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THE SUBPROJECTIVITY OF THE PROJECTIVE TENSOR

PRODUCT OF TWO C(K) SPACES WITH |K| = ℵ0

ELÓI MEDINA GALEGO AND CHRISTIAN SAMUEL

(Communicated by Thomas Schlumprecht)

Abstract. We prove that the projective tensor product of two C(K) spaces,

where K is an infinite countable metric compact space, is c0-saturated and is
therefore a subprojective space. This completes some recent work on subpro-
jectivity of projective tensor products involving C(K) spaces by T. Oikhberg
and E. Spinu.

1. Introduction and the main theorem

We use standard terminology and notation on Banach space theory; see e.g. [4].
Subspace means a closed linear infinite dimensional subspace. Operator means a
bounded linear operator.

This paper is motivated by a recent and systematic study of subprojectivity on
Banach spaces by T. Oikhberg and E. Spinu [7]. Recall that a Banach space X is
called subprojective if any of its subspaces contain a further subspace complemented
in X.

The simplest examples of subprojective Banach spaces are �p spaces (1 ≤ p < ∞),
c0 [9, Lemma 2] and the spaces C(α) of all scalar continuous functions defined on
the interval of countable ordinals [1, α], endowed with the order topology [10, Main
Theorem]. On the other hand, by Milutin’s theorem, [11, Theorem 21.5.10] and
[9, Corollary 2], the spaces C(K) of all scalar countinuous functions defined on an
uncountable compact metric space are not subprojective.

In their paper, T. Oikhberg and E. Spinu examine, among other things, the
stability of the subprojectivity under projective and injective tensor products. Here
we turn our attention to the subprojectivity of the projective tensor product X⊗̂Y
of two subprojective Banach spaces X and Y [7, Question 3.12].

It is known that �p⊗̂�q, �p⊗̂c0 and c0⊗̂c0 (1 ≤ p, q < ∞) are subprojective
([7, Corollary 3.3] and [8, Theorem 5]).

In order to state our main result we need to recall that a Banach space X is
said to be c0-saturated if any of its subspaces contain a subspace isomorphic to
c0. The spaces C(α) are also c0-saturated for every countable ordinal α [10, Main
Theorem].
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2612 ELÓI MEDINA GALEGO AND CHRISTIAN SAMUEL

In this paper we use a method which is different from that used by Oikhberg-
Spinu [7] and Oja [8]. Here we use Tong’s results on diagonal block operators [14]
and we show:

Theorem 1.1. Let K1 and K2 be two countable compact metric spaces. Then
C(K1)⊗̂C(K2) is c0-saturated.

So, we deduce easily from the theorem of Sobczyk [13] the “sufficient” part of
the following theorem.

Theorem 1.2. Let K1 and K2 be two compact metric spaces. Then C(K1)⊗̂C(K2)
is subprojective if and only if K1 and K2 are countable.

Denote by ω the first infinite ordinal and by ω1 the first uncountable ordinal. By
the classical theorem of Mazurkiewicz and Sierpiński [6] we know that an infinite
countable compact metric space is homeomorphic to an interval [1, α], where ω ≤
α < ω1.

Thus, we will establish Theorem 1.1 by proving:

Theorem 1.3. Suppose that ω ≤ α, β < ω1. Then C(α)⊗̂C(β) is c0-saturated.

2. Some preliminary results

We start by recalling some basic facts on projective tensor products of Banach
spaces [3], [12]. Let E,F be two Banach spaces and denote by B(E,F ) the space
of bounded bilinear functionals on E × F. The projective tensor norm of u =∑n

i=1 ai ⊗ bi ∈ E ⊗ F is defined by

‖u‖ = sup

{∣∣∣∣∣
n∑

i=1

ϕ(ai, bi)

∣∣∣∣∣ : ϕ ∈ B(E,F ), ‖ϕ‖ ≤ 1

}
.

As usual, E⊗̂F denotes the completion of E ⊗ F with respect to the projective
tensor norm. If necessary we denote by ‖ ‖π(E⊗F ) the projective tensor norm on

E⊗̂F.
We recall that if M is a subspace of F, the norm induced by ‖ ‖π(E⊗F ) on

E ⊗M is not necessarily equivalent to the norm ‖ ‖π(E⊗M). Nevertheless, we have
the following result of Grothendieck ([3, Corollary 1, p. 40], [12, Proposition 2.4])
which will play an important role in this work.

Theorem 2.1. Let E and F be Banach spaces. Suppose that M is a complemented
subspace of F and P is a bounded linear projection from F onto M . Then for every
u ∈ E⊗̂M, we have ‖u‖π(E⊗F ) ≤ ‖u‖π(E⊗M) ≤ ‖P‖ ‖u‖π(E⊗F ).

We need to introduce the definition of a diagonal block sequence used by Tong
in his paper [14].

Throughout this paper we denote by (Pm)m≥1 the sequence of natural projections
associated to the unit vector basis of c0. It is convenient to define P0 = 0.

We say that a sequence (uk)k≥1 of c0⊗̂c0 is a diagonal block sequence if there
exist a strictly increasing (nk)k≥1 of integers such that u1 = (Pn1

⊗ Pn1
)(u1) and

uk = ((Pnk
−Pnk−1

)⊗(Pnk
−Pnk−1

))(uk) for every integer k ≥ 2.We prove Theorem
1.3 by a transfinite induction, and the first step is the following lemma.

Lemma 2.2. c0⊗̂c0 is c0-saturated.

Proof. For every integer n we denote Rn = Ic0 ⊗ Pn + Pn ⊗ Ic0 − Pn ⊗ Pn.
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We suppose that c0⊗̂c0 is not c0-saturated, so there exists a subspace E of c0⊗̂c0
which does not contain a subspace isomorphic to c0. We shall show that this leads
to a contradiction.

Let 0 < ε < 1. We construct by induction a normalized sequence (xk)k≥1 of
E and a strictly increasing sequence (nk)k≥0 of integers such that n0 = 0 which
satisfy, for every integer k ≥ 1,

(2.1)
∥∥((Pnk

− Pnk−1
)⊗ (Pnk

− Pnk−1
))(xk)− xk

∥∥ ≤ ε

2k
.

To begin we choose x1 ∈ E, ‖x1‖ = 1. We have x1 = lim
n→∞

(Pn ⊗ Pn)(x1) so we can

fix an integer n1 such that

‖x1 − (Pn1
⊗ Pn1

)(x1)‖ ≤ ε

2
.

Now let i ≥ 1 and suppose that we have a normalized finite sequence (xk)1≤k≤i of
E and a finite sequence of integers n1 < · · · < ni such that (2.1) is satisfied for
1 ≤ k ≤ i.

The subspace ImRni
of c0⊗̂c0 is isomorphic to c0, and so it is c0-saturated.

It follows that Rni
is not an isomorphism from E onto Rni

(E), so there exists
xi+1 ∈ E which satisfies ‖xi+1‖ = 1 and ‖Rni

(xi+1)‖ ≤ ε/2i+2. There exists an
integer ni+1 > ni such that

‖xi+1 − (Pni+1
⊗ Pni+1

)(xi+1)‖ ≤ ε

2i+2
.

It is easy to infer from the last inequalities that xi+1 satisfies (2.1). Let zk =
(Pnk

−Pnk−1
)⊗(Pnk

−Pnk−1
)(xk). The sequence (zk)k is a seminormalized diagonal

block sequence of c0⊗̂c0, so by the result of Tong, [14, Theorem 4.6], it is equivalent
to the unit basis of c0. For ε > 0 small enough, (xk)k is a basic sequence of E
equivalent to the unit basis of c0; hence we have a contradiction.

For the continuation it is convenient to introduce new notation. We denote
by C0(α) the subspace of C(α) given by { f ∈ C(α) ; f(α) = 0 }. According to
[1, Lemma 1] C0(α) is isomorphic to C(α) for ω ≤ α. Let 0 ≤ β < γ < α. We
denote this by

C([β + 1, γ]) = { f ∈ C0(α) ; f = f1[β+1,γ] },
where 1[β+1,γ] is the characteristic function of the interval [β+1, γ]. Let 1 ≤ γ ≤ α
be an ordinal. We denote by Sγ the operator from C0(α) to C0(α) defined by
Sγ(f) = f1[1,γ].

For every (m, γ) ∈ [1, ω) × [1, α), we denote by Tm,γ the operator of c0⊗̂C0(α)
given by

Pm ⊗ IC0(α) + Ic0 ⊗ Sγ − Pm ⊗ Sγ .

We know [2, Lemma 5.1] that ImTm,γ is isomorphic to C0(α)× c0⊗̂C(γ).
The previous lemma is the first step α = ω of the proof by a transfinite induction

of the following lemma.

Lemma 2.3. For every ordinal number ω ≤ α < ω1, the space c0⊗̂C0(α) is c0-
saturated.

Proof. Let α be a countable ordinal such that, for every ω ≤ γ < α, the space
c0⊗̂C0(γ) is c0-saturated. It is obvious that c0⊗̂C0(α) is c0-saturated if α is a
successor. Suppose now that α is a limit ordinal and that c0⊗̂C0(α) is not c0-
saturated. This means that there exists a subspace E of c0⊗̂C0(α) which does not
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contain a subspace isomorphic to c0. Let 0 < ε < 1. We construct by induction a
normalized sequence (xi)i≥1 of E, a strictly increasing sequence (mi)i≥1 of integers
and a strictly increasing sequence (γi)i≥1 of [1, α) such that

(2.2) ‖x1 − (Pm1
⊗ Sγ1

)(x1)‖ ≤ ε

2

and, for every integer i ≥ 2,

(2.3) ‖xi − ((Pmi
− Pmi−1

)⊗ (Sγi
− Sγi−1

))(xi)‖ ≤ ε

2i
.

We choose x1 ∈ E, ‖x1‖ = 1. We know that x1 = limm→∞,γ→α(Pm ⊗ Sγ)(x1), so
we may fix an integer m1 and an ordinal γ1 < α such that (2.2) holds. Let i be
an integer ≥ 1 and suppose we have a finite normalized sequence (xk)1≤k≤i of E,
a finite sequence of integers m1 < · · · < mi and a finite sequence γ1 < · · · < γi
of [1, α) such that (2.2) and (2.3) are satisfied for k = 1, . . . , i. It follows from our
assumption and from [5, Lemma 1] that C0(α) × c0⊗̂C(γ) is c0-saturated. Hence
Tmi,γi

is not an isomorphism from E onto its image so there exists xi+1 ∈ E such
that ‖xi+1‖ = 1 and

(2.4) ‖Tmi,γi
(xi+1)‖ ≤ ε/2i+2.

There exist an integer mi+1 > mi and an ordinal γi < γi+1 < α such that

(2.5) ‖xi+1 − (Pmi+1
⊗ Sγi+1

)(xi+1)‖ ≤ ε/2i+2.

We deduce easily from (2.4) and (2.5) that (2.3) holds for i + 1. Let z1 = (Pm1
⊗

Sγ1
)(x1) and, for i ≥ 2, zi = (Pmi

− Pmi−1
) ⊗ (Sγi

− Sγi1)(xi). The sequence

(zi)i≥1 is a seminormalized diagonal block sequence of c0⊗̂C0(α), and thus, by
[2, Theorem 4.2], it is equivalent to the unit basis of c0. For ε > 0 small enough
the sequence (xi)i≥1 is a basic sequence of E equivalent to (zi)i≥1; hence we have
a contradiction. �

3. Diagonal block sequences in C0(α)⊗̂C0(β) spaces

In order to prove the result announced we introduce diagonal block sequences
in C0(α)⊗̂C0(β). Let (γi)i≥1 be a strictly increasing sequence of [1, α) and (θi)i≥1

a strictly increasing sequence of [1, β). We denote by Rθi the operator of C0(β)
defined by Rθi(g) = g1[1,θi] for every g ∈ C0(β).

Definition 3.1. For every 1 ≤ k < ω, we denote by Πk the operator of C0(α)⊗̂C0(β)
given by

Πk(u) =

⎧⎨⎩(Sγ1
⊗Rθ1)(u) if k = 1,

((Sγk
− Sγk−1

)⊗ (Rθk − Rθk−1
))(u) if k ≥ 2.

We say that a sequence (fk)k≥1 of C0(α)⊗̂C0(β) is a diagonal block sequence as-
sociated to the sequences (θk)k≥1 and (γk)k≥1 if Πk(fk) = fk for every integer
k.

Lemma 3.2. Let ω ≤ α, β < ω1. Every normalized diagonal block sequence of
C0(α)⊗̂C0(β) is equivalent to the unit basis of c0.
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Proof. Let (fk)k≥1 be a normalized diagonal block sequence of C0(α)⊗̂C0(β) asso-
ciated to the sequences (θk)k≥1 and (γk)k≥1. Let 0 < ε < 1. For every integer k ≥ 1
we fix gk ∈ C0(α)⊗ C0(β) such that ‖fk − gk‖ ≤ ε/2k. We denote hk = Πk(gk); it
is obvious that ‖fk − hk‖ ≤ ε/2k. For every integer k there exist an integer nk and
uk
1 , . . . , u

k
nk

∈ C0(α), v
k
1 , . . . , v

k
nk

∈ C0(β) such that hk =
∑nk

n=1 u
k
n ⊗ vkn. We may

suppose that (Sγk
− Sγk−1

)(uk
n) = uk

n and (Rθk −Rθk−1
)(vkn) = vkn for every integer

1 ≤ n ≤ nk. �

The subspace

Ek = {u ∈ C0(α) ; u = (Sγk
− Sγk−1

)(u) }
is a L∞,1+ε space for every ε > 0, so there exists a finite dimensional subspace Xk

of Ek such that uk
1 , . . . , u

k
nk

∈ Xk, d(Xk, �
dk∞) ≤ 2 and a projection πk of Ek onto

Xk, ‖πk‖ ≤ 2, where dk is the dimension of Xk.
In the same way the subspace

Fk = { v ∈ C0(β) ; v = (Rθk −Rθk−1
)(v) }

is a L∞,1+ε space for every ε > 0, so there exists a finite dimensional subspace Yk

of Fk such that vk1 , . . . , v
k
nk

∈ Yk, d(Yk, �
d′
k∞) ≤ 2 and a projection π′

k of Fk onto Yk,
‖π′

k‖ ≤ 2, where d′k is the dimension of Yk.
Let N be an integer. We denote X = X1 + · · · +XN , Y = Y1 + · · · + YN , d =

d1 + · · ·+ dN , d′ = d′1 + · · ·+ d′N . It is clear that d(X, �d∞) ≤ 2 and d(Y, �d
′

∞) ≤ 2.
Let π be the operator from C0(α) onto X defined for every u by

π(u)(γ) =

⎧⎨⎩π1Sγ1
(u)(γ) if 1 ≤ γ ≤ γ1,

πk(Sγk
− Sγk−1

)(u)(γ) if γk−1 + 1 ≤ γ ≤ γk and 2 ≤ k ≤ N,

where π is a projection and ‖π‖ ≤ 2.
In the same way the operator π′ from C0(β) onto Y defined for every v by

π′(v)(γ) =

⎧⎨⎩π′
1Rθ1(v)(γ) if 1 ≤ γ ≤ γ1

π′
k(Rθk −Rθk−1

)(v)(γ) if γk−1 + 1 ≤ γ ≤ γk and 2 ≤ k ≤ N

is a projection and ‖π′‖ ≤ 2.
The operator π ⊗ π′ is a projection onto X ⊗ Y of norm ≤ 4.
Let λ1, . . . , λN be scalars; by [3, Corollaire 1, p. 40] we have∥∥∥∥∥

N∑
i=1

λihi

∥∥∥∥∥
π(C0(α)⊗C0(β))

≤
∥∥∥∥∥

N∑
i=1

λihi

∥∥∥∥∥
π(X⊗Y )

≤ 4

∥∥∥∥∥
N∑
i=1

λihi

∥∥∥∥∥
π(C0(α)⊗C0(β))

.

Now we use Tong’s result to compute
∥∥∥∑N

i=1 λihi

∥∥∥
π(X⊗Y )

.

For every integer 1 ≤ i ≤ N, let Ti : Xi → �di
∞ (resp. T ′

i : Yi → �
d′
i∞) be an

isomorphism such that ‖Ti‖ = 1 and ‖T−1
i ‖ ≤ 2 (resp. ‖T ′

i‖ = 1 and ‖T ′
i
−1‖ ≤ 2).

The operator T ⊗ T ′ : X⊗̂Y → �d∞⊗̂�d
′

∞ is an isomorphism such that ‖T ⊗ T ′‖ = 1

and ‖T−1 ⊗ T ′−1‖ ≤ 4. We have

1

4

∥∥∥∥∥
N∑
i=1

λihi

∥∥∥∥∥
π(X⊗Y )

≤
∥∥∥∥∥

N∑
i=1

λi(T ⊗ T ′)(hi)

∥∥∥∥∥
π(�d∞⊗�d′∞)

≤
∥∥∥∥∥

N∑
i=1

λihi

∥∥∥∥∥
π(X⊗Y )

.
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The sequence ((T ⊗ T ′)(hi))1≤i≤N is a diagonal block sequence of �d∞⊗̂�d
′

∞ and so,
by Tong’s result,∥∥∥∥∥

N∑
i=1

λi(T ⊗ T ′)(hi)

∥∥∥∥∥
π(�d∞⊗�d′∞)

= max
1≤i≤N

|λi| ‖(T ⊗ T ′)(hi)‖.

Hence (hi)i≥1 is a seminormalized basic sequence equivalent to the unit sequence
of c0.

For ε > 0 small enough the sequence (fi)i≥1 is equivalent to (hi)i≥1 and thus
equivalent to the unit basis of c0.

4. Proof of the main theorem

We are now ready to prove Theorem 1.3 and the “necessary” part of Theorem
1.2.

Proof of Theorem 1.3. For every ordinal ω ≤ β < ω1 we consider the property

(Pβ) for every ω ≤ α < ω1 the space C(α)⊗̂C(β) is c0-saturated.

We show by a transfinite induction that (Pβ) is true for every β. The property
(Pω) is true by Lemma 2.2.

We suppose that ω < β < ω1 is a limit ordinal and that (Pθ) is true for every
ω ≤ θ < β.

Now we show, by a transfinite induction on the ordinal α ∈ 〈ω, ω1), that C0(α)⊗̂
C0(β) is c0-saturated. The result is true if α = ω.

We suppose that α is a limit ordinal and that C0(γ)⊗̂C0(β) is c0-saturated for
every ω ≤ γ < α.

We suppose also that C0(α)⊗̂C0(β) is not c0-saturated and show that this as-
sumption leads to a contradiction.

So there exists a subspace E of C0(α)⊗̂C0(β) which does not contain a subspace
isomorphic to c0. Let 0 < ε < 1. It is easy to construct by induction a normalized
sequence (fi)i≥1 of E, a strictly increasing sequence (γi)i≥1 of 〈1, α〉 and a strictly
increasing sequence (θi)i≥1 of 〈1, β〉 such that

• ‖f1 − (Sγ1
⊗Rθ1)(f1)‖ ≤ ε/2,

• for every integer i ≥ 2, ‖fi − ((Sγi
− Sγi−1

)⊗ (Rθi −Rθi−1
))(fi)‖ ≤ ε/2i.

It follows by Lemma 3.2 that for ε > 0 small enough the sequence (fi)i≥1 is
equivalent to the unit basis of c0 in contradiction with our assumption.

Proof of the “necessary” part of Theorem 1.2. Let K1 and K2 be two infinite com-
pact metric spaces and suppose that C(K1)⊗̂C(K2) is subprojective. It follows that
C(K1)⊗̂c0 is subprojective, so by [7, Proposition 4.2.] the compact K1 is scattered.
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