − 1) · · · (γ − d)

d!

(see [19]). In particular, we see that for γ > d, the space Hγ is a weighted Bergman
space.

We will need to make some precise calculations with the inner product on Hγ ,
and we will make use of multiindex notation. Let γ > 0, set a0,γ = 1, and for k ≥ 1
let

ak,γ =

(
γ + k − 1

k

)
=

γ(γ + 1) · · · (γ + k − 1)

k!
.(2.1)
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Then

kγλ(z) =
∑
k≥0

ak,γ〈z, λ〉k =
∑
k≥0

ak,γ
∑
|α|=k

|α|!
α!

zαλ
α
.

Hence for f(z) =
∑

α f̂(α)zα we have

‖f‖2γ =
∞∑
k=0

1

ak,γ

∑
|α|=k

α!

|α|! |f̂(α)|
2.

Note that if f =
∑

k≥0 fk, where fk is a homogeneous polynomial of degree k, then

‖f‖2γ =
∑
k≥0

‖fk‖2γ =
∑
k≥0

1

ak,γ
‖fk‖21.(2.2)

It follows from the definition of the radial derivative R =
∑d

i=1 zi
∂
∂zi

that for

any multiindex α we have that Rzα = |α|zα. Hence Rf =
∑

k≥0 kfk and

〈Rf, g〉γ = 〈f,Rg〉γ =
∑
k≥0

k

ak,γ
〈fk, gk〉1,

whenever the series converges.
We further note that (2.1) implies that an analytic function f is in Hγ if and

only if Rf ∈ Hγ+2. Thus if n ≥ 1, then f ∈ H2
d if and only if Rnf ∈ H1+2n.

Lemma 2.1. Let b ∈ H2
d . Then the following are equivalent:

(a) b ∈ X (H2
d),

(b) there is an integer n ≥ 0 and a C > 0 such that

|〈ϕψ,Rnb〉n+1| ≤ C‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd),

(c) for all integers n ≥ 0 there is a C > 0 such that

|〈ϕψ,Rnb〉n+1| ≤ C‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd).

Proof. It is trivial that (c) implies (a) and that (a) implies (b), hence we only need
to show the implication (b) ⇒ (c). This will follow if we show that for each integer
n ≥ 0 there is a c > 0 such that∣∣∣∣〈ϕψ,Rnb〉n+1 −

1

n+ 1
〈ϕψ,Rn+1b〉n+2

∣∣∣∣ ≤ c‖ϕ‖1‖ψ‖1‖b‖1.(2.3)

Let f ∈ Hol(Bd), and let b =
∑

k≥0 bk and f =
∑

k≥0 fk be the homogeneous

expansions of b and f . We know that Rnb ∈ H1+2n for each n ≥ 0, thus the series
〈f,Rnb〉n+1 =

∑
k≥0

kn

ak,n+1
〈fk, bk〉1 converges absolutely.

Since
ak,n+2

ak,n+1
= 1 + k

n+1 one easily proves from (2.2) that

〈f,Rnb〉n+1 = 〈f,Rnb〉n+2 +
1

n+ 1
〈f,Rn+1b〉n+2.
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Thus ∣∣∣∣〈f,Rnb〉n+1 −
1

n+ 1
〈f,Rn+1b〉n+2

∣∣∣∣ ≤ ∑
k≥0

kn

ak,n+2
‖fk‖1‖bk‖1

≤ ‖f‖2

⎛
⎝∑

k≥0

ak,2k
2n

a2k,n+2

‖bk‖21

⎞
⎠

1/2

≤ c‖f‖2‖b‖2
≤ c‖f‖2‖b‖1

for some c > 0. The second to last inequality follows since for each n we have
ak,n+1 ∼ (k + 1)n as k → ∞ (see e.g. [16], p. 58). Thus there is a c > 0 such that

for all k ≥ 0 one has
ak,2k

2n

a2
k,n+2

≤ c
k+1 .

In [14] (see Theorem 1.4), it was shown that for any reproducing kernel Hilbert
space H(k) with reproducing kernel k one has a contractive inclusion H(k)�H(k) ⊆
H(k2). We apply this with k = k1, the Drury-Arveson kernel, to obtain ‖ϕψ‖2 ≤
‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd). Inequality (2.3) then follows by substituting
f = ϕψ in the earlier estimate. �

3. Hankel operators and Carleson embeddings

We start by stating a special case of a theorem from [5]. Note that if n ∈ N, n >
(d− 1)/2 and b ∈ Hol(Bd), then the Carleson measure condition∫

Bd

|f |2|Rnb|2(1− |z|2)2n−ddV ≤ C‖f‖2H2
d

says that the function Rnb defines a bounded multiplication operator from H2
d to

H2n+1. It was shown in [5] that this condition on b is independent of n, that one
may even take any n ∈ N, and that the analogous statement holds for all Hγ , γ > 0.

Lemma 3.1 (Special case of Corollary 3.12 of [5]). Let γ > 0 and b ∈ Hγ . The
following are equivalent:

(a) There are n ≥ 1 and a constant c > 0 such that

‖fRnb‖γ+2n ≤ c‖f‖γ for all f ∈ Hγ .

(b) For every n ≥ 1 there is a constant c > 0 such that

‖fRnb‖γ+2n ≤ c‖f‖γ for all f ∈ Hγ .

We define the space CHγ to be the collection of functions that satisfy (a) and (b)
of the lemma. They are the functions that satisfy a Carleson embedding condition
that is appropriate for the space Hγ . Also note that the space CH2

d equals CH1.
Furthermore, in [5], the authors prove the following inequalities regarding CHγ that
will be useful for us.

Lemma 3.2 (Special case of Proposition 3.6 of [5]). Let γ > 0. If b ∈ CHγ , then b
is in the Bloch space B and for each n ≥ 1 and 0 ≤ k < n there is c > 0 such that

‖(Rkf)(Rn−kb)‖γ+2n ≤ c‖f‖γ
for all f ∈ Hγ .
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Proof of Theorem 1.1. We start by proving the second inclusion. Let kw be the
reproducing kernel for the Drury-Arveson space and let Rw be the radial derivative
with respect to the w variables. Then Rwkw = (kw − 1)kw, hence for b ∈ X (H2

d )
we have

|Rb(w)| = |〈(kw − 1)kw, b〉| ≤ c‖kw‖2 =
c

1− |w|2 .

It follows that b ∈ B.
We will show now that for b ∈ CH2

d = CH1 and for sufficiently large n one has

|〈R2n(ϕψ), Rnb〉3n+1| ≤ C‖ϕ‖1‖ψ‖1.
Then the first inclusion of the theorem will follow from Lemma 2.1 and the identity
〈ϕψ,R3nb〉3n+1 = 〈R2n(ϕψ), Rnb〉3n+1.

Let n be a natural number such that n > d−1
2 . Then 〈R2n(ϕψ), Rnb〉3n+1 is an

inner product for a weighted Bergman space and

〈R2n(fg), Rnb〉3n+1 =
2n∑
k=0

(
2n
k

)
〈RkfR2n−kg,Rnb〉3n+1.

The theorem will follow, if we can bound each term of the sum. By symmetry,
it suffices to consider 0 ≤ k ≤ n. In this case we have 2(n + k) − d > −1 and
2(2n− k)− d > −1, hence

|〈RkfR2n−kg,Rnb〉3n+1| �
∫
Bd

|RkfR2n−kgRnb|(1− |z|2)3n−ddV

�
(∫

Bd

|RkfRnb|2(1− |z|2)2(n+k)−ddV

)1/2

(∫
Bd

|R2n−kg|2(1− |z|2)2(2n−k)−ddV

)1/2

≈ ‖RkfRnb‖2(n+k)+1‖R2n−kg‖2(2n−k)+1

� ‖f‖1‖g‖1,
where the last inequality follows from Lemma 3.2. �

Remark. In [5] the authors characterize certain Toeplitz and Hankel operators on
weighted Besov spaces. The Hankel operators are big Hankel operators, and they
are different from the operators considered here. However, it is notable that for
H = H2

d the characterization of the Hankel operators in [5] also involves the space
CH2

d .

4. Invariant subspaces and Hankel operators

The following lemma is elementary; see [10], Lemma 2.2(a).

Lemma 4.1. If b ∈ X (H2
d), then kerHb = [b]⊥∗ , where we have written [b]∗ for the

smallest M∗
z -invariant subspace containing b.

Theorem 4.2. Let M ∈ Lat(Mz, H
2
d), M �= (0). Then there are {bn}n≥0 ⊆

X (H2
d) such that

M =
⋂
n≥0

kerHbn .
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Proof. Let PM be the projection onto M. Since the reproducing kernel kλ(z) =
1

1−〈z,λ〉 is a complete Nevanlinna-Pick kernel, we may use Theorem 4.1 in [11] (also

see the remarks following the proof of Theorem 2.1 in [3]) to see that there are mul-
tipliers ϕn ∈ Md such that PM =

∑
n Mϕn

M∗
ϕn

. Applying this relationship to the

reproducing kernels kλ, we see that lλ(z) =
PMkλ(z)
kλ(z)

=
∑

n ϕn(z)ϕn(λ) is a positive

definite function. Thus, if {en} is any orthonormal basis for H(l), the Hilbert func-

tion space with reproducing kernel lλ(z), then PMkλ(z) =
∑

n en(z)en(λ)kλ(z).

For n ∈ N and λ ∈ Bd set Tnkλ = en(λ)kλ and extend linearly to the set D of finite
linear combinations of reproducing kernels. By use of the above identity one ob-
tains ‖PMf‖2 =

∑
n ‖Tnf‖2 for all f ∈ D. Thus each Tn extends to be a bounded

operator and it is easy to see that T ∗
n = Men . Hence every member of every or-

thonormal basis of H(l) is a multiplier. It follows that every function in H(l) must
be a multiplier of H2

d .
Of course, for each λ ∈ Bd we have lλ ∈ H(l), hence lλ ∈ Md. Since kλ ∈ Md

this implies that

PM⊥kλ = kλ − PMkλ = kλ − kλlλ ∈ Md ⊆ X (H2
d ).

Then M⊥ =
∨

λ∈Bd
[PM⊥kλ]∗. It is now clear that there is a countable set

{λn} ⊆ Bd such that

M =
⋂
n≥0

[PM⊥kλn
]⊥∗ =

⋂
n≥0

kerHPM⊥kλn
.

�

Example 4.3. Let d ≥ 2 and consider

M =

{
f ∈ H2

d : f(0) =
∂f

∂zi
(0) = 0 for i = 1, . . . , d

}
.

Then M ∈ Lat(Mz, H
2
d) and dimM⊥ = d + 1 ≥ 3. The functions in M⊥ are the

polynomials of degree less than or equal to 1. If b is any such polynomial, then
for each i we have M∗

zib is a constant function, hence kerH⊥
b = [b]∗ is at most

two-dimensional. Hence M cannot be the kernel of a single Hankel operator.

Recall from the Introduction that (H1
d)

∗ = X (H2
d), where for each b ∈ X(H2

d)

and ϕ, ψ ∈ Hol(Bd) the duality is given by Lb(ϕψ) = 〈ϕψ, b〉.

Lemma 4.4. Let f ∈ H2
d , b ∈ X (H2

d ), and ϕ ∈ Hol(Bd). Then

Lb(ϕf) = 〈ϕf, b〉H2
d
= 〈Hbf, ϕ〉H2

d

.

Proof. Let ψn be a sequence of polynomials such that ψn → f in H2
d . Then ϕψn →

ϕf in H1
d and Hbψn → Hbf in H2

d . Hence the lemma follows by approximation
since it is true by definition if f is replaced by ψn. �

Theorem 4.5. Let M ∈ Lat(Mz, H
2
d). Then

M = H2
d ∩ closH1

d
M.

Consequently, a function f ∈ H2
d is cyclic in H2

d if and only if it is cyclic in H1
d .
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Proof. It is clear thatM ⊆ H2
d∩ closH1

d
M. Let f /∈ M. Then by Theorem 4.2 there

is a b ∈ X (H2
d) such that M ⊆ kerHb and Hbf �= 0. Thus there is a multiindex α

such that 〈Hbf, zα〉 �= 0. If f ∈ closH1
d
M, then there are fn ∈ M such that fn → f

in H1
d . This implies that zαfn → zαf in H1

d . Hence 0 = 〈Hbfn, zα〉 = Lb(z
αfn) →

Lb(z
αf) = 〈Hbf, zα〉. This contradiction shows that f /∈ closH1

d
M. �

Theorem 4.6. Let f, g ∈ H2
d .

(a) If fg ∈ H2
d , then fg ∈ [f ] ∩ [g].

(b) If fg ∈ H2
d and if f is cyclic in H2

d , then [fg] = [g].
(c) If fg ∈ H2

d , then fg is cyclic in H2
d , if and only if both f and g are cyclic in

H2
d .
(d) If f, 1/f ∈ H2

d , then f is cyclic in H2
d .

Note that if f, g ∈ H∞ ∩ H2
d , then fg ∈ H2

d . One can check this by verifying
that for n > (d− 1)/2

R2nfg =

2n∑
k=0

(
2n
k

)
RkfR2n−kg ∈ H4n+1.

Indeed, it is enough to verify the inclusion for each summand individually, and by
symmetry, one only needs to consider the cases 0 ≤ k ≤ n. In those cases one can
use ‖R2n−kg‖4n−2k+1 ≈ ‖g‖1 and H∞ ⊆ B and hence (1− |z|2)k|Rkf(z)| ≤ c (see
[19]).

Similarly, we note that if f, g ∈ CH1, then fg ∈ H2
d . In this case we have

‖R(fg)‖3 ≤ ‖gRf‖3 + ‖fRg‖3 < ∞, hence R(fg) ∈ H3.

Proof. (a) Suppose that f, g and fg ∈ H2
d . Since the polynomials are dense in H2

d ,
there is a sequence pn of polynomials such that pn → f in H2

d . Then ‖png−fg‖∗ ≤
‖pn − f‖H2

d
‖g‖H2

d
, hence png → fg in H1

d . Thus

fg ∈ H2
d ∩ closH1

d
[g] = [g].

Similarly fg ∈ [f ].
(b) Now additionally suppose that f is cyclic in H2

d . By (a) we have [fg] ⊆ [g]
and it suffices to show that g ∈ [fg]. Since f is cyclic, there is a sequence of
polynomials pn such that pnf → 1 in H2

d . Then as in part (a) of the proof it
follows that pnfg → g in H1

d . Hence g ∈ H2
d ∩ closH1

d
[fg] = [fg].

(c) If fg is cyclic in H2
d , then by (a) H2

d = [fg] ⊆ [f ] ∩ [g]. Hence both f and g
must be cyclic. Conversely, if both f and g are cyclic, then by (b) [fg] = [g] = H2

d .
(d) follows from (c) by taking g = 1/f . �

Remark. We now show that Theorem 4.6(d) does not hold for H2. The reproducing
kernel for the single variable Bergman space L2

a is kw(z) = (1−wz)−2. By use of the
kernel it is easy to see that the operator T : L2

a → H2 given by (Tf)(z1, . . . , zd) =
f(z1) is isometric. Now let f ∈ L2

a be a function such that 1/f ∈ L2
a, but f is not

cyclic in L2
a. The existence of such functions is due to [4]. It is easy to see that

then g = Tf satisfies g, 1/g ∈ H2, but g is not cyclic in H2.

5. Functions that are bounded below in Bd

It is clear that the case γ = 1 of the following theorem when combined with
Theorem 4.6(d) implies Theorem 1.5.
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Theorem 5.1. Let γ > 0. If f ∈ Hγ ∩ B and 1
f ∈ H∞, then 1

f ∈ Hγ .

In order to verify the conclusion of this theorem we will need to work with

Rm
(

1
f

)
for sufficiently large m. For this we will need some preliminary remarks

and a lemma.
Let f ∈ Hol(Bd) and m ∈ N. We define Am to be the set of all m-tuples

η = (η1, . . . , ηm) which satisfy
∑m

i=1 iηi = m, and we write

Tη(f) =
m∏
i=1

(Rif)ηi .

Then Faa di Bruno’s formula for the higher order derivatives of a composition
(see [9]) gives

Rm

(
1

f

)
=

∑
η∈Am

m!

η!

(−1)|η||η|!
f |η|+1

m∏
j=1

(
1

j!

)ηj

Tη(f).

Since ‖ 1
f ‖γ ∼ ‖Rm 1

f ‖γ+2m and the assumption of the theorem implies that 1
f is a

multiplier of Hγ+2m whenever γ + 2m > d, it follows that the next lemma implies
Theorem 5.1.

Lemma 5.2. Let γ > 0 and m ∈ N. If f ∈ Hγ ∩ B, then
‖Tη(f)‖γ+2m < ∞

for any m-tuple η = (η1, . . . , ηm) ∈ Am.

Proof. Fix η = (η1, . . . , ηm) ∈ Am. For j ∈ N, let Bj be those |η|-tuples β =
(β1, . . . , β|η|) which satisfy |β| = j. Then by writing powers as products of single
terms, one sees that there is a function g : {1, . . . , |η|} → {1, . . . ,m} which satisfies

Tη(f) =
∏|η|

i=1 R
g(i)f . Note that this implies that

∑|η|
i=1 g(i) =

∑m
i=1 iηi = m.

Now choose j ≥ d|η|
2 , and for each β ∈ Bj choose an index iβ such that βiβ ≥

j
|η| ≥ d/2. This is possible since |β| = j. Then 2(βiβ + g(iβ))+ γ > d. Since f ∈ B,
for any n ∈ N we have that (1−|z|2)n|Rnf(z)| is bounded in Bd (see [19], Theorem
3.5), hence there is a C > 0 such that

(1− |z|2)(j+m)

|η|∏
i=1

|Rβi+g(i)f(z)| ≤ C(1− |z|2)βiβ
+g(iβ)|Rβiβ

+g(iβ)f(z)|.

Here we also used that
∑|η|

i=1 βi + g(i) = j +m.
Finally, by the Leibniz rule, we have that

‖Tη(f)‖γ+2m ≈ ‖RjTη(f)‖γ+2(m+j)

=

∥∥∥∥∥∥
∑
β∈Bj

j!

β!

|η|∏
i=1

Rβi+g(i)f

∥∥∥∥∥∥
γ+2(m+j)

�
∑
β∈βj

∥∥∥∥∥∥
|η|∏
i=1

Rβi+g(i)f

∥∥∥∥∥∥
γ+2(m+j)

�
∑
β∈βj

∥∥∥Rβtβ
+g(tβ)f

∥∥∥
γ+2(βtβ

+g(tβ))
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and the result follows since f ∈ Hγ . �
Wementioned in the Introduction that in the special case of the previous theorem

where f ∈ Md and 1/f ∈ H∞, then by the one function case of the Corona theorem
for Md one has 1/f ∈ Md (see [7]). That result was also proved by Fang and Xia in
[8]. The next theorem establishes the same conclusion in the context of Hγ , γ > 0,
and without assuming that f be bounded. The proof is also significantly shorter
than [8].

Lemma 5.3. If 0 < γ < β, then CHγ ⊆ CHβ.

Proof. Set ε = β − γ > 0 and let b ∈ CHγ . By Lemma 3.1 with n = 1 this im-
plies that MRb : Hγ → Hγ+2 is bounded. Using adjoints and reproducing kernels,
we see that this is equivalent to the existence of C > 0 such that Ckγ+2

w (z) −
Rb(z)Rb(w)kγw(z) is positive definite. We multiply this by kεw(z) and apply the
Schur product theorem (see [1], Theorem A.1) and obtain that Ckβ+2

w (z) −
Rb(z)Rb(w)kβw(z) is positive definite. This implies that b ∈ CHβ . �
Theorem 5.4. If f ∈ CHγ , and if there is a constant c > 0 such that |f(z)| ≥ c
for all z ∈ Bd, then

1
f is a multiplier for Hγ .

Proof. If f ∈ CHγ , then by Lemma 5.3 we have that f ∈ CHγ+n for all n ∈ N0.
Since for large n the space Hγ+n is a weighted Bergman space, the hypothesis
implies that 1/f is a multiplier of Hγ+n+2 for sufficiently large n. Thus the theorem
will follow inductively from the claim:

Claim: If f ∈ CHγ+n and if 1/f is a multiplier ofHγ+n+2, then 1/f is a multiplier
of Hγ+n.

Let g ∈ Hγ+n. Then∥∥∥∥ gf
∥∥∥∥
γ+n

≈
∥∥∥∥R

(
g

f

)∥∥∥∥
γ+n+2

≤
∥∥∥∥Rg

f

∥∥∥∥
γ+n+2

+

∥∥∥∥gRf

f2

∥∥∥∥
γ+n+2

� ‖Rg‖γ+n+2 + ‖gRf‖γ+n+2 � ‖g‖γ+n.

Here the last inequality follows from Lemma 3.1. �
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